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A three-dimensional nonlinear finite element for thin beams is proposed within the absolute nodal
coordinate formulation (ANCF). The deformation of the element is described by means of displacement vector,
axial slope and axial rotation parameter per node. The element is based on the Bernoulli-Euler theory and can
undergo coupled axial extension, bending and torsion in the large deformation case. Singularities — which
are typically caused by such parameterizations — are overcome by a director per element node. Once the
directors are properly defined, a cross sectional frame is defined at any point of the beam axis. Since the director
is updated during computation, no singularities occur. The proposed element is a three-dimensional ANCF
Bernoulli-Euler beam element free of singularities and without transverse slope vectors. Detailed convergence
analysis by means of various numerical static and dynamic examples and comparison to analytical solutions
shows the performance and accuracy of the element.

Shaban#2006. The formulation ozon Dombrowsk{(2003
contains a time-dependent mass matrix and due to the pa-
In the present paper, a Bernoulli—-Euler beam finite elementameterization of rotations it fiiers from singularities. A
based on the absolute nodal coordinate formulation (ANCF)similar approach ason Dombrowski(2003 is chosen by
is introduced. The ANCF has been developedStabana Dmitrochenko(2005; Dmitrochenko and Pogoreld2003.
(1997, 2005 as an alternative to the classical large rota- In the latter references, the usage of a Frenet basis leads to
tion vector formulation for the modeling of large deforma- singularities in the inflection points, because the torsion an-
tion structural problems in two and three dimensions. Orig-gle is not uniquely definedserstmayr and Shabarta006
inally, thin (Bernoulli-Euler) ANCF elements led to a dif- presented anfgcient approach for thin structural problems,
ferent solution as the classical Euler Elastica, however in thénowever, torsion has not been included in their formulation.
two-dimensional cas&erstmayr and Irschii008 showed  Note that invon Dombrowski2003; Dmitrochenka(2005);
how to write the work of elastic forces, such that classical Gerstmayr and Shabaf2006, the material measure of cur-
solutions can be retrieved by ANCF elements. In the threevature has not been utilized, therefore the axial extension
dimensional case, however, there are no singularity-freeand bending are not decoupled, which may lead to erroneous
Bernoulli-Euler ANCF elements so far (in contrast to fully results under large axial forces, séerstmayr and Irschik
parametrized shear deformable ANCF elementsSebgvab  (2008. The original three-dimensional approachYakoub
and Meijaard2010, who present and validate a locking free and Shaban&001) describes a shear-deformable beam el-
3-D beam element with the usage of an elastic lien approackement, which involves a constant mass matrix and does not
and the Whu-Washizu variational principle). Among earlier sufer from singularities.
works on Bernoulli-Euler ANCF elements we mentioom
Dombrowski(2003; Dmitrochenko(2005; Gerstmayr and



global configuration reference element e,
beam axis

undeformed state I u
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In order to have a uniquely defined orientation of the

5 deformed state -w/2 < (< Hw/2 cross section about the beam axis directipr - a non-collinear
directord is utilized. The local frameg, e, €3) is defined by the
Finite element configurations. normalized projectiores of d into the normal plane oé;, and a

subsequent rotation around a torsional aigle

The present ANCF formulation features strain measuregpresented. In contrast to previous Bernoulli Euler ANCF el-
for axial extension, bending and torsion. For the consistenements, the proposed element is investigated using a large
derivation of such strain measures ddiseev(2003. The number of numerical examples, many of them suggested by
principle of virtual work includes the kinematic relations for Schwab and Meijaar@2009. In this work, the examples
the strain measures of the rod, evaluated at a material lineare restricted to small and large deformation static problems,
For similar formulations of the direct approach to a material buckling and linearized dynamic (eigenvalue) problems. In
line see e.g. the works &teissne(1973 or Antman(1972). addition to the content dfachbagauer et g2011), the exact

The parameterization of the kinematics of a spatial curveddynamic terms of the beam element and a nonlinear dynamic
rod without shear was presented iisommer and Vetyukov ~ example are provided in this work.

