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In this paper, we present the type synthesis of freedom and constraint elements for design of gen-
eral flexure mechanisms. As an important step in the conceptual design stage, the goal of type synthesis is to
qualitatively determine the topology or connectivity of flexure elements and rigid bodies in a mechanism. The
synthesis procedure presented here is based on a recently emerging screw theory based approach for flexure
mechanisms. We first categorize a list of commonly used atomic flexure primitives including blades, wires,
notches and bellow springs etc. We then derive their twist and wrench matrices that mathematically represent
their freedom and constraint spaces. The synthesis procedure rigorously follows screw algebra. Freedom el-
ements including R-joints and P-joints are defined as basic motion elements that allow a single rotation or a
single translation. By using parallel structures of these flexure primitives, eleven designs of R-joints and eight
designs of P-joints are systematically synthesized. As a duality, constraint elements including P-constraints and
R-constraints remove a single translation or rotation. In contract to freedom elements, we synthesized serial
chains of flexure primitives and obtained six designs of P-constraints and three designs of R-constraints. These
freedom and constraint elements form a catalogue of basic building blocks for designing more complex flexure
mechanisms. At last we utilize four design examples to demonstrate how to synthesize hybrid structures with
serial and parallel combination of these elements.

called the constraint-based approaBlafding 1999 Hale

1999 Awtar and Slocum2007. In a recent conference tu-

torial by Henein(2011), the author enumerated a list of flex-
Compliant mechanismsHopwell, 2001 or flexure mecha-  ure bearing designs based on their degree of freedom (DOF),
nisms Smith, 2000 Smith and Chetwyndl992, formed by  Grubler mobility and degree of hyperstaticity (DOH). Many
a set of rigid bodies connected with compliant elements, proauthors have attempted to systemize the constraint based ap-
duce a defined motion through elastic deformation of theirproach_ Recently this approach has been further formalized
compliant elements. They are widely used in various pre-into the Freedom and Constraint Topology (FACT) frame-
cision instruments and machines such as nano-manipulatoigork (Hopking 20073 Hopkins and Culpeppe010ab).
Culpepper and Andersq@2004), nano-positionersthenand  Essentially the constraint-based design approach and the
Culpepper 2006 Brouwer et al. 201Q Yao et al, 2008  FACT approach are mathematically equivalent to screw the-
Dong et al, 200§ and precision manufacturing machines ory (Ball, 1998 Hunt, 1978 Phillips, 1984 199Q Davidson
(Varadarajan and Culpepp@0073ab). and Hunt 2004 that has been widely used in kinematics

The design of flexure mechanisms has been an ad hoc prgommunity for various problems such as type synthesis of

cess that heavily relies on designers’ experience and intuparallel mechanisms<png and Gosselii2010 and mobil-

ition that are typlcally built up over years of training. One |ty ana|y5i5 of r|g|d body mechanismgmang et alzooa
approach often used in precision engineering community is



In recognizing this intrinsic connection between the con- zero pitch, written as
straint based approach and screw theory, a series of \Bork (
et al, 2009 Su and Tafi201q 201% Hopkins and Culpep- iy, - { 0}’ Wo ={ F } 5)
per, 20106 Yu et al, 2010 Sy, 2017 on screw theory based M cxF
approach for type synthesis and analysis of flexure mecha- . ¢onvenience, we define six principal twists as the ro-

nisms have been done. This approach is completely baseflsion and translations about the three coordinate axes,
on screw algebradai and Jongs2001, 2003, which can be
qT

easily implemented in computer programs for truly automat- R, = (1
ing the design process of flexure mechanisms, especially the -
conceptual design stage. However currently these work havé, = (O
been focusing on mechanisms with relatively simple topolo- .
gies or mobility analysis (rather than synthesis). The typeRz: 0
synthesis of general flexure mechanisms for any specifiec,g _ (O
mobility is still yet to be done. X

In this paper, we present a systematic methodology baseqi)y = (O
on screw theory for the type synthesis of general flexure T
mechanisms with serial, parallel or hybrid (combination of Pz= (0 0 ]) (6)

serial and parallel) topologies. First, a list of commonly usedSimilarl we also define six principal wrenches as the rota-
flexure primitives is studied. Then they are used to build basic Y, princip

freedom and constraint elements. At last these freedom antdonal and translational constraint about the three coordinate

: . axes
constraint elements are used for constructing more complex
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In this section, we first review basic concepts of screw theory .
as a background preparation for the following sections. My = (0 0010 (}
My=(0 0 0 0 1 ¢

~ T

A flexure mechanism subject to a general load represented b)'/vIZ =00 0000 ]) Y

a Wrench\fy undergoes an instantaneous motion represented
by a twistT. From the freedom and constraint point of view,
twists represent allowable motions while wrenches represe

forbidden motions. Both twist and wrenchiv are 6 by 1 n“'he coordinate transformation of a twist or wrench is calcu-

