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Abstract. In this paper, we present the type synthesis of freedom and constraint elements for design of gen-
eral flexure mechanisms. As an important step in the conceptual design stage, the goal of type synthesis is to
qualitatively determine the topology or connectivity of flexure elements and rigid bodies in a mechanism. The
synthesis procedure presented here is based on a recently emerging screw theory based approach for flexure
mechanisms. We first categorize a list of commonly used atomic flexure primitives including blades, wires,
notches and bellow springs etc. We then derive their twist and wrench matrices that mathematically represent
their freedom and constraint spaces. The synthesis procedure rigorously follows screw algebra. Freedom el-
ements including R-joints and P-joints are defined as basic motion elements that allow a single rotation or a
single translation. By using parallel structures of these flexure primitives, eleven designs of R-joints and eight
designs of P-joints are systematically synthesized. As a duality, constraint elements including P-constraints and
R-constraints remove a single translation or rotation. In contract to freedom elements, we synthesized serial
chains of flexure primitives and obtained six designs of P-constraints and three designs of R-constraints. These
freedom and constraint elements form a catalogue of basic building blocks for designing more complex flexure
mechanisms. At last we utilize four design examples to demonstrate how to synthesize hybrid structures with
serial and parallel combination of these elements.

1 Introduction

Compliant mechanisms (Howell, 2001) or flexure mecha-
nisms (Smith, 2000; Smith and Chetwynd, 1992), formed by
a set of rigid bodies connected with compliant elements, pro-
duce a defined motion through elastic deformation of their
compliant elements. They are widely used in various pre-
cision instruments and machines such as nano-manipulators
Culpepper and Anderson(2004), nano-positioners (Chen and
Culpepper, 2006; Brouwer et al., 2010; Yao et al., 2008;
Dong et al., 2008) and precision manufacturing machines
(Varadarajan and Culpepper, 2007a,b).

The design of flexure mechanisms has been an ad hoc pro-
cess that heavily relies on designers’ experience and intu-
ition that are typically built up over years of training. One
approach often used in precision engineering community is

called the constraint-based approach (Blanding, 1999; Hale,
1999; Awtar and Slocum, 2007). In a recent conference tu-
torial byHenein(2011), the author enumerated a list of flex-
ure bearing designs based on their degree of freedom (DOF),
Grubler mobility and degree of hyperstaticity (DOH). Many
authors have attempted to systemize the constraint based ap-
proach. Recently this approach has been further formalized
into the Freedom and Constraint Topology (FACT) frame-
work (Hopkins, 2007a; Hopkins and Culpepper, 2010a,b).
Essentially the constraint-based design approach and the
FACT approach are mathematically equivalent to screw the-
ory (Ball, 1998; Hunt, 1978; Phillips, 1984, 1990; Davidson
and Hunt, 2004) that has been widely used in kinematics
community for various problems such as type synthesis of
parallel mechanisms (Kong and Gosselin, 2010) and mobil-
ity analysis of rigid body mechanisms (Huang et al., 2008).
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In recognizing this intrinsic connection between the con-
straint based approach and screw theory, a series of work (Su
et al., 2009; Su and Tari, 2010, 2011; Hopkins and Culpep-
per, 2010c; Yu et al., 2010; Su, 2011) on screw theory based
approach for type synthesis and analysis of flexure mecha-
nisms have been done. This approach is completely based
on screw algebra (Dai and Jones, 2001, 2003), which can be
easily implemented in computer programs for truly automat-
ing the design process of flexure mechanisms, especially the
conceptual design stage. However currently these work have
been focusing on mechanisms with relatively simple topolo-
gies or mobility analysis (rather than synthesis). The type
synthesis of general flexure mechanisms for any specified
mobility is still yet to be done.

In this paper, we present a systematic methodology based
on screw theory for the type synthesis of general flexure
mechanisms with serial, parallel or hybrid (combination of
serial and parallel) topologies. First, a list of commonly used
flexure primitives is studied. Then they are used to build basic
freedom and constraint elements. At last these freedom and
constraint elements are used for constructing more complex
flexure mechanisms.

2 Screw theory overview

In this section, we first review basic concepts of screw theory
as a background preparation for the following sections.

2.1 Twists and wrenches

A flexure mechanism subject to a general load represented by
a wrenchŴ undergoes an instantaneous motion represented
by a twistT̂. From the freedom and constraint point of view,
twists represent allowable motions while wrenches represent
forbidden motions. Both twist̂T and wrenchŴ are 6 by 1
column vectors, written as

T̂ =

{
Ω

V

}
=

{
Ω

c×Ω+ pΩ

}
, (1)

Ŵ=

{
F
M

}
=

{
F

c×F+qF

}
, (2)

wherep andq are called pitches of twist and wrenches. And
T̂ andŴ satisfy the so called reciprocal condition:

T̂ ◦ Ŵ=Ω ·M +V ·F = 0. (3)

A general rotational or translational freedom respectively
corresponds to a twist with zero or infinite pitch, written as

T̂R =

{
Ω

c×Ω

}
, T̂P =

{
0
V

}
. (4)

Similarly a general rotational or translation constraint re-
moves a rotation or translation along a particular direction.
They respectively correspond to a wrench with infinite or

zero pitch, written as

ŴR =

{
0
M

}
, ŴP =

{
F

c×F

}
(5)

For convenience, we define six principal twists as the ro-
tation and translations about the three coordinate axes,

R̂x =
(
1 0 0 0 0 0

)T
R̂y =

(
0 1 0 0 0 0

)T
R̂z =

(
0 0 1 0 0 0

)T
P̂x =

(
0 0 0 1 0 0

)T
P̂y =

(
0 0 0 0 1 0

)T
P̂z =

(
0 0 0 0 0 1

)T
(6)

Similarly, we also define six principal wrenches as the rota-
tional and translational constraint about the three coordinate
axes

F̂x =
(
1 0 0 0 0 0

)T
F̂y =

(
0 1 0 0 0 0

)T
F̂z =

(
0 0 1 0 0 0

)T
M̂x =

(
0 0 0 1 0 0

)T
M̂y =

(
0 0 0 0 1 0

)T
M̂z =

(
0 0 0 0 0 1

)T
(7)

2.2 Coordinate transformation of twists and wrenches

The coordinate transformation of a twist or wrench is calcu-
lated as

T̂
′
= [Ad]T̂, Ŵ

′
= [Ad]Ŵ, (8)

where T̂,Ŵ and T̂
′
,Ŵ
′

correspond to the twist and the
wrench before and after the transformation. And [Ad] is the
so-called 6×6 adjoint matrix, written as

[Ad] =

[
R 0

DR R

]
(9)

where [R] is a 3 by 3 rotation matrix and [D] is the 3 by
3 skew-symmetric matrix defined by the translational vector
d= (dx,dy,dz)T . They have the form

[R] =
[
x y z

]
, [D] =

 0 −dz dy

dz 0 −dx

−dy dx 0


When the coordinate transformation is applied to a prin-

cipal screw (twist or wrench), the resultant screw will along
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the axes of the new coordinate system, e.g.

R̂
′

x = [Ad]R̂x =

{
x

d× x

}
(10)

P̂
′

x = [Ad]P̂x =

{
0
x

}
(11)

3 Flexure primitives

A flexure primitive is defined as an “atomic” flexure mecha-
nism that consists of only one flexure element and zero inter-
mediate body. They cannot be further divided into substruc-
tures. RecentlyHopkins (2012) presented three commonly
used flexures and their freedom and constraint spaces using
FACT approach. In this section, we first categorize a more
comprehensive set of commonly used flexure primitives and
derive their freedom and constraint spaces. Then we will dis-
cuss a general synthesis methodology for constructing serial
and parallel kinematic chains of these flexure primitives.

3.1 Commonly used flexure primitives

According to the mobility or the rank of their twist system,
we can categorize the most commonly used flexure primi-
tives as shown in Table1.