(2009, however there, the calculation was performed using a

global Ritz approach. The kinematic description and the vir-

tual work for the proposed element is chosen in a way similar

to Vetyukov and Elisee{2010 or ratheVetyukov(2008. In The geometry of the beam is described by a curve, repre-
the latter paper, only static problems are regarded, while irsenting the beam’s axis, and a cross section at each point of
the present paper, also dynamic behavior is analyzed. In corthis axis, see Figl. In the present paper, a Bernoulli-Euler
trast to standard ANCF elements, in which the mass matrixbeam is considered, which means, that the cross section of
is constant, here the exact mass matrix is time-dependenthe beam is thin, undeformed, and orthogonal to the beam
since a rigid cross section is assumed. In addition, a conaxis (since shear deformation can be neglected) at any time
stant mass matrix, similar tdmitrochenko(2009, can be  and for any point of the beam axis. Moreover we assume,
applied for linear problems or small deformation problems, that the beam’s axis intersects each cross section exactly at
e.g. small oscillations, while for nonlinear problems a non-the cross section’s centroid. The positiprof an arbitrary
constant mass matrix is utilized. The geometry of the beanpoint (or particle) in the cross section may thus be computed
is described by a curve, representing the beam’s axis, as welly
as by an orientation of the cross section at each point of this

axis, see Figl. The orientation of the cross section is de- 3 0
fined by an angle of axial rotation relative to a certain refer- &ML =) +AE) |n) .- @)
ence direction, which is introduced in order to perform the 4

rotation in a correct manner and to avoid singularities orig-Here, r(¢) denotes the axial position (i.e., where the cross
inating from the usage of the rotation parameter. There exsection belonging tg meets the beam’s axis). The rotation
ist different interpolation procedures in literature, in which tensorA(¢) is defined by

displacements and rotations (s&ieno and Vu-Quocl986),

displacements and slopes (Sfeabanal997) or strains (see  Al) = [el(f) &(¢) 63(5)] , @)

Gams et al. 2007 Zupan and Saje2003 are used as ba- i \which, g (£) denotes thé-th base vector of the local axis

sic interpolated variables. In contrast to the above-mentioneg, g me at (see Fig2). These vectors can be defined in terms
formulations, the present approach is based on the interpolagss ihe slbpe vector’ = 2

) . : 5 the reference direction (director)
tion of displacements, slopes and a rotation around the bear§ gnd an angl® as fol
axis. For the interpolation of displacements and slopes, cubigjencies orF are omitted):

lows (for easier reading, the depen-
shape functions are chosen, while the angle of axial rotation o

is interpolated linearly with respect to the beam'’s axis. e = —, ©)
In the following, the geometric description of the finite el- ] .
ement, the choice of degrees of freedom, as well as the def2 = €20C0sf) +€30sin), 4

inition of the strain energy for the ANCF beam element aree; = e37c0s0) —exsin), (5)



Dmitrochenko(2009, however due to the use of the direc-
HQ—»B' tor, the meaning of the axial rotation angle ifeient in the
’ present approach.
For & e [-L/2,L/2] the axial position vector(¢) is inter-
polated by cubic polynomials,

T, Y T
J . r(€) = Su(&)ra + S2(&)r, + Sa(&)rp + Sal@)r, (12)

with
Degrees of freedom for one beam finite element in the

nodesa andp: axial position vectorr, slope vector’, and cross o @ = 1 o_ 6 + 8_(‘?3
section orientation ange 1 ) L L3 )
2 3

in whichesg denotes the normalized projection of the director
d into the normal plane of the slopég i. e., 1 6 8¢

@ = T )
e30= =2 go=d-(d"eer, ©) 1 26 a2 ge

|€30] S4(é) = 50 -1- T + F + F > (13)

andey is defined by the cross product
denoting the positional shape functions, and the rotation an-
€20 = €30 X €. (7)  gled(#) is interpolated by linear polynomials,

Note that a similar parameterization of the cross section ori-
entation has already been usedvmyn Dombrowski(2003, 0(&) = Ss()0a + Se(€)0 - (14)
however, not regarding a director. Summarizing, the geome- .
try of a Bernoulli-Euler beam can be fully described by the wi
axial positionr, sloper’, and cross section orientation angle

g, for a fixed choice of a directod. Equation €) says, that ~ Ss(é) =
geometric singularities occur, if (and only if) the slopas

collinear with the directod. A safe strategy for preventing denoting the rotational shape functions. The position and ori-

singularities throughout the deformation process using an Upentation of an arbitrary point is computed by
dating procedure is addressed in Sdct._et us first turn to
the finite element discretization.

th

|l Y

'3
+ T (15)

NI =

Se(é) =

NI =

[rx 1y 1z 9]T=Sq, (16)

with the shape function matrix

The proposed beam finite element is defined by a pair of ax- 0
ial position vectors, axial slope vectors, and axial rotationS= [0 s | (17)
angles, i.e.,