: lated as
column vectors, written as
s_[el_[ o . T'=[Ad]T, W =[Ad]W, ®)
V[T lexQ+pQf’ @

where T,W and T',W correspond to the twist and the
W = {l\ljl} - { F } 2) wrench before and after the transformation. AAd] is the

CxF+aqF so-called 6¢< 6 adjoint matrix, written as
wherep andq are called pitches of twist and wrenches. And R 0
T andW satisfy the so called reciprocal condition: [Ad] = [ DR R } 9)
ToW=Q-M+V-F=0. 3

where R] is a 3 by 3 rotation matrix andd] is the 3 by
3 skew-symmetric matrix defined by the translational vector

A general rotational or translational freedom respectivelyd _ (d,.d,.d,)T. They have the form
- Xo My Uz) -

corresponds to a twist with zero or infinite pitch, written as

7 Q - 0 0 -d, d
TR:{CXQ}’ Tp={v}. 4) [R] = [x y z], Dl=|d O _é’(‘
4 d 0

Similarly a general rotational or translation constraint re-
moves a rotation or translation along a particular direction. When the coordinate transformation is applied to a prin-
They respectively correspond to a wrench with infinite or cipal screw (twist or wrench), the resultant screw will along



the axes of the new coordinate system, e.g. y, caused by beam bending. From the constraint point of

view, a blade removes one rotation and two translations.
R, = [Ad]R«= {d i x} (10) Their twist and wrench matrices are
S _ [AdJB, = {g} 1) [Tl =[Re R B, W]=[Fx Fz M| (19)

4. A long wire/rod flexure, denoted by “W”, removes the
translation along its axis and allows the other five mo-
tions. A corner blade (a folded sheet) also provides

A flexure primitive is defined as an “atomic” flexure mecha- a single constraint along its fold line. Their freedom
nism that consists of only one flexure element and zero inter-  space is equivalent to three R-joints and two P-joints,
mediate body. They cannot be further divided into substruc- i.e. W=3R-2P. Mathematically its corresponding twist
tures. RecenthHopkins (2012 presented three commonly and wrench matrices are

used flexures and their freedom and constraint spaces using o .

FACT approach. In this section, we first categorize a more [Tl =[Rx R R Py Py, [Wa]=[Fs] (25)
comprehensive set of commonly used flexure primitives and

derive their freedom and constraint spaces. Then we will dis- 5. And lastly, a bellow spring, denoted by sBremoves a
cuss a general synthesis methodology for constructing serial ~ single rotation along its axis with a freedom space de-
and parallel kinematic chains of these flexure primitives. noted by B=2R-3P. Its twist and wrench matrices are

[Tod =[Re R, Pc Py P, [Whd=[M] (16)

According to the mobility or the rank of their twist system,
we can Categorize the most commonly used flexure primi- Tablel summarizes the aforementioned flexure primitives
tives as shown in Tablg. and their freedom space and twist and wrench matrices.

1. A notch hinge, denoted by symbol “R”, allows a rota-

These primitives are basic building blocks for constructing

. . . . more complex flexure systems.
tion about the centerline and constraints other motions. P y

The shape of the cross section may be circular, elliptical,
hyperbolic etc. Meanwhile short beams, living hinges

that have one dimension significantly smaller than oth-the freedom space of a rigid body represents all of its al-
ers can function as a notch hinge. A split tube which is aj\yaple motion in space. For any given flexure element or
tube sliced along its longitudinal direction also allows a building block, its freedom space isfasystem that is repre-

single rotation about its axis. If we define the axis of the sented by a twist matrixi] formed by f independent twists
R-joint to be the z-axis, its twist and wrench matrices \\ritten as

can be written as

TI-[R]. WI=[E B F W @) @z (MET T2 T 17)

When a mechanism is formed by flexure elements or

. A spherical notch or short wirged, denoted by “S”,  puilding blocks that are connected in serial, its twist ma-

allows three rotations and constrains three translationsrix (freedom space) can be obtained by combining the twist

Kinematically it is equivalent to a serial chain of three matrix of each building block column-wise, mathematically
R-joints, i.e. S3R. Their twist and wrench matrices are written as

A A oA A oA s [T]=[AdT: AGT, - AdnTy) (18)
[Td=[R« R R]. M]=[Fc Fy, F| (13)
where Ad] represent the coordinate transformation from

. Bladgsheet flexures also called leaf springs, denotedthe j-th building block to the functional stage, defined in

by “B”, allow two rotations and one translation, i.e. (9). This formulation has been previously presentedSoy

B = 2R-P. The rotational symmetric cylinders and disc (2011). Also see similar work bylopkins(20078; Hopkins
rings also have the same freedom and constraint spaceand Culpeppef2011).

As shown in Tablel, we define the normal of the blade By applying a column-wise reduction, we can easily ob-
as the y-axis and the longitudinal direction being the tain a set of independemt=rank(T) twists that forms the
x-axis. The two rotations are about two in-plane axesbasis of the freedom spaceis also called the mobility or
(x,2) due to beam torsion and beam bending respec-degree-of-freedom of the mechanism. Any set afdepen-
tively. And the translation is along the normal direction dent twists called basis can span the entire freedom space.