1. A notch hinge, denoted by symbol “R”, allows a rota-
tion about the centerline and constraints other motions.
The shape of the cross section may be circular, elliptical,
hyperbolic etc. Meanwhile short beams, living hinges
that have one dimension significantly smaller than oth-
ers can function as a notch hinge. A split tube which is a
tube sliced along its longitudinal direction also allows a
single rotation about its axis. If we define the axis of the
R-joint to be the z-axis, its twist and wrench matrices
can be written as

[Tr ] =
[
R̂z

]
, [Wr ] =

[
F̂x F̂y F̂z M̂x M̂y

]
(12)

2. A spherical notch or short wires/rod, denoted by “S”,
allows three rotations and constrains three translations.
Kinematically it is equivalent to a serial chain of three
R-joints, i.e. S=3R. Their twist and wrench matrices are

[Ts] =
[
R̂x R̂y R̂z

]
, [Ws] =

[
F̂x F̂y F̂z

]
(13)

3. Blade/sheet flexures also called leaf springs, denoted
by “B”, allow two rotations and one translation, i.e.
B= 2R−P. The rotational symmetric cylinders and disc
rings also have the same freedom and constraint spaces.
As shown in Table1, we define the normal of the blade
as the y-axis and the longitudinal direction being the
x-axis. The two rotations are about two in-plane axes
(x,z) due to beam torsion and beam bending respec-
tively. And the translation is along the normal direction

y, caused by beam bending. From the constraint point of
view, a blade removes one rotation and two translations.
Their twist and wrench matrices are

[Tb] =
[
R̂x R̂z P̂y

]
, [Wb] =

[
F̂x F̂z M̂y

]
(14)

4. A long wire/rod flexure, denoted by “W”, removes the
translation along its axis and allows the other five mo-
tions. A corner blade (a folded sheet) also provides
a single constraint along its fold line. Their freedom
space is equivalent to three R-joints and two P-joints,
i.e. W=3R-2P. Mathematically its corresponding twist
and wrench matrices are

[Tw] =
[
R̂x R̂y R̂z P̂y P̂z

]
, [Ww] =

[
F̂x

]
(15)

5. And lastly, a bellow spring, denoted by “Bs”, removes a
single rotation along its axis with a freedom space de-
noted by Bs=2R-3P. Its twist and wrench matrices are

[Tbs] =
[
R̂x R̂y P̂x P̂y P̂z

]
, [Wbs] =

[
M̂z

]
(16)

Table1 summarizes the aforementioned flexure primitives
and their freedom space and twist and wrench matrices.
These primitives are basic building blocks for constructing
more complex flexure systems.

3.2 Serial chains of flexure primitives

The freedom space of a rigid body represents all of its al-
lowable motion in space. For any given flexure element or
building block, its freedom space is af system that is repre-
sented by a twist matrix [T] formed by f independent twists,
written as

[T] =
[
T̂1 T̂2 · · · T̂ f

]
(17)

When a mechanism is formed bym flexure elements or
building blocks that are connected in serial, its twist ma-
trix (freedom space) can be obtained by combining the twist
matrix of each building block column-wise, mathematically
written as

[T] = [Ad1T1 Ad2T2 · · · AdmTm] (18)

where [Adj ] represent the coordinate transformation from
the j-th building block to the functional stage, defined in
(9). This formulation has been previously presented bySu
(2011). Also see similar work byHopkins(2007b); Hopkins
and Culpepper(2011).

By applying a column-wise reduction, we can easily ob-
tain a set of independentr = rank(T) twists that forms the
basis of the freedom space.r is also called the mobility or
degree-of-freedom of the mechanism. Any set ofr indepen-
dent twists called basis can span the entire freedom space.
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Table 1. The motion and constraint spaces of commonly used flexure primitives.

Flexure Freedom Symbol [T] [W]

z
Notch/Living Hinge Split Tube

z

y
x

y
x

Short Beam

R
[
R̂z

] [
F̂x F̂y F̂z M̂x M̂y

]

y

x

z

y
x

z

Spherical Notch Short Wire/Rod

S=3R
[
R̂x R̂y R̂z

] [
F̂x F̂y F̂z

]

zy

x

Blade/Sheet/
Leaf Spring

z

y

x

Rotational 
Symmetric Cylinder

Disc Coupling
z

y

x

B=2R-P
[
R̂x R̂z P̂y

] [
F̂x F̂z M̂y

]

x

y

z

Long Wire/Rod Corner Blade

x

W=3R-2P
[
R̂x R̂y R̂z P̂y P̂z

] [
F̂x

]

z

y x

Bellow Spring

Bs=2R-3P
[
R̂x R̂y P̂x P̂y P̂z

] [
M̂z

]

The transformation from one basis to another is done by a
linear operation to the twist matrix.

A freedom space can be spanned by different sets of basis
twists. This can be very useful in design practices. For in-
stance, consider a freedom space formed by rotations about
two parallel axes. The twist matrix of these two rotations is

[T] =
[
T̂R1 T̂R2

]
=

[
Ω Ω

c1×Ω c2×Ω

]
(19)

Subtracting the second column from the first one yields

[T] �

[
Ω 0

c1×Ω (c2− c1)×Ω

]
(20)

where� represents a column-wise linear operation. Note the
second column of the above matrix represents a translation
along the direction normal to both the rotation axis and the
line c1c2. Basically this means that a serial chain of two rota-
tions is equivalent to a serial chain of a rotation and a trans-
lation. See the top part of Fig.1.

Similarly, a serial chain of three (non-coplanar) parallel ro-
tations is equivalent to a rotation plus two orthogonal trans-

lations. They are formulated in screws as

[T] =
[
T̂R1T̂R2 T̂R3

]
=

[
Ω Ω Ω

c1×Ω c2×Ω c3×Ω

]
(21)

�

[
Ω 0 0

c1×Ω (c2− c1)×Ω (c3− c1)×Ω

]
, (22)

where the second and third columns represent translations.
See the bottom part of Fig.1 for illustration of this case.

3.3 Parallel chains of flexure primitives

The constraint space of a rigid body represents all the forbid-
den motions of the body subject to a constraint arrangement.
In screw theory, a constraint space can be represented by a
wrench matrix [W] combined byc independent wrenches,
written as

[W] =
[
Ŵ1 Ŵ2 · · · Ŵc

]
(23)

The constraint space of a flexure mechanism formed bym
building blocks connected in parallel is given by a wrench
matrix that is obtained by assembling the wrench matrix of
each building block, written as

[W] = [Ad1W1 Ad2W2 · · · AdmWm] (24)
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onal translations. They are formulated in screws as130

[T ] =
[
T̂ R1 T̂ R2 T̂ R3

]
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[
Ω Ω Ω

c1 ×Ω c2 ×Ω c3 ×Ω

]
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�
[
Ω 0 0
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Figure 1. Equivalent freedom spaces. (Top) A serial chain of
two parallel rotations produces a translation. (Bottom) A se-
rial chain of three (non-coplanar) parallel rotations produce
two translation.
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3.3 Parallel Chains of Flexure Primitives134

The constraint space of a rigid body represents all the
forbidden motions of the body subject to a constraint
arrangement. In screw theory, a constraint space can
be represented by a wrench matrix [W ] combined by c
independent wrenches, written as

[W ] =
[
Ŵ 1 Ŵ 2 · · · Ŵ c

]
(23)

The constraint space of a flexure mechanism formed
by m building blocks connected in parallel is given by
a wrench matrix that is obtained by assembling the
wrench matrix of each building block, written as

[W ] = [Ad1W1 Ad2W2 · · · AdmWm] (24)

Again, matrices [Adj ] represent the coordinate transfor-135

mation from jth building block to the functional stage.136

Similar to serial chains of flexures, the constraint
space of two parallel translational constraints assembled
in parallel (Fig. 2) is represented by two force wrenches
with identical direction F

[W ] =
[
Ŵ P1 Ŵ P2

]
=

[
F F

c1 × F c2 × F

]
(25)

Subtracting the second column from the first one yields

[W ] =
[

F 0
c1 × F (c2 − c1) × F

]
(26)

Note the second column of the above matrix represents137

a rotational constraint along the direction perpendicular138

to both the constraint axis F and the line c1c2. Basi-139

cally this says that a parallel chain of two translational140

constraints removes one rotation and one translation.141

And a parallel chain of three (non-coplanar) parallel142

translational constraints removes two rotations and one143

translation. This is illustrated with the following math-144

ematical formulation145

[W ] =
[
Ŵ P1 Ŵ P2 Ŵ P3

]
=

[
F F F

c1 × F c2 × F c3 × F

]
(27)

�
[

F 0 0
c1 × F (c2 − c1) × F (c3 − c1) × F

]
(28)

reference bodyfunctional body
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Ŵ

P

reference bodyfunctional body
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P
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P
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Ŵ

P
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P

Figure 2. Equivalent constraint spaces. (Top) A parallel
chain of two parallel translational constraints exerts a trans-
lational plus a rotational constraint to the functional body.
(Bottom) A parallel chain of three (non-coplanar) parallel
translational constraints exerts a translation plus two rota-
tional constraints. The arrows represent the removed mo-
tions.