L L The sub matriceS; andS;, are defined by
ra/_r(gz_z)v rﬁzr(fzz), (8)

=[Sil Sal S3l S4lf, =[Ss Sgl, 18

r;:r’( :_E), rb:r’(g—“:k), ©) S [ il Sal S 4] S [5 6] (18)

2 2

L L with | denoting the identity ifR3. The directord is also de-
o, =ole=-5). g-ofe-). ! |

£=73 s =6\6= 3 10 fined by the pairs,
All together those are 14 degrees of freedom, which we col- L L
lect in the vector of generalized coordinates dy = d(g = _5)’ ds = d(f = E) , (29)
T
q= [rl AN AN 9[3] , (11)  and, accordingly to the axial rotation anglginterpolated
——— ——

o & linearly for & in the interval[-L/2, L/2] by

see Fig.3 for a sketch of the element. The element coor- d,
dinates are chosen similar tmn Dombrowski(2003 and d) =[ Ss(&)l Se(&)! ] ds |’ (20)
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The equations of motion are written in the form of the La-
grange equations of second kind:

normal
lane of e d(oT\ 6T o1

planeor e, Sy g, @

/ dt\oGi) oa  oq;

whereT denotes the kinetic energhj, the strain energyQ;

are generalized external forcggsare the generalized coordi-

nates, as defined in Ed.Y), andqj denotes the partial deriva-

In large deformation problems it is crucial to prevent the tivé Of ¢ with respect to the time variable In the case of

directord from becoming collinear with the beam axis directmn ~ Static _problems, the klnetl(? enQrGWanlshes, such that the

Therefore a director update in form of a projection into the normal equations of the static equilibrium are

plane ofe; is suggested at every time or load step of the simulation.

Note, that an update of this kind does not change the configuratior@ =Q. (22)

of the local frame, see also Ed)(@nd Fig.2. o

With the principle of virtual work applied to the one-
Due to Eq. 6) the local frame is well defined if and only ifthe dimensional Cosserat continuum (see, eAgitman 1972
directord is not (numerically) collinear with the axial slope Eliseey 2003 Reissner1973 one can prove that the strain
I’ at any point on the beam axis. A safe strategy to avoidenergy per unit length is a function of two strain measures,
this situation is to successively update the director at the FEONe responsible for shear and axial extension, and the second
nodes at every |Oatﬂme step. As experienced in the scope of one I’eSponSible for bending and torsion. In the considered
this work, a 5imp|e projection of the directors at the FE-nodestnOdEI, the shear is kinematica”y constrained: the rotation of
into the cross section of the beam seems to Ifecgent, see  Particles is in correspondence with the variation of the tan-
Fig. 4. In case the axial directiosy becomes collinear during gential directionr’. Conforming toSimo (1985 Eq. 4.10),
a load or time step of the simulation, it helps to repeat thisthe axial extension is described by the axial strain
same iteration step with a reduced load or time increment,
and to update the director as explained at the intermediatg - > _
step. Moreover, a subsequent rotation of the projected direc- ds
tor around the beam axis by the torsional arfijlend subse- )
quently resetting to zero, provides an easy way to decreasel Which ds=|r'(£)ld¢ and & = Irp(£)|dé denote the arc
the complexity of the terms appearing in the equations c)flength_ln the deformed and undeformed state, respectively
motion and thereby speed up the syaymamic calculations. ~ (S€€ Figd). _ _
As it seems, a simple linear interpolation of the director be- Utilizing Einstein's summation convention, the vector of
tween the FE-nodes is Siicient for even complex scenarios Pending and torsional strain (skéseey 2003 reads:
a_md large deformauor;s, giventhata reﬁable |q|t|al conﬁggra—K — ke = (K — ko)e, (24)
tion was chosen. For instance, two neighbouring nodal direc-
tors in opposite directions would lead to a vanishing directorin which the torsional strair, and bending straine, 3 are
at the center of the finite element. Let be flnally mentioned,expressed as theftkrence of the components of the vector

that the proposed Bernoulli-Euler beam finite element pro-of twist and curvature in deformed and undeformed state,
videsC*-continuity along element borders only for the beam

axis, whereas the torsion of the cross section, i.e. ahdge k=ex€/2=ke, ko=eX€);/2=Kojei, (25)