The motion and constraint spaces of commonly used flexure primitives.

Flexure | Freedom Symbol [T] \ [W]

z
Notch/Living Hinge Short Beam  Split Tube

y y
% % S-3R R R R By F

Spherical Notch Short Wire/Rod

X

B=2R-P [Re R P [Fx Fz My
Blade/Sheet/ Rotational Disc Coupling
Leaf Spring Symmetric Cylinder
W=3R-2P Re R R B, P [Fs]
Long Wire/Rod Corner Blade
y X
Wmﬁé’ Bs=2R-3P [Re R, Pc B, P [M,]

Bellow Spring

The transformation from one basis to another is done by dations. They are formulated in screws as

linear operation to the twist matrix. o . Q Q Q
A freedom space can be spanned Wyedent sets of basis [T] = [TRITR2 TRs] = (21)
. . . i . . CIXQ CXQ C3xQ
twists. This can be very useful in design practices. For in-
stance, consider a freedom space formed by rotations about . Q 0 0 (22)
two parallel axes. The twist matrix of these two rotations is axQ (C-C)xQ (C3—C)xQ|’

where the second and third columns represent translations.
Q Q See the bottom part of Fid.for illustration of this case.

CIXQ CXxQ

[T1=[Tr. Tr]= (19)

btracting th d col f the first ield
Subtracting the second column from the first one yields The constraint space of a rigid body represents all the forbid-

den motions of the body subject to a constraint arrangement.
(20) In screw theory, a constraint space can be represented by a
wrench matrix W] combined byc independent wrenches,
written as
where= represents a column-wise linear operation. Note the . . .
second column of the above matrix represents a translatiohV] = [Wi Wp - W] (23)
along the direction normal to both the rotation axis and the The constraint space of a flexure mechanism formethby
line c;¢,. Basically this means that a serial chain of two rota- building blocks connected in parallel is given by a wrench
tions is equivalent to a serial chain of a rotation and a transs . Atrix that is obtained by assembling the wrench matrix of

Iatio_n._See the to_p part _Of Fig. each building block, written as
Similarly, a serial chain of three (non-coplanar) parallel ro-

tations is equivalent to a rotation plus two orthogonal trans-[W] = [AdiW; AW, --- Ad\Wh] (24)

Q 0
C1XQ (CQ—Cl)XQ

[T]=




functional body reference body

A

WP3

Equivalent freedom spaces. (Top) A serial chain of two
parallel rotations produces a translation. (Bottom) A serial chain of
three (non-coplanar) parallel rotations produce two translation.

functional body reference body

Again, matrices Ad;] represent the coordinate transforma-

tlon_fr(_)m jth bm_ldlng b_IOCk to the functional stage._ Equivalent constraint spaces. (Top) A parallel chain of
Similar to serial chains of flexures, the constraint Spacey, parallel translational constraints exerts a translational plus a ro-

of two parallel translational constraints assembled in paralletational constraint to the functional body. (Bottom) A parallel chain

(Fig. 2) is represented by two force wrenches with identical of three (non-coplanar) parallel translational constraints exerts a

directionF translation plus two rotational constraints. The arrows represent the

removed motions.
FF

[W]z[WPl WP?]: cixF cxF

(25)

Subtracting the second column from the first one yields S ~ .
The freedom space of an R-joint is given By shown in

= 0 (4). Without loss of generality, we assume the axis of R-joint
WI=|c,xF (c—c)xF (26)  through the origin, i.ec = (0,0,0)". This gives us
Note the second column of the above matrix represents a rof ; = {9} (29)
tational constraint along the direction perpendicular to both 0

the constraint axif and the linec; c,. Basically this says that
a parallel chain of two translational constraints removes ong,.,

rofﬂgr;ar;;g?;L?ﬁlg;“?hr;ée non-conlanan parallel trans_IeI structures of at least two limbs and each limb must apply
P ! ( P )P 1-5 constraints to the functional body, primitive “R” (notch

lational constraints removes two rotations and one transla;. . . - L -
) L . . ) hinge) cannot be used in the design as it is indeed a R-joint.
tion. This is illustrated with the following mathematical for- ge) g J

mulation This leads us total 11 possible combinations with the other
uiatio four primitives B, S, W and B Among them, cases 1-5 use

Our goal is to remove the other five unwanted motions:
o rotations and three translations. Since we consider paral-

W1 = [Wo o Vo, 1 = FFFE 7 no bellow springs and cases 6-11 use at least one bellow
[ ]_[ P TP P3]_ c1 X Fcy xFegx F 27 spring.
F0O0
" e x F(co—c) x F(cs—¢q) X F (28)

The first three cases concerns designs with primitives B and
W only: 2B, B-2W, 5W. These are the most commonly used
designs.