4 Synthesis of Freedom Elements146

In this section, we use flexure primitives listed in Ta-147

ble 1 to design flexure joints that have only one DOF,148

rotational (R) or translational (P). To design freedom149

elements, we use parallel chains of primitives to remove150

unwanted freedoms.151

4.1 Synthesis of R-Joints T̂ R152

The freedom space of an R-joint is given by T̂ R shown
in (4). Without loss of generality, we assume the axis of
R-joint through the origin, i.e. c = (0,0,0)T . This gives
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Figure 1. Equivalent freedom spaces. (Top) A serial chain of two
parallel rotations produces a translation. (Bottom) A serial chain of
three (non-coplanar) parallel rotations produce two translation.

Again, matrices [Ad j ] represent the coordinate transforma-
tion from j-th building block to the functional stage.

Similar to serial chains of flexures, the constraint space
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(Fig. 2) is represented by two force wrenches with identical
directionF
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[
ŴP1 ŴP2

]
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F F
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]
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a parallel chain of two translational constraints removes one
rotation and one translation.
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[W] =
[
ŴP1ŴP2ŴP3

]
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[
FFF

c1×Fc2×Fc3×F

]
(27)

�

[
F00

c1×F(c2− c1)×F(c3− c1)×F

]
(28)

4 Synthesis of freedom elements

In this section, we use flexure primitives listed in Table1
to design flexure joints that have only one DOF, rotational
(R) or translational (P). To design freedom elements, we use
parallel chains of primitives to remove unwanted freedoms.
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4.1 Synthesis of R-Joints T̂ R152
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in (4). Without loss of generality, we assume the axis of
R-joint through the origin, i.e. c = (0,0,0)T . This gives

www.jn.net Mechanical Sciences

Figure 2. Equivalent constraint spaces. (Top) A parallel chain of
two parallel translational constraints exerts a translational plus a ro-
tational constraint to the functional body. (Bottom) A parallel chain
of three (non-coplanar) parallel translational constraints exerts a
translation plus two rotational constraints. The arrows represent the
removed motions.

4.1 Synthesis of R-joints T̂R

The freedom space of an R-joint is given byT̂R shown in
(4). Without loss of generality, we assume the axis of R-joint
through the origin, i.e.c= (0,0,0)T . This gives us

T̂R =

{
Ω

0

}
(29)

Our goal is to remove the other five unwanted motions:
two rotations and three translations. Since we consider paral-
lel structures of at least two limbs and each limb must apply
1–5 constraints to the functional body, primitive “R” (notch
hinge) cannot be used in the design as it is indeed a R-joint.
This leads us total 11 possible combinations with the other
four primitives B, S, W and Bs. Among them, cases 1-5 use
no bellow springs and cases 6–11 use at least one bellow
spring.

Use flexure primitives B and W only

The first three cases concerns designs with primitives B and
W only: 2B, B-2W, 5W. These are the most commonly used
designs.

4.1.1 Case 1: 2B

The synthesis with two parallel blades (2B) is described
as the following. As shown in Fig.3, let us denote the
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6 :

us

T̂ R =
{
Ω

0

}
(29)

Our goal is to remove the other five unwanted mo-153

tions: two rotations and three translations. Since we154

consider parallel structures of at least two limbs and155

each limb must apply 1-5 constraints to the functional156

body, primitive “R” (notch hinge) cannot be used in the157

design as it is indeed a R-joint. This leads us total 11158

possible combinations with the other four primitives B,159

S, W and Bs . Among them, cases 1-5 use no bellow160

springs and cases 6-11 use at least one bellow spring.161

Use flexure primitives B and W only162

The first three cases concerns designs with primitives B163

and W only: 2B, B-2W, 5W. These are the most com-164

monly used designs.165

4.1.1 Case 1: 2B166

The synthesis with two parallel blades (2B) is described
as the following. As shown in Fig. 3, let us denote the
coordinate transformation of two blades relative to the
functional body by [Ad1] and [Ad2] which are the six
by six adjoint matrices with the form of (9). By apply-
ing the coordinate transformation to both blades, their
wrench matrices are calculated by (10,11) as

[Wi] = [Adi][Wb] =
[

xi zi 0
di × xi di × zi yi

]
, i = 1,2,

(30)

where [Wb] is the wrench matrix of blade written in (14).167

And vectors xi,yi,zi,di denote the orientation and po-168

sition of ith blade.169

x

y

z

1x

1d

1y

1z

2x
2y

2z

2d

2 blade

1 blade

body functional

Figure 3. Synthesis of R-joints with a parallel connection
of two blades. The two blades are rigidly connected to the
functional body.

Requiring the reciprocity of the [Wi] with T̂ R yields170

the necessary condonations regarding to the orientation171

and position of the blades172

Ω · (di × xi) = 0, =⇒ xi · (di ×Ω) = 0 (31)
Ω · (di × zi) = 0, =⇒ zi · (di ×Ω) = 0 (32)

Ω · yi = 0. (33)

Simplifying the first two conditions yields173

di · yi = 0, Ω · yi = 0. (34)

The first equality is interpreted as that the translation
di must in the blade plane xizi. The second condition
means that yi, the normal direction of the blade, must
be perpendicular to the axis of the R-joint (Ω). If Ω=
(1,0,0)T , yi must be in the plane yz of the functional
body. Picking any two independent directions in the yz
plane leads us a solution, e.g.

y1 = (0,1,0)T , y2 = (0,0,1)T (35)

Once yi is determined. The axes of xi and zi are chosen174

arbitrarily as long as the two blades are not co-planar175

(redundant).176

Depending on how xi and zi are chosen for each177

blade, we can obtain three possible designs. If z1 = z2 =178

(1,0,0)T , we have a design with both blades subject to179

bending, shown in Fig.4(a). This is the most often used180

flexure hinge design. If x1 = z2 = (1,0,0)T , we have a181

design with blade 1 subject to twisting and blade 2 sub-182

ject to bending, Fig.4(b). If x1 = x2 = (1,0,0)T , we have183

a design with both blades subject to twisting, Fig.4(c).184

4.1.2 Case 2: B-2W185

This design evolves from the case 2B. Since a blade al-186

lows two rotations and one translation, we just need to187

remove one rotation and one translation with two wires.188

We have shown in (27) that two parallel constraints re-189

move one translation and one rotation. Therefore, re-190

placing one blade of the 2B design with two parallel191

wires yields a B-2W design, shown in Fig.4(d).192

4.1.3 Case 3: 5W193

In order to obtain a hinge design with five wires, we194

simply replace the blade of the B-2W design with three195

co-planar wires. This is due to the fact that a blade196

is equivalent to three co-planar wires. See Fig.4(e). An197

alternative synthesis procedure using screw algebra for198

the case five wires can be found in (Su and Tari, 2010).199

Use flexure primitives S, B, W200

Now we consider designs using primitives S, B, W with201

at least one S-joint. There are three possible combina-202

tions: 2S, S-2W, B-S.203
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Figure 3. Synthesis of R-joints with a parallel connection of two
blades. The two blades are rigidly connected to the functional body.

coordinate transformation of two blades relative to the func-
tional body by [Ad1] and [Ad2] which are the six by six ad-
joint matrices with the form of (9). By applying the coordi-
nate transformation to both blades, their wrench matrices are
calculated by (10,11) as

[W i ] = [Ad i ][Wb] =

[
xi zi 0

di × xi di × zi yi

]
, i = 1,2, (30)

where [Wb] is the wrench matrix of blade written in (14).
And vectorsxi ,yi ,zi ,di denote the orientation and position of
i-th blade.

Requiring the reciprocity of the [W i ] with T̂R yields the
necessary condonations regarding to the orientation and po-
sition of the blades

Ω · (di × xi) = 0, =⇒ xi · (di ×Ω) = 0 (31)

Ω · (di × zi) = 0, =⇒ zi · (di ×Ω) = 0 (32)

Ω · yi = 0. (33)

Simplifying the first two conditions yields

di · yi = 0, Ω · yi = 0. (34)

The first equality is interpreted as that the translationdi must
in the blade planexizi . The second condition means thatyi ,
the normal direction of the blade, must be perpendicular to
the axis of the R-joint (Ω). If Ω = (1,0,0)T , yi must be in the
planeyzof the functional body. Picking any two independent
directions in theyzplane leads us a solution, e.g.

y1 = (0,1,0)T , y2 = (0,0,1)T (35)

Onceyi is determined. The axes ofxi andzi are chosen ar-
bitrarily as long as the two blades are not co-planar (redun-
dant).

Depending on howxi and zi are chosen for each blade,
we can obtain three possible designs. Ifz1 = z2 = (1,0,0)T ,
we have a design with both blades subject to bending, shown

in Fig. 4a. This is the most often used flexure hinge design.
If x1 = z2 = (1,0,0)T , we have a design with blade 1 subject
to twisting and blade 2 subject to bending, Fig.4b. If x1 =

x2 = (1,0,0)T , we have a design with both blades subject to
twisting, Fig.4c.