just C%-continuous. Hence, a 4th-order convergence will be ) ) o
prohibited particularly in problems with significant torsional AAS n important geometrical property the derivative of the

effects. A fully C! continuous setting, requiring the rate of basis with respect to the beam’s axis may be determined by

the torsional anglé’ at the FE-nodes to serve as a general-& = k<& andef; = kox &, respectively. Notice, the compo-
ized coordinate, together with a conforming interpolation of NeNtski are considered in the local bagis i.e., there holds
the director along the beam axis is left for further investiga-

tion. ()2, =ATk. (26)

d rl — r/
S_ 1= ||_0, (23)
o

Interpolated values for the axial strain are computed by
r'(¢) = S (£)qr, whereas curvature components are functions



of the local frameeﬁ)?:l, and thus ofS(¢)q, see Egs.3)—(7) the element in undeformed state, see Eidsincep depends

and Eq. 16). linearly ong, i. e.,

If the local basis vectors,, e3 are chosen in the directions
of the principal axis of the cross section, then the following v & — (ﬂ L0808 ) - 32
quadratic approximation of the strain energy can be adoptedp(q’ 9 6q(q) 0q (@ aq (@¢) (32)

Equation 81) turns into
L/2
1 . .
=3 f (EAS® + GIE + Elyi3 + Elx3) dé @7 T=4"M(9q (33)
Lz where the mass matri is defined by the integral

with EA, GJ, Ely, and El, being correspondingly the fiti

nesses for axial extension, torsion and bending in the two 1 s T )
principal directions. The form of the strain energy in E27)( M =5 f Lo(a)DLo(q)lrglds, (34)
corresponds to the numerical formulation®imo and Vu- -L/2

Quoc(198§ if neglecting (cross sectional) transverse shear. } )
The strain energy in Eq2{) is also similar to that suggested and the matrice® andL o are defined
by von Dombrowski(2003 andDmitrochenko(2005, how-

ever the curvature components aréfetient in the present . _ péa‘ ? 8 LT [S e 3_63] (35)
approach. Additional theoretical argumentation for the strain~ — 0 poz ol ’ 0~ I dq dq]°
y

energy in the form in Eq27) and the kinematical definitions
in Egs. @3, 24) are provided by the asymptotic analysis of . . N  hhw _ wh
the three-dimensional problem of the theory of elasticity for in which the moments of inertia redd= 75 andly = 7.

a naturally curved and twisted rod, presentedYejiseyev ;Lhel_k'nftf energyf z;tipﬁeaErs n the following two terms in
and Orlov(1999. e Lagrange’s equations EQ1:

The variation of the strain energy in EQ.7] follows as aT d(oT
-— and —|—], (36)
L/2 aq dt\oq
oIt = f (EAz e +G ey ok + which means, that the following two terms have to be imple-
-L2 mented regarding the kinetic energy:
+Elyka 0k + Elx30k3) €. (28) aT _ZEqTaM”q- o
The variation ofs in Eq. (23) is easily computed as Ak = 27 ag
d(oT .1OM dg
oe= ———1'TS60q. 29 — —_) = T——"+q'M. 38
S @ g(5) = Do o (@8)
The variation ofy; in Eq. (26) has to be computed column-
wise by
ki OV The proposed ANCF element has been implemented in the
Oki = oV E]m’ (30)  framework of the multibody and finite element research code

HOTINT?. In order to show the performance and accuracy
in whichv=[r",r”,60,01". Here,f’—‘c’] can be easily computed of the proposed ANCF element, several numerical examples
by help of the shape functions in Eq&3(15). are considered. Many of the following examples are based

on the beam benchmark problems propose&bywab and

Meijaard(2009.

As a first example, a cantilever beam under a tip load com-
In case of dynamic problems, the full Lagrange Equations inpined with a bending and torsional moment leading to small
Eq. 21) have to be solved. The kinetic ener@yis defined  geformations is investigated. Further, we discuss large bend-

as ing and torsion problems, Euler and lateral buckling, as well
1 T as the linear dynamic problem of an eigenfrequency analy-
T= 5 fp P pdV, (31) sis in the case of a simply supported beam with pre-stress as
v well as a nonlinear dynamic pendulum.
in which p denotes the material density, apdas defined Lhttpy/tmech.mechatronik.uni-linz.ac/stat/gerstmayhotint.

in Eq. (1), points to an arbitrary point of the volumé of html


http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/hotint.html
http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/hotint.html