In this section, we use flexure primitives listed in Talile

to design flexure joints that have only one DOF, rotational

(R) or translational (P). To design freedom elements, we us&@he synthesis with two parallel blades (2B) is described
parallel chains of primitives to remove unwanted freedoms. as the following. As shown in Fig3, let us denote the



in Fig. 4a. This is the most often used flexure hinge design.

If X, =2, =(1,0,0)", we have a design with blade 1 subject

to twisting and blade 2 subject to bending, Fid. If x; =

X2 = (1,0,0)T, we have a design with both blades subject to
g twisting, Fig.4c.

blade1 SRR
% This design evolves from the case 2B. Since a blade allows
"o two rotations and one translation, we just need to remove one
d, rotation and one translation with two wires. We have shown
in (27) that two parallel constraints remove one translation
functional body and one rotation. Therefore, replacing one blade of the 2B
design with two parallel wires yields a B-2W design, shown

Synthesis of R-joints with a parallel connection of two in Fig. 4d.
blades. The two blades are rigidly connected to the functional body.

coordinate transformation of two blades relative to the func-In order to obtain a hinge design with five wires, we simply

tional body by Ad;] and [Ad,] which are the six by six ad-  replace the blade of the B-2W design with three co-planar

joint matrices with the form of9). By applying the coordi- ~ Wires. This is due to the fact that a blade is equivalent to

nate transformation to both blades, their wrench matrices aréhree co-planar wires. See Fide. An alternative synthesis

calculated by 10,11) as procedure using screw algebra for the case five wires can be
found inSu and Tar{2010.

Xi Z; 0

. —_— . _— 1 1 —
(Wil =IAdIIWel = |4 D 4%yl 1202 (0)
where W] is the wrench matrix of blade written irl4). Now we consider designs using primitives S, B, W with at
And vectors;, y;, z, d; denote the orientation and position of least one S-joint. There are three possible combinations: 2S,
i-th blade. i S-2w, B-S.

Requiring the reciprocity of theW;] with Tg yields the However the case B-S is not qualified as a R-joint for the
necessary condonations regarding to the orientation and pdellowing reasons. Without loss of generality, we let the co-
sition of the blades ordinate system align with the local coordinate system of the

blade shown in Tabld. And we denote the position of S-
Q-(dixx) = 0 = X (4xQ)=0 (31) joint by d = (dy, dy,d,)T. Therefore the wrench matrix of the
Q- (dxz) = 0, = z-(dxQ)=0 (32)  blade and the S-joint are
Qy, = 0. (33) i j K
: L Wpl =R« R, Py|, W=, . : 36
Simplifying the first two conditions yields Wel =[Re R By (WY dxi dxj dxk (36)
di-y,=0, Q-y, = 0. (34) where vectors, j, k are unit vectors along three coordinate

] o axes. AndW{] is the wrench matrix with an appropriate co-
The first equality is interpreted as that the translatdomust  grdinate transformation, i.eW4] = [Ad][Ws]. We write the

in the blade plane;iz;. The second condition means that  \yrench matrix of the parallel structure B-S and apply a linear
the normal direction of the blade, must be perpendicular togperation to obtain

the axis of the R-jointQ). If Q@ = (1,0,0)", y, must be in the

planeyzof the functional body. Picking any two independent 100 1 0 O
directions in theyzplane leads us a solution, e.g. 0 00 O 1 0
T : Wod =W, wy=(0 20 O 9 1)
yl = (O» 1’ O) > y2 = (O’ O» 1) (35) bs s 0 0O 0 _dZ dy
) , 0 01 d 0 -—d
Oncey; is determined. The axes &f andz are chosen ar- 0 00 -d d¢ O

bitrarily as long as the two blades are not co-planar (redun-
dant).

Depending on howk; andz are chosen for each blade,
we can obtain three possible designszif z, = (1,0,0)7,
we have a design with both blades subject to bending, shown
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Various designs of R-joints with flexure primitives: B, W, S and @&—c)case 1 with two blades (BB{d) case 2 with one blade
and two wires (B-2W)(e) case 3 with five wires (5W)f) case 4 with two spherical notches (28)) case 5 with one spherical notch with
two wires (S-2W).(h) case 6 with one bellow spring, one blade and one spherical noteB-&. (i) case 7 with one bellow spring, one
blade and one wire (BB-W). (j) case 8 with one bellow spring, one spherical notch and one wigS{®/). (k) case 9 with one bellow
spring and four wires (B4W). (I) case 10 with two bellow springs and one spherical notch-&B(m) case 11 with two bellow springs
and three wires (2B3W). The double arrow arcs represent the rotation allowed by flexure R-joints. The box represents the functional body.