4.1.2 Case 2: B-2W

This design evolves from the case 2B. Since a blade allows
two rotations and one translation, we just need to remove one
rotation and one translation with two wires. We have shown
in (27) that two parallel constraints remove one translation
and one rotation. Therefore, replacing one blade of the 2B
design with two parallel wires yields a B-2W design, shown
in Fig. 4d.

4.1.3 Case 3: 5W

In order to obtain a hinge design with five wires, we simply
replace the blade of the B-2W design with three co-planar
wires. This is due to the fact that a blade is equivalent to
three co-planar wires. See Fig.4e. An alternative synthesis
procedure using screw algebra for the case five wires can be
found inSu and Tari(2010).

Use flexure primitives S, B, W

Now we consider designs using primitives S, B, W with at
least one S-joint. There are three possible combinations: 2S,
S-2W, B-S.

However the case B-S is not qualified as a R-joint for the
following reasons. Without loss of generality, we let the co-
ordinate system align with the local coordinate system of the
blade shown in Table1. And we denote the position of S-
joint by d= (dx,dy,dz)T . Therefore the wrench matrix of the
blade and the S-joint are

[Wb] =
[
R̂x R̂z P̂y

]
, [W′

s] =

[
i j k

d× i d× j d× k

]
(36)

where vectorsi, j, k are unit vectors along three coordinate
axes. And [W′

s] is the wrench matrix with an appropriate co-
ordinate transformation, i.e. [W′

s] = [Ad][Ws]. We write the
wrench matrix of the parallel structure B-S and apply a linear
operation to obtain

[Wbs] =
[
Wb W′

s

]
=



1 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1
0 0 0 0 −dz dy

0 0 1 dz 0 −dx

0 0 0 −dy dx 0


(37)
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8 :

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (m)(k) (l)

Figure 4. Various designs of R-joints with flexure primitives: B, W, S and Bs. (a-c) case 1 with two blades (BB). (d) case 2
with one blade and two wires (B-2W). (e) case 3 with five wires (5W). (f) case 4 with two spherical notches (2S). (g) case 5
with one spherical notch with two wires (S-2W). (h) case 6 with one bellow spring, one blade and one spherical notch (Bs-B-S).
(i) case 7 with one bellow spring, one blade and one wire (Bs-B-W). (j) case 8 with one bellow spring, one spherical notch
and one wire (Bs-S-W). (k) case 9 with one bellow spring and four wires (Bs-4W). (l) case 10 with two bellow springs and
one spherical notch (2Bs-S). (m) case 11 with two bellow springs and three wires (2Bs-3W). The double arrow arcs represent
the rotation allowed by flexure R-joints. The box represents the functional body.

remove the second rotation. This results a design shown257

in Fig. 4(j).258

4.1.9 Case 9: Bs-4W:259

To synthesize this case, we first use three wires aligning260

the three coordinate axes to remove three translations.261

This leaves us three rotations. We then remove two more262

rotations by two more wires. By Eq.(26), we know that263

two parallel constraints remove one additional rotation.264

Therefore we let a fourth wire be parallel to one of the265

three wires aforementioned. This fourth wire removes a266

rotation about the normal line to the plan formed by267

the two parallel wires. At last, a bellow spring is used268

to remove another rotation. This results a hinge design269

shown in Fig. 4(k).270

4.1.10 Cases 10: 2Bs-S271

The synthesis of 2Bs-S case is simple. The S-joint re-272

moves three translations and two bellow springs remove273

two of the three rotations, Fig. 4(l).274

4.1.11 Cases 11: 2Bs-3W275

This case is also trivial. First the three wires aligning the276

three coordinate axes remove three translations. And we277

then use two bellow springs remove two rotations. This278

design is shown in Fig. 4(m)279

4.2 Synthesis of P-Joints T̂ P280

Now let us synthesize P-joints with flexure primitives
listed in Table 1. The freedom space of an P-joint is
given by a single twist

T̂ P =
{

0
V

}
(41)

where vector V represent the translational direction of281

P-joint.282

We are interested in simple parallel structures with283

at least two limbs that remove three rotations and two284

translations. And each limb must apply at least one con-285

straint and allow at least one translational motion for286

the functional body. Therefore primitives “R” and “S”287

are not qualified as they allow no translation. This leaves288

three possible primitives: B, W and Bs from which we289

can have eight possible cases. Three of them use no bel-290

low springs and the other five use at least one bellow291

spring.292

Designs with flexures B, W only293

Considering only flexure B and W, we have three cases:294

2B, B-2W and 5W.295

4.2.1 Case 1: 2B296

For designs with two blades, the reciprocity conditions297

of T̂ P in (41) with the wrench matrices [Wi] in (30)298

yields299

V · xi = 0, V · zi = 0, i = 1,2 (42)

from which we conclude that V must be parallel to both300

yi (normal of the blade plane). This means that two301

blades must be parallel with the normal of the blade302

plane along the axis of P-joint. This is the well known303

parallel sheet design of P-joints shown in Fig. 5(a).304

4.2.2 Case 2: B-2W305

The design with one blade and two wires can be easily306

obtained by replacing one blade with two wires that are307

parallel to the blade plane. Fig. 5(b).308
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Figure 4. Various designs of R-joints with flexure primitives: B, W, S and Bs. (a–c)case 1 with two blades (BB).(d) case 2 with one blade
and two wires (B-2W).(e) case 3 with five wires (5W).(f) case 4 with two spherical notches (2S).(g) case 5 with one spherical notch with
two wires (S-2W).(h) case 6 with one bellow spring, one blade and one spherical notch (Bs-B-S). (i) case 7 with one bellow spring, one
blade and one wire (Bs-B-W). (j) case 8 with one bellow spring, one spherical notch and one wire (Bs-S-W). (k) case 9 with one bellow
spring and four wires (Bs-4W). (l) case 10 with two bellow springs and one spherical notch (2Bs-S). (m) case 11 with two bellow springs
and three wires (2Bs-3W). The double arrow arcs represent the rotation allowed by flexure R-joints. The box represents the functional body.

�



1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 −dz dy

0 0 1 0 0 0
0 0 0 −dy dx 0


(38)

From Eq. (38), we can draw two conclusions. (1) Ifdy , 0,
[Wbs] has a full rank which means that the body is fully con-
strained by this structure. (2) Ifdy = 0, i.e. the S-joint is on
the blade plane, [Wbs] has a rank of 2 since the 4th and 6th
column would be zeros. As a matter of fact, its reciprocal
freedom space is formed by the two rotations allowed by
the blade flexure. Therefore, parallel structures of B-S cannot
form a R-joint design.

4.1.4 Case 4: 2S

The 2S case is trivial. When two S-joints are connected in
parallel, this results in a single rotation about the line con-
necting to their joint centers, Fig.4f.

4.1.5 Case 5: S-2W

The case S-2W is synthesized as the following. The S-joint
itself removes three translations. We just need to remove two
additional rotations with two wire flexures. By using a wire
parallel to y-axis with a non-zero offsetd= (d,0,0)T , the ro-
tationR̂z is removed. Similarly, a wire parallel to z-axis with
a non-zero offsetd= (d,0,0)T removes the rotation̂Ry. Math-
ematically, the wrench matrix of S-joint and the two wires are

[Ws] =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0


, [W2w] =



0 0
1 0
0 1
0 0
0 −d
d 0


(39)

The constraint space of S-2W is obtained by combining [Ws]
and [W2w], to which we apply a column-wise reduction and
obtain

[Ws−2w] =
[
Ws W2w

]
=



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 −d
0 0 0 d 0


(40)

Obviously its reciprocal twist matrix iŝRx which corresponds
to a single rotation about the x-axis. This design is shown in
Fig. 4g.

Use flexure primitives Bs, S, B, W

At last, we synthesize the design cases with at least one bel-
low spring. If one Bs flexure is used, there are four possible
design cases: Bs-B-S, Bs-B-W, Bs-S-W, Bs-4W. And if two
bellow springs are used, there are two additional combina-
tions: 2Bs-S and 2Bs-3W. Note 2Bs-B is not possible as B
removes one rotation and 2Bs remove another two rotation
which results in a freedom space with no rotation. Let us dis-
cuss these six cases in the following.
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4.1.6 Case 6: Bs-B-S:

From Eq. (38), we have concluded that a B-S parallel struc-
ture may result in a freedom space of two rotations if the cen-
ter of S-joint is on the blade plane. Now we just need to use
a bellow spring Bs to remove one rotation in order to yield a
freedom space of only one rotation, hence a hinge design in
Fig. 4h.