_ Convergence analysis (order 4) of the axial and transverse
2 f=IF, F,F] : ; : :
Y displacement at the tip of the cantilever beam in S&@compared
J T to the exact solution stated Gerstmayr and IrschiR2008.
— 9—” M,
' I "M, Elements Uy uy
. o 1 -0.3411725115810615 0.9654494547661615
Cantilever beam with tip force and moment resultants. 2 _0.4879599317854074 1.1714616527622450
4  -0.5075492277225774 1.2053708868794728
) . o 8 -0.5085245204356039 1.2071998231055112
If not mentioned dferently in the description of the ex- 16 -0.5085375347924183 1.2072390085269251
amples, we assume a cantilever beam, seeShigth length 32 -0.5085373396910754 1.2072398289564636
L in x direction, widthw in y direction, and heighh in 64 -0.5085373073884966 1.2072398533822040
z direction. By default all components of the tip resultant 128 -0.5085373045949709 1.2072398544836476

256 -0.5085373043521027 1.2072398545459371
exact -0.5085373043258772  1.207239854549824

T .
force f =[F,Fy.F,| and the tip resultant moment =

T .
[MX, My,MZ] are zero, Young's modulus is assumed to be

E = 2.1x 10N m2, the Poisson ratio i = 0.3, and the di-

rector points inta direction,d = [0,0,1] ", on the whole axis o

of the cantilever. q

107 +

As a first static example, a cantilever beam loaded at the a

tip by a vertical force, by a bending and torsional moment
is investigated according t8&chwab and Meijaarq2009
Sect. 2.1). The chosen load case leads to small displacements 10°
and small rotations. The cantilever beam has lehgthl m,

widthw = 0.01 m and heighth = 0.02 m. The vertical tip load 107
is chosen ag,=1x 10N, and the bending momem,

and the torsional momeri¥l, are of the same magnitude 107 - .
My = My = 1x10~*Nm. The torsional sfiness of the rectan- 10 Sggrees of Freedom 10
gular cross section is set @J = Ghw?/3, whereG denotes

the standard shear modulGs= E/(2 + 2v). The theoretical The errorjuy —u| between computed and exact solution is
value of the tip displacement indirectionu,, as well as the  plotted versus the degrees of freedom for the large bending example
axial rotationd and the rotation around thﬂiXiS,soy, can be in Sect.6.2 Actually, fourth order convergence may be observed

107

Error

computed by the following formulas: only in plane problems.
FL3  MyL2
Y = 3B, 2EL’ (39)
ML . . .
0 = 53 (40) A cantilever beam with length = 1 m, widthw = 0.005m,
FL2 ML and heighth = 0.02 m is investigated. At the tip, a bending
oy = ZZEI - ﬁ . (41) momentMy, = 50 Nm, and a torsional momekt, = 125 Nm
y y

is applied. The torsional $fhess of the cross section is sup-

In our tests, the dierence between theoretical and numerical Posed to b&sJ = Ghw?/3 with G again denoting the shear
solution was less than 1®m for one element, and less than Modulus. The obtained tip displacement is compared in Ta-
1012 for two and more elements. ble 2 to the numerical solution based on an ANSYS imple-
mentation with 40 beam elements. Notice, this example is
almost identical with a benchmark problem3chwab and
Meijaard (2009 Sect. 2.3). Since it was not possible for the
A cantilever beam with lengtth =2 m, width and height software package ANSYS to calculate a numerical solution
w=nh=0.1m under a transversal tip lodg, = 12El,/L? is for the full amount of loading, only 50 percent were pre-
investigated. The obtained tip displacement is compared tscribed. Thereafter, the solution of ANSYS was compared to
a solution computed with arbitrary precision giverGerst-  the solution by using the proposed beam finite element. Note,
mayr and Irschik2008, see Tablel. The convergence rate that the solution of the proposed element coincides with
is of order 4, as can be seen in Fy. the solution of ANSYS up to 5 digits, which significantly



Displacement of the tip in case of large bending and tor- Displacementsu, and uy, for the full circle bending in
sion in Sect6.3 compared to a numerical solution with 40 beam Sect.6.4converge at order 4.
elements in the software package ANSYS.