100 0 0 0 10 0 0
000 0 1 0 010 10
010 0 0 0 0 0 1 0 1
- Wy = . [Wa = 39
000 0 -d d @) Wid=lg o o Wal=|g ¢ (39)
001 0 0 0 0 0 0 0 -d
000 d d 0 0 0 0 d o

From Eq. 88), we can draw two conclusions. (1)df # 0, The constraint space of S-2W is obtained py combin)'Ng][
[Whp has a full rank which means that the body is fully con- @nd Way], to which we apply a column-wise reduction and
strained by this structure. (2) &, =0, i.e. the S-joint is on obtain

the blade plane Wyg has a rank of 2 since the 4th and 6th

column would be zeros. As a matter of fact, its reciprocal

freedom space is formed by the two rotations allowed by

the blade flexure. Therefore, parallel structures of B-S cannotWs-2w] = [Ws sz] =
form a R-joint design.

(40)

Oo0oo0o0or
Oo0o0OOoORr O
oOocoor oo
S ooocooo
I
©Sgocoocoo

o o ~ Obviously its reciprocal twist matrix &, which corresponds
The 2S case is trivial. When two S-joints are connected ing a single rotation about the x-axis. This design is shown in
parallel, this results in a single rotation about the line con-fig. 4g.

necting to their joint centers, Figf.

At last, we synthesize the design cases with at least one bel-
The case S-2W is synthesized as the following. The S-joinfow spring. If one B flexure is used, there are four possible
itself removes three translations. We just need to remove twalesign cases: 8B-S, Bs-B-W, Bs-S-W, B-4W. And if two
additional rotations with two wire flexures. By using a wire bellow springs are used, there are two additional combina-
parallel to y-axis with a non-zerdisetd = (d,0,0)T, the ro-  tions: 2B-S and 2B-3W. Note 2B-B is not possible as B
tationR, is removed. Similarly, a wire parallel to z-axis with removes one rotation and 2Bemove another two rotation
anon-zero fisetd = (d,0,0)" removes the rotatioﬁy. Math-  which results in a freedom space with no rotation. Let us dis-
ematically, the wrench matrix of S-joint and the two wires are cuss these six cases in the following.



where vectorV represent the translational direction of

P-joint.
From Eq. 88), we have concluded that a B-S parallel struc- 1o

i Itin a freed fo i ifth We are interested in simple parallel structures with at least
ure may resuitin a freedom space of two rotations IH1the Cens, ., jinps that remove three rotations and two translations.

ter of S-Jomt. is on the blade plane, N(.)W we Just neeq to US€And each limb must apply at least one constraint and allow at
a bellow spring B to remove one_rotatlon n ord_er to V'e'F" @ |east one translational motion for the functional body. There-
fr_eedom space of only one rotation, hence a hinge design More primitives “R” and “S” are not qualified as they allow no
Fig. 4h. translation. This leaves three possible primitives: B, W and
Bs from which we can have eight possible cases. Three of
them use no bellow springs and the other five use at least one

As we know one blade has a freedom space of 2R-P. To obP€llow spring.
tain a single rotation, we can use a bellow spring to remove

one rotation and a wire to remove the translation. See this

design in Fig4i.

Considering only flexure B and W, we have three cases: 2B,
B-2W and 5W.

The S-joint has a freedom space of 3R. To obtain a single
rotation, we can use a bellow spring to remove one rotation
then use a wire fiset to the center of the S-joint to remove

the second rotation. This results a design shown in4ig. ) ) . _ .
For designs with two blades, the reciprocity condition3 pf

in (41) with the wrench matriced/;] in (30) yields

To synthesize this case, we first use three wires aligning/ -xij=0, V-z=0, i=12 (42)

the three coordinate axes to remove three translations. This

leaves us three rotations. We then remove two more rotationfrom which we conclude tha¥ must be parallel to botl;

by two more wires. By Eq.26), we know that two parallel  (normal of the blade plane). This means that two blades must
constraints remove one additional rotation. Therefore we lebe parallel with the normal of the blade plane along the axis
a fourth wire be parallel to one of the three wires aforemen-of P-joint. This is the well known parallel sheet design of
tioned. This fourth wire removes a rotation about the normalp-joints shown in Fig5a.

line to the plan formed by the two parallel wires. At last, a

bellow spring is used to remove another rotation. This results

a hinge design shown in Figk.

The design with one blade and two wires can be easily ob-

) o o tained by replacing one blade with two wires that are parallel
The synthesis of 28S case is simple. The S-joint removes g the plade plane. Figufs.

three translations and two bellow springs remove two of the
three rotations, Figdl.

. . . . . L This design is obtained from the B-2W design by replacing
This case IS also trivial. First the three WIres aligning the ;o hjade with three co-planar wires and the other one with
three coordinate axes remove three trans_lat|ons. And we th_e@/vo wires. This case can also be computationally synthesized
use tW(_) be_llow springs remove two rotations. This design ISith screw theory. Assume the P-joint is along thelirec-
shown in FigAm. tion, i.e.V = (1,0;0)T. First of all, compute the reciprocal

wrench matrix ofP using linear algebra as

Now let us synthesize P-joints with flexure primitives listed
in Table 1. The freedom space of an P-joint is given by a
single twist [W] =

fpo {3} (41)

(43)

[cNoNoNoN el
OO Okr oo
[cNeol NeoNeNe]
OFr OO0OO0OO0o



We then apply a column-wise linear operation to this wrench
matrix to obtain

00

(44)

Each column of\W’] is a force wrench which can be realized
with a long wire flexure (W). The 5W design is shown in
Fig. 5b. See the work b$u and Tar{2010 for an alternative
synthesis procedure for this case.