4.1.7 Case 7: Bs-B-W:

As we know one blade has a freedom space of 2R-P. To ob-
tain a single rotation, we can use a bellow spring to remove
one rotation and a wire to remove the translation. See this
design in Fig.4i.

4.1.8 Case 8: Bs-S-W:

The S-joint has a freedom space of 3R. To obtain a single
rotation, we can use a bellow spring to remove one rotation
then use a wire offset to the center of the S-joint to remove
the second rotation. This results a design shown in Fig.4j.

4.1.9 Case 9: Bs-4W:

To synthesize this case, we first use three wires aligning
the three coordinate axes to remove three translations. This
leaves us three rotations. We then remove two more rotations
by two more wires. By Eq. (26), we know that two parallel
constraints remove one additional rotation. Therefore we let
a fourth wire be parallel to one of the three wires aforemen-
tioned. This fourth wire removes a rotation about the normal
line to the plan formed by the two parallel wires. At last, a
bellow spring is used to remove another rotation. This results
a hinge design shown in Fig.4k.

4.1.10 Cases 10: 2Bs-S

The synthesis of 2Bs-S case is simple. The S-joint removes
three translations and two bellow springs remove two of the
three rotations, Fig.4l.

4.1.11 Cases 11: 2Bs-3W

This case is also trivial. First the three wires aligning the
three coordinate axes remove three translations. And we then
use two bellow springs remove two rotations. This design is
shown in Fig.4m.

4.2 Synthesis of P-Joints T̂P

Now let us synthesize P-joints with flexure primitives listed
in Table 1. The freedom space of an P-joint is given by a
single twist

T̂P =

{
0
V

}
(41)

where vectorV represent the translational direction of
P-joint.

We are interested in simple parallel structures with at least
two limbs that remove three rotations and two translations.
And each limb must apply at least one constraint and allow at
least one translational motion for the functional body. There-
fore primitives “R” and “S” are not qualified as they allow no
translation. This leaves three possible primitives: B, W and
Bs from which we can have eight possible cases. Three of
them use no bellow springs and the other five use at least one
bellow spring.

Designs with flexures B, W only

Considering only flexure B and W, we have three cases: 2B,
B-2W and 5W.

4.2.1 Case 1: 2B

For designs with two blades, the reciprocity conditions ofT̂P

in (41) with the wrench matrices [W i ] in (30) yields

V · xi = 0, V · zi = 0, i = 1,2 (42)

from which we conclude thatV must be parallel to bothyi
(normal of the blade plane). This means that two blades must
be parallel with the normal of the blade plane along the axis
of P-joint. This is the well known parallel sheet design of
P-joints shown in Fig.5a.

4.2.2 Case 2: B-2W

The design with one blade and two wires can be easily ob-
tained by replacing one blade with two wires that are parallel
to the blade plane. Figure5b.

4.2.3 Case 3: 5W

This design is obtained from the B-2W design by replacing
one blade with three co-planar wires and the other one with
two wires. This case can also be computationally synthesized
with screw theory. Assume the P-joint is along thex direc-
tion, i.e. V = (1,0,0)T . First of all, compute the reciprocal
wrench matrix ofP̂ using linear algebra as

[W] =



0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(43)
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We then apply a column-wise linear operation to this wrench
matrix to obtain

[W′] =



0 0 0 0 0
1 1 0 0 1
0 0 1 1 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0


(44)

Each column of [W′] is a force wrench which can be realized
with a long wire flexure (W). The 5W design is shown in
Fig.5b. See the work bySu and Tari(2010) for an alternative
synthesis procedure for this case.

Designs with flexures B, W and Bs

There are five cases with at least one bellow spring: Bs-B-
W, Bs-4W, 2Bs-B, 2Bs-3W, 3Bs-2W. We discuss each in the
following.

4.2.4 Case 4: Bs-B-W

A blade B has a freedom space of 2R-P. To obtain a P-joint
design, we must remove the two rotations. First we use a wire
flexure with axis being parallel and has a non-zero distance to
the blade plane to remove one rotation. The second rotation
is removed by a bellow spring flexure. See Fig.5d.

4.2.5 Case 5: Bs-4W

This design can be obtained from the case Bs-B-W by replac-
ing the blade with three co-planar wires. A computational
way to synthesize this case is applying an alternative lin-
ear operation to the wrench matrix [W] in (43). This time
we would like to have four force wrenches and one couple
wrench. The new wrench matrix is written as

[W′′] =



0 0 0 0 0
1 1 0 0 1
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0


(45)

of which the fourth column is a couple wrench and the other
four are force wrenches. Realizing each force wrench with a
wire and the couple wrench with a bellow spring yields the
design of Bs-4W. See Fig.5e.

4.2.6 Case 6: 2Bs-B

This case is trivial since the two bellow springs remove the
two rotations of the blade. This leaves a freedom space with
a single translation, hence a P-joint design shown in Fig.5f.

10 :

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5. Various designs of P-joints with parallel structures
of flexure primitives: B, W, Bs. (a) case 1 with two blades
(2B). (b) case 2 with one blade and two wires (B-2W). (c)
case 3 with five wires. (d) case 4 with one bellow spring, one
blade and one wire (Bs-B-W). (e) case 5 with one bellow
spring and four wires (Bs-4W). (f) case 6 with two bellow
springs and one blade (2Bs-B). (g) case 7 with two bellow
springs and three wires (2Bs-3W). (h) case 8 with three bel-
low springs and two wires (3Bs-2W). The arrowed lines in-
dicate the direction of translation. The box represents the
functional body.

whose complementary freedom space consists of three353

rotations plus two translations, i.e. 3R-2P.354

To synthesize the translational constraint Ŵ P , we355

consider serial chains of at least two flexure primitives356

to make up the complementary freedom space of Ŵ P .357

We do not include the long wire (W) flexure in the de-358

sign as itself is indeed a translational constraint. Also359

bellow springs (Bs) are not qualified either as they al-360

low three translations. As a result, only three types of361

primitives S, B and R are considered in design. Based on362

the degree of freedom, there are six possible combina-363

tions: S-S, S-B, S-2R, B-B, B-2R and 5R. However these364

primitives must satisfy some restriction on their relative365

orientation and position. In what follows, we derive the366

geometric conditions for each case.367

5.1.1 Case 1: S-S368

By intuition, we know that a serial chain of two S-joints369

removes one translation along the line connecting the370

center of the joints. Here let us give a mathematical371

proof with screw theory. Without loss of generality, we372

assume one S-joint being at the origin of the coordinate373

system and the other one being at a distance of d along374

x axis, i.e. d = (d,0,0)T . The twist matrices of these two375

blades are376

[T1] =
[

i j k
0 0 0

]
, [T2] =

[
i j k

d × i d × j d × k

]
(47)

By the formulation for serial structures in Eq.(18), the
twist matrix of the S-S chain is written as

[T ] =
[
T1 T2

]
=

[
i j k i j k
0 0 0 d × i d × j d × k

]
(48)

Substituting d = (d,0,0)T and subtracting the last three
columns from the first three columns yield

[T ′] =
[

i j k 0 0 0
0 0 0 0 dk −dj

]
(49)

which indicates three rotations and two translation377

along y and z axes, i.e. the translation along x axis is378

removed. See Fig. 7(a). The arrow line represents the379

removed translation.380

5.1.2 Case 2: S-B381

Figure 6 shows a serial chain of S and B flexures. Ap-382

plying a general coordinate transformation to the twist383

matrices of the blade and the spherical notch in (13,14)384

yields385

[Ts] =
[

x1 y1 z1
d1 × x1 d1 × y1 d1 × z1

]
, (50)

[Tb] =
[

x2 z2 0
d2 × x2 d2 × z2 y2

]
(51)

Since both freedom spaces are complementary to the386

prescribed translational constraint, Ŵ P in (46) is recip-387

rocal to both [Ts] and [Tb]. The reciprocity condition of388

S-joint leads to389

F · (d1 × x1) = 0 =⇒ x1 · (F × d1) = 0 (52)
F · (d1 × y1) = 0 =⇒ y1 · (F × d1) = 0 (53)
F · (d1 × z1) = 0 =⇒ z1 · (F × d1) = 0 (54)

which are reduced to390

F × d1 = 0, =⇒ d1 = d1F (55)

This implies that the position of the S-joint must be391

along the direction of F.392

And the reciprocity requirement for the blade leads393

to394

F · (d2 × x2) = 0 =⇒ x2 · (F × d2) = 0 (56)
F · (d2 × z2) = 0 =⇒ z2 · (F × d2) = 0 (57)

F · y2 = 0 (58)
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Figure 5. Various designs of P-joints with parallel structures of
flexure primitives: B, W, Bs. (a) case 1 with two blades (2B).
(b) case 2 with one blade and two wires (B-2W).(c) case 3 with
five wires. (d) case 4 with one bellow spring, one blade and one
wire (Bs-B-W). (e) case 5 with one bellow spring and four wires
(Bs-4W). (f) case 6 with two bellow springs and one blade (2Bs-
B). (g) case 7 with two bellow springs and three wires (2Bs-3W).
(h) case 8 with three bellow springs and two wires (3Bs-2W). The
arrowed lines indicate the direction of translation. The box repre-
sents the functional body.