Elements Uy Uy
3 2 2
Elements U, (x107) 4 (x107) u: (x107) 1 —1.5105305426085659  1.3841149699588149
1 -170988 -321322 -3.83156 2 -2.2167244240620558 0.1408464658361039
2 -170974 -2.82968 -3.82723 4 -2.0302356356499369 —0.0005393788083298
4 -172399 -2.84476 —-3.82940 8 -2.0026639789559821 —0.0000566264761093
8 -172968 -285337 -3.83113 16 -2.0001814751535658 —0.0000009572511065
16 -1.73116 -2.85572 -3.83160 32 -2.0000117896528211 —-0.0000000147330922
32 -173153 -2.85631 -3.83172 64 —2.0000007741038281 —0.0000000002256560
64 -173162 -2.85646 -3.83175 128 -2.0000000527750790 —0.0000000000034961
128 -1.73165 -2.85649 -3.83176 256 —-2.0000000038609360  0.0000000000036471
ANSYS  -17316  -28564  -38318 exact -2 0
Y0 The ratio of the numerical to the theoretical buckling load
beam moment x max, N*m | Frum/Fi in case of Euler buckling, Sed.5, compared to the re-
[ g'ggggigg: sults ofSchwab and Meijaar(009. Note, that the rati&num/Fn
1.95564001 goes up after using 8 elements when using the original valugeAor
1.685e+001 which is due to the fact, that the numerical buckling loads could
1.416e+001 only be determined by solving an eigenvalue problem for the de-
1.146e+001 formed system. A second test for af&i value ofE Ashowed order
8.759e+000 4 convergence.
— 1 6.060e+000
. gjggﬁz_"ﬂ"ﬂ'ﬂ" Z0 Number of Schwab Proposed Beam
-2.036e+000 . - o
beam moment x min, N*m elements Meijaard penalizétA  original EA
1 1.00752232 1.00752255 1.00754320
2 1.00051214 1.00051330 1.00053272
4 1.00003276 1.00003298  1.00005325
8 1.00000206 1.00000226  1.00000050
16 1.00000012 1.00000038 1.00002053

L =1m, widthw=0.01 m and heighh = 0.02 m, according

to the benchmark problem i8chwab and Meijaar2009
Sect. 2.5). The theoretical buckling load can be calculated by
Fth = (7/4)(E Imin/L?), in which | i, denotes the minimum of
the bending sffnessedmin = min(ly, I;). Notice, that difer-
ently toSchwab and Meijaar(R009 the eigenvalues are nu-
merically calculated in the deformed state which corresponds
to the numerical compressive normal forEqm. In other
words, the buckling loads were determined by observing the
lowest bending mode of the system, which corresponds to
the deformed state of the beam (since the simulation sofware
we used does not provide linearized equations directly for
the eigenmode analysis, but the system matrix is assembled
automatically for the deformed state of the beam).

Thus, in order to allow a comparison to the benchmark re-
sults, another test was done, in which the axidirstiss of the
beam is penalized (multiplied by the factor 100), such that
buckling occurs at a less deformed state of the beam. Both
As a first buckling problem, a Euler buckling of a can- cases (original and penalized axiaffstesses) are compared
tilever beam under a compressive normal fofgeis an-  to a benchmark example 8chwab and Meijaar(2009 in
alyzed. The dimensions of the beam are chosen as lengtfiable4.

Deformation of the beam in Se@.3 with color-plot of
the torsional moment.

behaves better than an approachvby Dombrowski(2003
Fig. 3).

A cantilever beam with length. =2 m, width and height
w=h=0.1m under a tip bending momeM, =27E|,/L
is analyzed. Tabl8 reports on the convergence behavior.



The ratio of the numerical to theoretical buckling load First non-dimensionalized eigenfrequency analysis for a
Fnum/Fn in case of lateral buckling, Sed.6, compared to the re-  simply supported beam with pre-stress in Séct.versus number
sults ofSchwab and Meijaar(2009. Alike in Sect.6.5, the numer-  (#) of finite elements.
ical buckling loads could only be determined by solving an eigen-
value problem for the deformed system. In order to compare the re- # alpha
sults, a thinner beam has been utilized, such that buckling occured
already at a less deformed state.