There are five cases with at least one bellow springBB
W, Bs-4W, 2Bs-B, 2Bs-3W, 3Bs-2W. We discuss each in the
following.

[cNeoNeoNeN 3
R OOOLPR
[cNoNoN Neole]
OFrOPFrOoOOo

(M)

Various designs of P-joints with parallel structures of
A blade B has a freedom space of 2R-P. To obtain a P-joinflexure primitives: B, W, B. (a) case 1 with two blades (2B).
design, we must remove the two rotations. First we use a wirgb) case 2 with one blade and two wires (B-2W) case 3 with
flexure with axis being parallel and has a non-zero distance tdive wires.(d) case 4 with one bellow spring, one blade and one
the blade plane to remove one rotation. The second rotatiomire (Bs-B-W). (e) case 5 with one bellow spring and four wires

is removed by a bellow spring flexure. See Fd. (Bs-4W). (f) case 6 with two bellow springs and one blade £2B
B). (g) case 7 with two bellow springs and three wires £28V).

(h) case 8 with three bellow springs and two wires {3BV). The
arrowed lines indicate the direction of translation. The box repre-

. . . sents the functional body.
This design can be obtained from the cagd3BN by replac-

ing the blade with three co-planar wires. A computational

way to synthesize this case is applying an alternative lin-

ear operation to the wrench matri¥] in (43). This time

we would like to have four force wrenches and one coupleThis case evolves from case £B by replacing the blade

wrench. The new wrench matrix is written as with three co-planar wires. See Fhyg.
0 00O
1100
[W”] = 8 8 é g (45)  For this case, the 3 bellow springs remove three translations
000 1 and two wires remove two translations. This design is shown
in Fig. 5h.
0100 9

of which the fourth column is a couple wrench and the other

four are force wrenches. Realizing each force wrench with a

wire and the couple wrench with a bellow spring yields the As a duality to the design of freedom elements, in this sec-

design of B-4W. See Fig5e. tion, we design basic constraint elemeits and\We which
remove one rotation and one translation respectively. These
constraint elements are most often used in designing parallel
structures for removing a particular set of motions. The basis

This case is trivial since the two bellow springs remove theapproach is to use a serial chain of flexure primitives listed

two rotations of the blade. This leaves a freedom space withn Table1 to construct the complementary freedom space of

a single translation, hence a P-joint design shown in%fig.  the constraint element to be synthesized.



i
X

A P-constraint element removes a translational freedom of
the functional body while allows all other motions. The con-  spherical notch
straint space of the translational constraint is given by a pure
force given in B).Without loss of generality, we assume the
axis of translational constraint through the origin of the co-
ordinate system, i.e = (0,0,0)". That is

hg)

Z

X

LFA
N E )
We= {0} (46) \ v a
whose complementary freedom space consists of three rota- functional body
tions plus two translations, i.e. 3R-2P.
To synthesize the translational constra, we consider Synthesis of P-constraint with a serial chain of one blade

serial chains of at least two flexure primitives to make up the(B) and one spherical notch (S). The blade is connected with the
complementary freedom spaceWft. We do not include the ~ spherical notch via an intermediate body (not drawn)

long wire (W) flexure in the design as itself is indeed a trans-

lational constraint. Also bellow springs {Bare not quali-

fied either as they allow three translations. As a result, only

three types of primitives S, B and R are considered in de-rjgyre6 shows a serial chain of S and B flexures. Applying

sign. Based on the degree of freedom, there are six possiblg general coordinate transformation to the twist matrices of
combinations: S-S, S-B, S-2R, B-B, B-2R and 5R. Howeverine pjade and the spherical notch ir8(14) yields

these primitives must satisfy some restriction on their rela-

tive orientation and position. In what follows, we derive the [T X1 Y1 Z (50)
geometric conditions for each case. s dixxy dixy; dixzi|
_ X2 Zy 0
[Tel = doxXp O2xX2z Y, (51)

Since both freedom spaces are complementary to the pre-
cribed translational constraind/p in (46) is reciprocal to
oth [T¢] and [Ty]. The reciprocity condition of S-joint leads