4.2.7 Case 7: 2Bs-3W

This case evolves from case 2Bs-B by replacing the blade
with three co-planar wires. See Fig.5g.

4.2.8 Case 8: 3Bs-2W

For this case, the 3 bellow springs remove three translations
and two wires remove two translations. This design is shown
in Fig. 5h.

5 Synthesis of constraint elements

As a duality to the design of freedom elements, in this sec-
tion, we design basic constraint elementsŴR andŴP which
remove one rotation and one translation respectively. These
constraint elements are most often used in designing parallel
structures for removing a particular set of motions. The basis
approach is to use a serial chain of flexure primitives listed
in Table1 to construct the complementary freedom space of
the constraint element to be synthesized.
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5.1 Synthesis of P-constraints ŴP

A P-constraint element removes a translational freedom of
the functional body while allows all other motions. The con-
straint space of the translational constraint is given by a pure
force given in (5).Without loss of generality, we assume the
axis of translational constraint through the origin of the co-
ordinate system, i.e.c= (0,0,0)T . That is

ŴP =

{
F
0

}
(46)

whose complementary freedom space consists of three rota-
tions plus two translations, i.e. 3R-2P.

To synthesize the translational constraintŴP, we consider
serial chains of at least two flexure primitives to make up the
complementary freedom space ofŴP. We do not include the
long wire (W) flexure in the design as itself is indeed a trans-
lational constraint. Also bellow springs (Bs) are not quali-
fied either as they allow three translations. As a result, only
three types of primitives S, B and R are considered in de-
sign. Based on the degree of freedom, there are six possible
combinations: S-S, S-B, S-2R, B-B, B-2R and 5R. However
these primitives must satisfy some restriction on their rela-
tive orientation and position. In what follows, we derive the
geometric conditions for each case.

5.1.1 Case 1: S-S

By intuition, we know that a serial chain of two S-joints re-
moves one translation along the line connecting the center of
the joints. Here let us give a mathematical proof with screw
theory. Without loss of generality, we assume one S-joint be-
ing at the origin of the coordinate system and the other one
being at a distance ofd along x-axis, i.e.d= (d,0,0)T . The
twist matrices of these two blades are

[T1] =

[
i j k
0 0 0

]
, [T2] =

[
i j k

d× i d× j d× k

]
(47)

By the formulation for serial structures in Eq.(18), the twist
matrix of the S-S chain is written as

[T] =
[
T1 T2

]
=

[
i j k i j k
0 0 0 d× i d× j d× k

]
(48)

Substituting d= (d,0,0)T and subtracting the last three
columns from the first three columns yield

[T′] =
[
i j k 0 0 0
0 0 0 0 dk −d j

]
(49)

which indicates three rotations and two translation along y-
and z-axes, i.e. the translation along x-axis is removed. See
Fig. 7a. The arrow line represents the removed translation.
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which are reduced to395

F × d2 = d2y2, F · y2 = 0 (59)

Substituting (55) into (59) yields396

d1 × d2 = d1d2y2, F · y2 = 0 (60)

The first equality implies that the spherical notch must397

be on the blade plane. And the second equality means398

that the normal of the blade must be perpendicular to399

the direction of F. The design is shown in Fig. 7(b).400

x

y

z

2x

2d

2y

2z

1x
1y

1z

1d

 blade

body functional

spherical notch

Figure 6. Synthesis of P-constraint with a serial chain of one
blade (B) and one spherical notch (S). The blade is con-
nected with the spherical notch via an intermediate body
(not drawn)

5.1.3 Case 3: S-2R401

For this design case, we first recognize that an S-joint402

provides three rotations (3R). We just need to make403

up two more translations with two notch hinges (R).404

We have shown in Section 3.2 that two parallel rota-405

tions produce a translation and three parallel rotations406

produce two translations. Therefore we can have two407

possible designs. One design utilizes two perpendicular408

R-joints. Each R-joint is parallel to one rotation axis of409

the S-joint. The direction of the translational constraint410

is along the direction that is perpendicular to both R-411

joint axes. See Fig. 7(c).412

The other design uses two parallel R-joints which413

together with one rotation of the S-joint produce two414

translations. The S-joint and two R-joints axes are co-415

planar. The direction of the translational constraint is416

parallel to the R-join axis. And the constraint line passes417

through the center of S-joint. See Fig. 7(d). Note the418

functional body cannot translate along the direction in-419

dicated with its orientation fixed.420

5.1.4 Case 4: B-B421

The synthesis of B-B follows a similar procedure of the422

case S-B. For this case, both blades must satisfy the423

conditions in Eq.(59), i.e.424

d1 = d1y1 × F, F · y1 = 0 (61)
d2 = d2y2 × F, F · y2 = 0 (62)

where we have applied a vector algebra operation. This425

means that the normal of both blades must be perpen-426

dicular to the direction F. However the two blades must427

not be parallel to each other as otherwise they would428

be redundant. The intersection line of the blades is the429

constraint line. Depending on how the blades are ori-430

ented, we can have two possible designs. In the design431

shown in Fig. 7(e), the constraint line is along the longi-432

tude direction of the blades. And in the design shown in433

Fig. 7(f), the constraint line is along the width direction434

of the blades.435

5.1.5 Case 5: B-2R436

Since a blade has two rotations and one translation, we437

can make up one rotation and one translation with two438

R-joints. Obviously one R-joint must be along the nor-439

mal of the blade plane in order to make up the third440

rotation. The second R-joint is parallel to the first R-441

joint. These two parallel R-joints produce one addi-442

tional translation along the local z axis of the blade.443

See Fig. 7(g).444

5.1.6 Case 6: 5R445

Synthesis of this case is simple. To produce two transla-446

tions with a serial chain of 5R, we can have two possible447

designs by using parallel rotations. In one design, we448

have two R-joints parallel to one plane and another two449

R-joints parallel to a second plane. This design takes ad-450

vantage of the fact that two parallel rotations produce451

a translation as proven previously. The direction of the452

translational constraint is along. See Fig. 7(h).453

And the other design uses three parallel R-joints454

which produce two translations in the plane normal to455

the axis of the R-joints. The direction of the transla-456

tional constraint is along the the axis of the three par-457

allel R-joints. See Fig. 7(i).458

5.2 Synthesis of R-Constraints Ŵ R459

A R-constraint element removes a single rotation while460

allows all other motions. The constraint space of a ro-461

tational constraint is pure couple wrench Ŵ R given in462

(5), which we copy here for convenience463

Ŵ R =
{

0
M

}
(63)
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Figure 6. Synthesis of P-constraint with a serial chain of one blade
(B) and one spherical notch (S). The blade is connected with the
spherical notch via an intermediate body (not drawn)

5.1.2 Case 2: S-B

Figure6 shows a serial chain of S and B flexures. Applying
a general coordinate transformation to the twist matrices of
the blade and the spherical notch in (13, 14) yields

[Ts] =

[
x1 y1 z1

d1× x1 d1× y1 d1× z1

]
, (50)

[Tb] =

[
x2 z2 0

d2× x2 d2× z2 y2

]
(51)

Since both freedom spaces are complementary to the pre-
scribed translational constraint,̂WP in (46) is reciprocal to
both [Ts] and [Tb]. The reciprocity condition of S-joint leads
to

F · (d1× x1) = 0 =⇒ x1 · (F× d1) = 0 (52)

F · (d1× y1) = 0 =⇒ y1 · (F× d1) = 0 (53)

F · (d1× z1) = 0 =⇒ z1 · (F× d1) = 0 (54)

which are reduced to

F× d1 = 0, =⇒ d1 = d1F (55)

This implies that the position of the S-joint must be along the
direction ofF.