0 0.01 0.1 1

1 0.88134885 0.88057103 0.87418005 0.84110859
Number of  Schwab Proposed Beam 2 1.00841241 1.00834836 1.00780544 1.00410601
. 4 1.00067751 1.00067135 1.00061937 1.00026875
elements Meijjaard w=00002m w=0002m 8 1.00004464 1.00004121 1.00001170 0.99978926
1 1.495290 1.493133 - 16 1.00000050 0.99999951 0.99997012 0.99975442
2 1.069138 1.068821 1.073653 32 1.00000006 0.99999678 0.99996850 0.99975346
4 1.015367 1.015119 1.031665
8 1.003862 1.003774 1.019491
16 1.000969 1.000810 1.016410 Yy
[ .
z A T
IANNNN
As a further buckling problem, the lateral buckling of a h QH I H
cantilever beam under a lateral for¢e is investigated. w
The dimensions of the beam are chosen as lehgttl m, Simply supported beam under axial pre-stress in $ett.

width w=0.002m and heighh =0.02m, as in the bench- investigated for eigenfrequency analysis.

mark example bySchwab and Meijaard2009 Sect. 2.6).

The theoretical buckling load can be calculated Fy =

4.012599344/E TinGJ/L?, in which E Imin is the smaller  The convergence analysis in dependency on the non-
flexural stitness withi min = min(ly, ;) andGJ=Ghw?/3the  dimensional pre-stressis outlined in Tables. Here, the nu-
torsional stifness of the rectangular cross section, in whichmerical eigenvaluev,,, is divided by the theoretical eigen-

G denotes the shear modulus. The numerical solution is comvalue wg. Differently to Schwab and Meijaar009, the
pared to the convergence rate of the nonlinear beam finit¢yumerical eigenvalues are calculated in deformed state (by
element proposed b§chwab and Meijaar009, see Ta-  using the sfiness matrix of the deformed geometry), which
ble 5. Differently toSchwab and Meijaar(2009), the eigen-  corresponds to the lodd = a#? E I, L~2. Thus, the numeri-
values are calculated in the deformed state, which correcal solution is diferent from the theoretical solutiamg, but
sponds to the applied numerical buckling logg,,. Since converging a® tends to zero.

buckling occurs already at a less deformed state as the ra-

tio min{w, h}/ maxw, h} becomes smaller, the widtlv of
the beam was chosen to lve=0.0002m (which is 100
times smaller than in the benchmark example Sshwab
and Meijaard 2009. The ratioF,ym/F for both the cases
w = 0.0002 m andv = 0.002 m are outlined in Tablg

In this example the nonlinear dynamic behavior of the pro-
posed elements is tested by a rigid flexible pendulum as
in Sugiyama et al(2003. Note, that the original exam-
ple is used for verifying thick beam finite elements includ-
ing shear terms in the variational formulation according to

According to Schwab and Meijaar@2009 Sect. 2.9), the Timoshenko’s beam theory. In contrast to that, in this work

eigenfrequencies of a simply supported beam with dimenthe example serves for the experimental verification of the
sions length. = 1 m, widthw = 0.02 m and height = 0.02 m dynamic solution of the proposed Bernoulli Euler beam fi-

with pre-stress, are computed. For a sketch of the prob- nite element, by comparing it to another solution obtained
lem setup, see Fig8. The exact values for the zero-load by already verified thick ANCF-beam finite elements based
frequencywo, the non-dimensional pre-stressand the first N Timoshenko's theory, selachbagauer and Gerstmayr

non-dimensionalized frequeneys can be calculated by the (2012 2013. The theory says, that both solutions (according
formulas to Bernoulli-Euler's and Timoshenko's theory, respectively)

converge to each other, as the spatial (thickness to length) ra-
2, /Ely/(pA L4, tio of the beams goes to zero. Two tests are done, one for the

Wo =
_ FL2/(2E] 42 original experiment setup, where the beams’ spatial ratio is
@ = /("Ely), (42) 1:5, and another test for the ratio of 1 : 50 and an appropriate
Wg = WyVl+a. adjustment of the material parameters, which is necessary to



Convergence Table Se&.9. In the first column the num-
ber of Finite Elements is displayed. The next two columns show the
ig error of the Finite Element iterates compared the converged solu-
tion |ug%; —uy, gl in Test A and Test B, whereas the third column
reports on the dierence of the iteratés};®— utF|. As converged so-
lution, the FE-solution for 512 Elements was used. The converged
solutions in Test A and B dier by|u; — ug| = 2.4050x 10°".

rigid body flexible body

Elements Test A TestB flerence
N

90° 1 26272x10 24675x10 1.6558x 1072
Y 2 12809x 1071 1.1399x 107! 1.4723x 1072
4 35333x102 31031x102 4.4026x 1073
z T\30° 8 70811x10° 6.0522x10°% 1.0373x1073
. 16 15113x103 12660x103 24719x10™*
32 36922x10% 3.0828x10* 6.1547x 1075
64 91062x10° 7.6005x10° 15388x10°
128 21677x10° 1.8092x 1075 3.8473x 1075
256 43353x10°° 36182x10° 9.6185x 107’