By intuition, we know that a serial chain of two S-joints re-
moves one translation along the line connecting the center og
the joints. Here let us give a mathematical proof with screw
theory. Without loss of generality, we assume one S-joint be-

ing at the origin of the coordinate system and the other oner. (d; xx;) =0 = x;-(Fxdi)=0 (52)
being at a distance af along x-axis, i.ed = (d,0,0)". The E.(d -0 (Exd) =0 53
twist matrices of these two blades are (cixy,) = Yo (Fxd) (53)
F'(d]_XZ]_)IO - Z]_'(FXdl)ZO (54)
i j k i i k
[Td =g JO 0}, [Tl =l4xi d L i dxk (47)  which are reduced to
By the formulation for serial structures in E§g), the twist Fxd =0 = di=dF (55)
matrix of the S-S chain is written as This implies that the position of the S-joint must be along the
C ) ‘ direction ofF.
_ " I J And the reciprocity requirement for the blade leads to
1=[Ts TZ]_[O 0 0 dxi dxj dxk| “® prociy Ted
F~(d2XX2) =0 = X2'(F><d2)=0 (56)
Substituting d = (d,0,0)T and subtracting the last three F-(dyxz) = 0 = z,-(Fxdy)=0 (57)
columns from the first three columns yield Fy, = 0 (58)
~ |1 j kK O 0O O which are reduced to
[T]‘[o 0 0 0 dk —dj (49)
Fxd;=dy, F-y,=0 (59)

which indicates three rotations and two translation along Y-Substituting §5) into (59) yields
and z-axes, i.e. the translation along x-axis is removed. See
Fig. 7a. The arrow line represents the removed translation. d; x d; =didyy,, F-y,=0 (60)



The first equality implies that the spherical notch must be

on the blade plane. And the second equality means that the
normal of the blade must be perpendicular to the direction of

F. The design is shown in Figb. (a)

%

For this design case, we first recognize that an S-joint pro- (b)
vides three rotations (3R). We just need to make up two more
translations with two notch hinges (R). We have shown in
Sect.3.2that two parallel rotations produce a translation and
three parallel rotations produce two translations. Therefore (©)
we can have two possible designs. One design utilizes two
perpendicular R-joints. Each R-joint is parallel to one ro-
tation axis of the S-joint. The direction of the translational
constraint is along the direction that is perpendicular to both
R-joint axes. See FigLc.

The other design uses two parallel R-joints which together
with one rotation of the S-joint produce two translations. The (d) (h)
S-joint and two R-joints axes are co-planar. The direction of
the translational constraint is parallel to the R-join axis. And
the constraint line passes through the center of S-joint. See
Fig. 7d. Note the functional body cannot translate along the
direction indicated with its orientation fixed.

]

#

(e) (1)

Various designs of P-constraivitp with serial chains of
The synthesis of B-B follows a similar procedure of the caseflexure primitives S, B and R. The double head arrows represent
S-B. For this case, both blades must satisfy the conditions irihe direction of the constrained translation. One end of the chains is

Eq. 59), i.e fixed.(a) case 1 with two spherical notches (2@) case 2 with one
e spherical notch and one blade (S-&)-d) case 3 with one spherical
di=div. XF. F-v.=0 61 notch and two notch hinges (S-2Rg—f) case 4 with two intersect-
1= 0y X+ V1 (61) ing blades (2B)(g) case 5 with one blade and two notch hinges
d2=dry,xF, F-y,=0 (62)  (B-2R).(h-i) case 6 with five notch hinges (5R).

where we have applied a vector algebra operation. This
means that the normal of both blades must be perpendicular
to the directior-. However the two blades must not be paral-
lel to each other as otherwise they would be redundant. Th&ynthesis of this case is simple. To produce two translations
intersection line of the blades is the constraint line. Dependwith a serial chain of 5R, we can have two possible designs
ing on how the blades are oriented, we can have two possiblby using parallel rotations. In one design, we have two R-
designs. In the design shown in Fige, the constraint line joints parallel to one plane and another two R-joints parallel
is along the longitude direction of the blades. And in the de-to a second plane. This design takes advantage of the fact that
sign shown in Fig7f, the constraint line is along the width two parallel rotations produce a translation as proven previ-
direction of the blades. ously. The direction of the translational constraint is along.
See Fig.7h.
And the other design uses three parallel R-joints which
produce two translations in the plane normal to the axis of

Since a blade has two rotations and one translation, we cafne R-joints. The direction of the translational constraint is
make up one rotation and one translation with two R-joints.2/0Ng the the axis of the three parallel R-joints. See Hig.
Obviously one R-joint must be along the normal of the blade

plane in order to make up the third rotation. The second R-

jointis parallel to the first R-joint. These two parallel R-joints

produce one additional translation along the local z-axis ofA R-constraint element removes a single rotation while al-
the blade. See Figg. lows all other motions. The constraint space of a rotational



constraint is pure couple wrendhig given in &), which we
copy here for convenience

W = {ﬁ} (63)

Our goal is to use serial chains of at least two flexure prim-
itives to desigriWg. That is to make up its complementary
freedom space which consists of two rotations (R) and three
translations (P). Since a bellow spring is itself a rotational
constraint, we do not consider it in our design. And wires
and spherical notches are also excluded in design as their
freedom space already consists of three rotations. Therefore
we only consider primitives B and R. There are three poten-
tial designs B-B, B-2R and 5R.

To synthesize a serial chain of B-B for a rotational constraint,

we first write the twist matrix of the blades as Various designs of the rotational constraig with serial

chains of flexure primitives B and R. The arrowed arcs represent the
rotation constrained by the flexure design. One end of the chains is

Xi a2 01 g (64) fixed.