And the reciprocity requirement for the blade leads to

F · (d2× x2) = 0 =⇒ x2 · (F× d2) = 0 (56)

F · (d2× z2) = 0 =⇒ z2 · (F× d2) = 0 (57)

F · y2 = 0 (58)

which are reduced to

F× d2 = d2y2, F · y2 = 0 (59)

Substituting (55) into (59) yields

d1× d2 = d1d2y2, F · y2 = 0 (60)
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The first equality implies that the spherical notch must be
on the blade plane. And the second equality means that the
normal of the blade must be perpendicular to the direction of
F. The design is shown in Fig.7b.

5.1.3 Case 3: S-2R

For this design case, we first recognize that an S-joint pro-
vides three rotations (3R). We just need to make up two more
translations with two notch hinges (R). We have shown in
Sect.3.2that two parallel rotations produce a translation and
three parallel rotations produce two translations. Therefore
we can have two possible designs. One design utilizes two
perpendicular R-joints. Each R-joint is parallel to one ro-
tation axis of the S-joint. The direction of the translational
constraint is along the direction that is perpendicular to both
R-joint axes. See Fig.7c.

The other design uses two parallel R-joints which together
with one rotation of the S-joint produce two translations. The
S-joint and two R-joints axes are co-planar. The direction of
the translational constraint is parallel to the R-join axis. And
the constraint line passes through the center of S-joint. See
Fig. 7d. Note the functional body cannot translate along the
direction indicated with its orientation fixed.

5.1.4 Case 4: B-B

The synthesis of B-B follows a similar procedure of the case
S-B. For this case, both blades must satisfy the conditions in
Eq. (59), i.e.

d1 = d1y1×F, F · y1 = 0 (61)

d2 = d2y2×F, F · y2 = 0 (62)

where we have applied a vector algebra operation. This
means that the normal of both blades must be perpendicular
to the directionF. However the two blades must not be paral-
lel to each other as otherwise they would be redundant. The
intersection line of the blades is the constraint line. Depend-
ing on how the blades are oriented, we can have two possible
designs. In the design shown in Fig.7e, the constraint line
is along the longitude direction of the blades. And in the de-
sign shown in Fig.7f, the constraint line is along the width
direction of the blades.

5.1.5 Case 5: B-2R

Since a blade has two rotations and one translation, we can
make up one rotation and one translation with two R-joints.
Obviously one R-joint must be along the normal of the blade
plane in order to make up the third rotation. The second R-
joint is parallel to the first R-joint. These two parallel R-joints
produce one additional translation along the local z-axis of
the blade. See Fig.7g.
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Figure 7. Various designs of P-constraint Ŵ P with serial
chains of flexure primitives S, B and R. The double head
arrows represent the direction of the constrained translation.
One end of the chains is fixed. (a) case 1 with two spherical
notches (2S). (b) case 2 with one spherical notch and one
blade (S-B). (c-d) case 3 with one spherical notch and two
notch hinges (S-2R). (e-f) case 4 with two intersecting blades
(2B). (g) case 5 with one blade and two notch hinges (B-2R).
(h-i) case 6 with five notch hinges (5R).

Our goal is to use serial chains of at least two flexure464

primitives to design Ŵ R. That is to make up its comple-465

mentary freedom space which consists of two rotations466

(R) and three translations (P). Since a bellow spring is467

itself a rotational constraint, we do not consider it in468

our design. And wires and spherical notches are also ex-469

cluded in design as their freedom space already consists470

of three rotations. Therefore we only consider primitives471

B and R. There are three potential designs B-B, B-2R472

and 5R.473

5.2.1 Case 1: B-B474

To synthesize a serial chain of B-B for a rotational con-
straint, we first write the twist matrix of the blades as

[Ti] =
[

xi zi 0
di × xi di × zi yi

]
, i = 1,2 (64)

They must be reciprocal to Ŵ R in (63). This leads us
the following necessary conditions

M · xi = 0, M · zi = 0 (65)

which implies that

y1 = y2 = M (66)

Therefore, we conclude that two blades must be parallel475

to each other with their y (normal) axis along M. The476

two parallel blades must be separated by a nonzero dis-477

tance in order to produce sufficient translations in three478

directions. This design is shown in Fig 8(a).479

5.2.2 Case 2: B-2R480

Tee design of B-2R is synthesized as the following. The481

B flexure has a freedom space of 2R-P. We have to use482

two R-joints to make up two extra translations. And483

the two translations must be in the blade plane. The484

only solution is to have one R-joint parallel to the bend-485

ing direction of the blade and the other R-joint parallel486

the torsion direction of the blade. And they should be487

separated by nonzero distance. This design is shown in488

Fig 8(b).489

5.2.3 Case 3: 5R490

This case is trivial as there is only one possible design.491

That is, three R-joints are parallel to one plane and the492

other two R-joints parallel to a second plane. And these493

two planes are perpendicular to each other. See Fig 8(c).494

(a)
(b)

(c)

Figure 8. Various designs of the rotational constraint Ŵ R

with serial chains of flexure primitives B and R. The arrowed
arcs represent the rotation constrained by the flexure design.
One end of the chains is fixed.
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Figure 7. Various designs of P-constraintŴP with serial chains of
flexure primitives S, B and R. The double head arrows represent
the direction of the constrained translation. One end of the chains is
fixed.(a) case 1 with two spherical notches (2S).(b) case 2 with one
spherical notch and one blade (S-B).(c–d)case 3 with one spherical
notch and two notch hinges (S-2R).(e–f)case 4 with two intersect-
ing blades (2B).(g) case 5 with one blade and two notch hinges
(B-2R). (h–i) case 6 with five notch hinges (5R).

5.1.6 Case 6: 5R

Synthesis of this case is simple. To produce two translations
with a serial chain of 5R, we can have two possible designs
by using parallel rotations. In one design, we have two R-
joints parallel to one plane and another two R-joints parallel
to a second plane. This design takes advantage of the fact that
two parallel rotations produce a translation as proven previ-
ously. The direction of the translational constraint is along.
See Fig.7h.

And the other design uses three parallel R-joints which
produce two translations in the plane normal to the axis of
the R-joints. The direction of the translational constraint is
along the the axis of the three parallel R-joints. See Fig.7i.

5.2 Synthesis of R-Constraints ŴR

A R-constraint element removes a single rotation while al-
lows all other motions. The constraint space of a rotational
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constraint is pure couple wrencĥWR given in (5), which we
copy here for convenience

ŴR =

{
0
M

}
(63)

Our goal is to use serial chains of at least two flexure prim-
itives to designŴR. That is to make up its complementary
freedom space which consists of two rotations (R) and three
translations (P). Since a bellow spring is itself a rotational
constraint, we do not consider it in our design. And wires
and spherical notches are also excluded in design as their
freedom space already consists of three rotations. Therefore
we only consider primitives B and R. There are three poten-
tial designs B-B, B-2R and 5R.

5.2.1 Case 1: B-B

To synthesize a serial chain of B-B for a rotational constraint,
we first write the twist matrix of the blades as

[Ti ] =

[
xi zi 0

di × xi di × zi yi

]
, i = 1,2 (64)

They must be reciprocal tôWR in (63). This leads us the fol-
lowing necessary conditions

M · xi = 0, M · zi = 0 (65)

which implies that

y1 = y2 =M (66)

Therefore, we conclude that two blades must be parallel to
each other with their y-(normal) axis alongM . The two par-
allel blades must be separated by a nonzero distance in order
to produce sufficient translations in three directions. This de-
sign is shown in Fig.8a.

5.2.2 Case 2: B-2R

Tee design of B-2R is synthesized as the following. The B
flexure has a freedom space of 2R-P. We have to use two R-
joints to make up two extra translations. And the two transla-
tions must be in the blade plane. The only solution is to have
one R-joint parallel to the bending direction of the blade and
the other R-joint parallel the torsion direction of the blade.
And they should be separated by nonzero distance. This de-
sign is shown in Fig8b.

5.2.3 Case 3: 5R

This case is trivial as there is only one possible design. That
is, three R-joints are parallel to one plane and the other two
R-joints parallel to a second plane. And these two planes are
perpendicular to each other. See Fig.8c.
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Figure 7. Various designs of P-constraint Ŵ P with serial
chains of flexure primitives S, B and R. The double head
arrows represent the direction of the constrained translation.
One end of the chains is fixed. (a) case 1 with two spherical
notches (2S). (b) case 2 with one spherical notch and one
blade (S-B). (c-d) case 3 with one spherical notch and two
notch hinges (S-2R). (e-f) case 4 with two intersecting blades
(2B). (g) case 5 with one blade and two notch hinges (B-2R).
(h-i) case 6 with five notch hinges (5R).