Geometry of a double pendulum consisting of a rigid and
a flexible body, as proposed 8ugiyama et al(2003.

and Gerstmayr2013. In Plot (a) of Fig.10 the tip posi-
obtain a comparable solution. For both testsffigently re-  tion (x, y, and z components) are plotted versus time for
fined spatial and temporal discretization is chosen, such thathis Test A. The blue curves correspond to the discretization
the discretization error has no significant influence. by Bernoulli-Euler beam finite elements, whereas the black

curves correspond to Timoshenko beam finite elements.

The considered multibody system consists of a rigid body
connected to a very flexible right angle frame, see gig. The thickness of the pendulum is divided by the factor 10
The involved components are a rigid and a flexible body,compared to Test A, such that the cross section area of the
and two revolute joints, which connect the rigid body both rigid part measure’ = 2.5x 10->m? and the cross section
to the ground and to the right angle frame. The rigid bodyarea of the flexible par\’ = 1x 10*m?. In order to obtain
has a length ofL"' =0.2m, a cross section area &f = a similar dynamic solution as in Test A, Young’s modulus
25%x103m?, and a material density gff = 7200kgnt3.  is choserE" = 2.0x 10'°Pa, whereas the density of both the
The flexible right angle frame is modeled by two beams rigid and the flexible part is multiplied by the factor?18uch
connected by a rigid joint. Each beam in the original ex- thatp" = p" = 720000 kg m3. Again, as in Test A, two Finite
ample (seeSugiyama et a].2003 Nachbagauer and Gerst- Element simulations are performed. The dynamic behavior
mayr, 2013 has a length of." = 0.5m, a cross section area 0f the double pendulum is outlined in the Plot (b) of Fig.
of Af = 1x102 m?, a material density gf' = 7200 kg m?, a In the first simulation (blue curves) Bernoulli-Euler beam
Young’s modulus o = 2.0x10° Pa, a Poisson ratio of = finite elements are used, whereas the second simulation uti-
0.3, and a second moment of arda= 8.33x 10°°m*. Apart lizes Timoshenko beam finite elements (black curves).
from gravity, there is no external force acting on the multi-
body system. The rigid body is rotated 30 degrees around the
y-axis. Since the revolute joint which connects the rigid body
to the ground allows rotation around the glolyadxis, the In this final example the impact of the director update, as
motion of the rigid body is executed in the globrl4)-plane.  suggested in Sect, is studied. The geometry of the beam
The flexible beam is rotated 30 degrees aroundzthgis, and its material properties are chosen as in S&8t(large
and coherently the axis of the second revolute joint is cho-bending and torsion). In fierence to Sec6.3 a tip load is
sen 30 degreesfiothe globaly-axis. Therefore, the flexible applied with components, = 25N andF, = 250 N instead
body performs an in- and out-of-plane motion, which causesof moments. In the simulation exactly two load steps are per-
torsion. Two Finite Element simulations are performed for formed, the first step with the half, and the second step with
this Test: one simulation with an FE-approximation by 32 the full loading. For the convergence analysis at each FE-
of the proposed Bernoulli-Euler beam finite elements, andhode the director is chosen to pointamirection. Two tests
another simulation with an FE-approximation by 32 alreadyare performed: In Test A the directors are kept constant, in
verified Timoshenko beam finite elements (BEehbagauer Test B the directors are updated at each node (see4jéxst.



thickness: 0.1 m ditions of equivalence of translations and rotations in the ad-
jacent cross-sections of the two rod segments.

In the present paper, a spatial thin beam element with axial,
bending, and torsional deformation is presented. The pro-
posed element underlies the absolute nodal coordinate for-
mulation, which is designed for large displacements, large
rotations and large deformations and multibody dynamics
problems. The element kinematics and deformation energy
are chosen according tdetyukov and Elisee\((2010, in-
cluding an additional rotation director, which is updated dur-
ing computation process. The investigation of numerical ex-
amples, both in the static and dynamic case, shows the ex-
pected accuracy and a fast performance of the proposed el-
ement. Moreover, in contrast to already existing 3-D ANCF
elements, it does not fier from geometrical singularities.

(x.y.z) tip position (m)
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