M1=lgxx dxz |
They must be reciprocal /g in (63). This leads us the fol-
lowing necessary conditions

We can build more complex flexure mechanisms with hy-

M-x;=0, M-z=0 (65) brid structures of flexure primitives together with the free-
dom and constraint elements synthesized in the previous sec-

which implies that tions. Here a hybrid structure is a structure with both serial
and parallel connections. As a matter of fact, many spatial

yi=Y2=M (66)  flexure mechanisms in practice are in hybrid structuve® (

et al, 2008 Dong et al, 2008. In this section, we use four

Therefore, we conclude that two blades must be parallel 1Qxamples to demonstrate how to design hybrid structures.
each other with their y-(normal) axis aloiy. The two par-

allel blades must be separated by a nonzero distance in order
to produce sfiicient translations in three directions. This de-
sign is shown in Fig8a. In the previous sections, we have presented synthesis of
R-joints, P-joints, R-constraints, P-constraints with flexure
primitives in Tablel. Although these procedures concern de-
signs of notch hinges (R), blades (B), spherical notches (S),
Tee design of B-2R is synthesized as the following. The Blong wires (W) and bellow springs (B designers should be
flexure has a freedom space of 2R-P. We have to use two Raware that there may be multiple choices for these primitives.
joints to make up two extra translations. And the two transla-For instance, a blade flexure of any of these designs can be re-
tions must be in the blade plane. The only solution is to haveplaced by a rotational symmetric cylinder or a disc coupling
one R-joint parallel to the bending direction of the blade andsince they have identical freedom and constraint space. Sim-
the other R-joint parallel the torsion direction of the blade. ilarly, a wire flexure can be substituted with a corner blade
And they should be separated by nonzero distance. This deand a spherical notch with a short wire, a notch hinge with a
sign is shown in Figb. short mean or a split tube. Moreover, a notch hinge of any de-
sign can be replaced with the R-joint designs listed in Eig.
These designs are by no means the complete list of the ba-
sic freedom and constraint elements as many flexure mecha-
This case is trivial as there is only one possible design. Thahisms are in hybrid structures which are combinations of se-
is, three R-joints are parallel to one plane and the other twaial and parallel chains. For instance, Fdg. shows the well
R-joints parallel to a second plane. And these two planes ar&known parallelogram 4-bar design with four notch hinges.
perpendicular to each other. See Fg. This structure is considered as a hybrid structure that is



(2) (b)

A parallel kinematic chain of three translational con-
straints results in a design with three rotations about the center of
the functional body A. The body B are fixed.

In duality, one can also synthesize parallel chains with the
A serial chain of three P-joints connected with two in- constraint elements synthesized in the previous sections. For

termediate bodies. Each P-joint is a parallel blade design shown ininstance, if we would like to design a parallel structure with
Fig. 5a. Body B is the fixed base. Body A is the functional body. three rotations, we just need to use three translational con-
The arrow lines represent three translations along three coordinatgtraint elements to remove all translations. If we choose the
axes. BB design in Fig.7e for all three translational constraints,

we obtain the design shown in Fijl. The functional body

A can rotate about its center relative to the base body B while
formed by two identical limbs assembled in parallel. Eachits translations are constrained.
limb is a serial chain of two R-joints. It is not hard to prove  As another example, we would like to design a parallel
that this hybrid structure allows only one translation indi- structure with three translations. We just need to use three
cated in the figure. If we replace one of the RR chain with rotational constraint elements to remove all rotations. If we
a blade flexure, we obtain another design shown in $lig.  choose the BB design in Figa for all three rotational con-
And Fig. 9c shows a double parallelogram design that isstraints, we obtain the design shown in Fig. The func-
formed by a serial connection of two parallelogram 4-bar de-tional body A can translate in all directions while its rotations
sign. This design is widely used to reduce parasitic errors angire constrained.
increase the displacement stroke.

A list of commonly used flexure primitives is first catego-

rized. A complete list of rotational and translational freedom
As we discussed previously, we can use a serial chain oélements is synthesized with parallel connections of these
R-joints and P-joints to construct a freedom space with anyprimitives. In duality, translational and rotational constraint
combination of DOF. For instance, a serial chain of three P-elements are synthesized with serial chains of flexure prim-
joints can make up a freedom space of three translations. Itives. These freedom and constraints elements form a cat-
we use the double parallel flexure structure for the P-jointalogue of basic building blocks for constructing more com-
design, we obtain a serial PPP design with three decoupleglex flexure mechanisms. We have also demonstrate with ex-
translations. See Fig.0. Of course, one can further increase amples the use of these building blocks with design of hy-
the structural sffness with assembling multiple serial chains brid structures for any combinations of freedom. The im-
of PPP in parallelAwtar et al, 2017). portance of this work lies in the fact that it formalizes the



A parallel kinematic chain of three rotational constraints
result in a design with three translations along the direction indi-
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