Our goal is to use serial chains of at least two flexure464

primitives to design Ŵ R. That is to make up its comple-465

mentary freedom space which consists of two rotations466

(R) and three translations (P). Since a bellow spring is467

itself a rotational constraint, we do not consider it in468

our design. And wires and spherical notches are also ex-469

cluded in design as their freedom space already consists470

of three rotations. Therefore we only consider primitives471

B and R. There are three potential designs B-B, B-2R472

and 5R.473

5.2.1 Case 1: B-B474

To synthesize a serial chain of B-B for a rotational con-
straint, we first write the twist matrix of the blades as

[Ti] =
[

xi zi 0
di × xi di × zi yi

]
, i = 1,2 (64)

They must be reciprocal to Ŵ R in (63). This leads us
the following necessary conditions

M · xi = 0, M · zi = 0 (65)

which implies that

y1 = y2 = M (66)

Therefore, we conclude that two blades must be parallel475

to each other with their y (normal) axis along M. The476

two parallel blades must be separated by a nonzero dis-477

tance in order to produce sufficient translations in three478

directions. This design is shown in Fig 8(a).479

5.2.2 Case 2: B-2R480

Tee design of B-2R is synthesized as the following. The481

B flexure has a freedom space of 2R-P. We have to use482

two R-joints to make up two extra translations. And483

the two translations must be in the blade plane. The484

only solution is to have one R-joint parallel to the bend-485

ing direction of the blade and the other R-joint parallel486

the torsion direction of the blade. And they should be487

separated by nonzero distance. This design is shown in488

Fig 8(b).489

5.2.3 Case 3: 5R490

This case is trivial as there is only one possible design.491

That is, three R-joints are parallel to one plane and the492

other two R-joints parallel to a second plane. And these493

two planes are perpendicular to each other. See Fig 8(c).494

(a)
(b)

(c)

Figure 8. Various designs of the rotational constraint Ŵ R

with serial chains of flexure primitives B and R. The arrowed
arcs represent the rotation constrained by the flexure design.
One end of the chains is fixed.
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Figure 8. Various designs of the rotational constraintŴR with serial
chains of flexure primitives B and R. The arrowed arcs represent the
rotation constrained by the flexure design. One end of the chains is
fixed.

6 Synthesis of hybrid structures

We can build more complex flexure mechanisms with hy-
brid structures of flexure primitives together with the free-
dom and constraint elements synthesized in the previous sec-
tions. Here a hybrid structure is a structure with both serial
and parallel connections. As a matter of fact, many spatial
flexure mechanisms in practice are in hybrid structures (Yao
et al., 2008; Dong et al., 2008). In this section, we use four
examples to demonstrate how to design hybrid structures.

6.1 Hybrid designs of joints and constraints

In the previous sections, we have presented synthesis of
R-joints, P-joints, R-constraints, P-constraints with flexure
primitives in Table1. Although these procedures concern de-
signs of notch hinges (R), blades (B), spherical notches (S),
long wires (W) and bellow springs (Bs), designers should be
aware that there may be multiple choices for these primitives.
For instance, a blade flexure of any of these designs can be re-
placed by a rotational symmetric cylinder or a disc coupling
since they have identical freedom and constraint space. Sim-
ilarly, a wire flexure can be substituted with a corner blade
and a spherical notch with a short wire, a notch hinge with a
short mean or a split tube. Moreover, a notch hinge of any de-
sign can be replaced with the R-joint designs listed in Fig.4.

These designs are by no means the complete list of the ba-
sic freedom and constraint elements as many flexure mecha-
nisms are in hybrid structures which are combinations of se-
rial and parallel chains. For instance, Fig.9a shows the well
known parallelogram 4-bar design with four notch hinges.
This structure is considered as a hybrid structure that is
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6 Synthesis of Hybrid Structures495

We can build more complex flexure mechanisms with496

hybrid structures of flexure primitives together with the497

freedom and constraint elements synthesized in the pre-498

vious sections. Here a hybrid structure is a structure499

with both serial and parallel connections. As a matter500

of fact, many spatial flexure mechanisms in practice are501

in hybrid structures (Yao et al., 2008; Dong et al., 2008).502

In this section, we use four examples to demonstrate how503

to design hybrid structures.504

6.1 Hybrid Designs of Joints and Constraints505

In the previous sections, we have presented synthesis506
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6.2 Synthesis of Serial Chains with Freedom Elements537
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of R-joints and P-joints to construct a freedom space539

with any combination of DOF. For instance, a serial540

chain of three P-joints can make up a freedom space of541

three translations. If we use the double parallel flexure542

structure for the P-joint design, we obtain a serial PPP543

design with three decoupled translations. See Fig. 10. Of544

course, one can further increase the structural stiffness545

with assembling multiple serial chains of PPP in parallel546

(Awtar et al., 2011).
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Figure 10. A serial chain of three P-joints connected with two
intermediate bodies. Each P-joint is a parallel blade design
shown in Fig. 5(a). Body B is the fixed base. Body A is the
functional body. The arrow lines represent three translations
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Figure 10. A serial chain of three P-joints connected with two in-
termediate bodies. Each P-joint is a parallel blade design shown in
Fig. 5a. Body B is the fixed base. Body A is the functional body.
The arrow lines represent three translations along three coordinate
axes.

formed by two identical limbs assembled in parallel. Each
limb is a serial chain of two R-joints. It is not hard to prove
that this hybrid structure allows only one translation indi-
cated in the figure. If we replace one of the RR chain with
a blade flexure, we obtain another design shown in Fig.9b.
And Fig. 9c shows a double parallelogram design that is
formed by a serial connection of two parallelogram 4-bar de-
sign. This design is widely used to reduce parasitic errors and
increase the displacement stroke.

6.2 Synthesis of serial chains with freedom elements

As we discussed previously, we can use a serial chain of
R-joints and P-joints to construct a freedom space with any
combination of DOF. For instance, a serial chain of three P-
joints can make up a freedom space of three translations. If
we use the double parallel flexure structure for the P-joint
design, we obtain a serial PPP design with three decoupled
translations. See Fig.10. Of course, one can further increase
the structural stiffness with assembling multiple serial chains
of PPP in parallel (Awtar et al., 2011).
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Figure 11. A parallel kinematic chain of three translational
constraints results in a design with three rotations about the
center of the functional body A. The body B are fixed.
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Figure 12. A parallel kinematic chain of three rotational con-
straints result in a design with three translations along the
direction indicated in the figure. The body B are fixed. The
body A is the functional body.
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rotational constraint elements are synthesized with se-571

rial chains of flexure primitives. These freedom and572

constraints elements form a catalogue of basic build-573

ing blocks for constructing more complex flexure mech-574

anisms. We have also demonstrate with examples the575

use of these building blocks with design of hybrid struc-576

tures for any combinations of freedom. The importance577

of this work lies in the fact that it formalizes the type578

synthesis (type/toplogy selection) of flexure mechanisms579

which has been an ad hoc process. It also paves the way580

towards to design automation and systematic invention581

of new flexure machinery.582
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Figure 11. A parallel kinematic chain of three translational con-
straints results in a design with three rotations about the center of
the functional body A. The body B are fixed.

6.3 Synthesis of parallel chains with constraint
elements

In duality, one can also synthesize parallel chains with the
constraint elements synthesized in the previous sections. For
instance, if we would like to design a parallel structure with
three rotations, we just need to use three translational con-
straint elements to remove all translations. If we choose the
BB design in Fig.7e for all three translational constraints,
we obtain the design shown in Fig.11. The functional body
A can rotate about its center relative to the base body B while
its translations are constrained.

As another example, we would like to design a parallel
structure with three translations. We just need to use three
rotational constraint elements to remove all rotations. If we
choose the BB design in Fig.8a for all three rotational con-
straints, we obtain the design shown in Fig.12. The func-
tional body A can translate in all directions while its rotations
are constrained.

7 Conclusions

A list of commonly used flexure primitives is first catego-
rized. A complete list of rotational and translational freedom
elements is synthesized with parallel connections of these
primitives. In duality, translational and rotational constraint
elements are synthesized with serial chains of flexure prim-
itives. These freedom and constraints elements form a cat-
alogue of basic building blocks for constructing more com-
plex flexure mechanisms. We have also demonstrate with ex-
amples the use of these building blocks with design of hy-
brid structures for any combinations of freedom. The im-
portance of this work lies in the fact that it formalizes the

www.mech-sci.net/4/263/2013/ Mech. Sci., 4, 263–277, 2013
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Figure 12. A parallel kinematic chain of three rotational constraints
result in a design with three translations along the direction indi-
cated in the figure. The body B are fixed. The body A is the func-
tional body.

type synthesis (type/toplogy selection) of flexure mecha-
nisms which has been an ad hoc process. It also paves the
way towards to design automation and systematic invention
of new flexure machinery.
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