
Mech. Sci., 4, 243–250, 2013
www.mech-sci.net/4/243/2013/
doi:10.5194/ms-4-243-2013
© Author(s) 2013. CC Attribution 3.0 License.

Mechanical  
Sciences

Open Access

A graph-theoretic approach to sparse matrix inversion
for implicit differential algebraic equations

H. Yoshimura

Department of Applied Mechanics and Aerospace Engineering, Waseda University, Ohkubo, Shinjuku,
Tokyo 169-8555, Japan

Correspondence to:H. Yoshimura (yoshimura@waseda.jp)

Received: 15 November 2012 – Revised: 9 March 2013 – Accepted: 5 April 2013 – Published: 6 June 2013

Abstract. In this paper, we propose an efficient numerical scheme to compute sparse matrix inversions for
Implicit Differential Algebraic Equations of large-scale nonlinear mechanical systems. We first formulate me-
chanical systems with constraints by Dirac structures and associated Lagrangian systems. Second, we show
how to allocateinput-output relationsto the variables in kinematical and dynamical relations appearing in
DAEs by introducing an oriented bipartite graph. Then, we also show that the matrix inversion of Jacobian
matrix associated to the kinematical and dynamical relations can be carried out by using the input-output rela-
tions and we explain solvability of the sparse Jacobian matrix inversion by using the bipartite graph. Finally,
we propose an efficient symbolic generation algorithm to compute the sparse matrix inversion of the Jacobian
matrix, and we demonstrate the validity in numerical efficiency by an example of the stanford manipulator.

1 Introduction

Multibody systems such as space structures, manipulators,
etc. are known to be represented as implicit mechanical sys-
tems with kinematical constraints, holonomic or nonholo-
nomic, which may be eventually expressed by implicit non-
linear Differential-Algebraic Equations (DAEs). In particu-
lar, for the numerical integration of such DAEs, we need to
employ stiffly stable implicit numerical integrators such as
Backward Differentiation Formula (see,Hachtel et al., 1971;
Brayton et al., 1972), since the DAEs are to be highly nonlin-
ear and stiff in general. On the other hand, one may face at a
serious problem in CPU time for solving the implicit nonlin-
ear algebraic equations, especially, for the case of large-scale
systems. Namely, increasing degrees of freedom of the sys-
tem, it eventually requires much CPU time in computing the
matrix inversion of Jacobian matrix of the implicit DAEs in
Newton’s iteration at each time, since the Jacobian matrix
of discretized nonlinear algebraic equations may be random
sparse in general.

A major stumbling blocklies in the fact that the Jacobian
matrix has the random sparseness as well as highly nonlin-
ear in terms of generalized coordinates. So far, some nu-

merical technique of sparse matrix inversions for VLSI cir-
cuits or networks has been developed by using the block-
triangularization of matrices (see, for instance,Orlandea et
al., 1977a; Murata et al., 1985), where a structural analysis
is effectively made by means ofgraph and matroid theory
(for instance, refer toMurota, 2000). In these conventional
approaches, one may properly find outpivots in the Gaus-
sian elimination process at each time step in an ad hoc way
(where we note that the choice of pivots is quite relevant with
input-output relationsas will be shown shortly). This eventu-
ally requires much CPU time to calculate the inversion of the
Jacobian matrix unless utilizing some effective sparse matrix
algorithms. Namely, it is almost impossible to figure out a
prior fill-in andfill-out in Gaussian elimination sincetopo-
logical structureof such a sparse Jacobian matrix might be
so much random and complicated. Thus, we need to develop
an efficient numerical algorithm of sparse matrix inversion
for solving large-scale implicit DAEs in a systematic way.

In this paper, we develop a graph-theoretic approach to
computing sparse matrix inversion for large-scale nonlinear
mechanical systems by using Dirac structures and associated
implicit Lagrangian systems. The underlying idea is to re-
gard a mechanical system as an interconnected system of
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elements, in which systems are comprised ofconstitutive re-
lationsof physical elements,structural relationsamong the
physical relations, andcausal (input-output) relationsamong
physical variables. In particular, focusing upon theinput-
output relationsassociated with all the kinematical and dy-
namical relations of original mechanical systems, we develop
bipartite graphsand then we show how the sparse matrix
inversion can be made by effectively using the input-output
relations. Furthermore, we explain solvability for the sparse
Jacobian matrix inversion associated to the DAEs by using
the bipartite graph. Finally, we propose an efficient and sys-
tematic symbolic generation algorithm to compute the sparse
matrix inversion of the Jacobian matrix and we demonstrate
its validity in numerical efficiency by an example of the stan-
ford manipulator.

2 Implicit Lagrangian systems

Let us reviewDirac structuresand associatedimplicit La-
grangian systemsby following Yoshimura and Marsden
(2006a,b, 2008).

2.1 Dirac structures

Let Q be ann-dimensional configuration manifold, whose
kinematical constraints are given by a constraint distribution
∆Q ⊂ TQ, given by, at eachq ∈ Q,

∆Q(q) = {v ∈ TqQ | 〈ω
a(q),v〉 = 0, a= 1, ...,m}, (1)

whereωa aremone-forms onQ. Define the distribution∆T∗Q

onT∗Q by

∆T∗Q = (TπQ)−1(∆Q) ⊂ TT∗Q,

whereTπQ : TT∗Q→ TQ is the tangent map of the cotan-
gent bundle projectionπQ : T∗Q→Q, while the annihilator
of ∆T∗Q can be defined by, for eachz∈ T∗qQ,

∆◦T∗Q(z) = {αz ∈ T∗zT∗Q | 〈αz, wz〉 = 0

for all wz ∈ ∆T∗Q(z)}.

LetΩ be the canonical symplectic structure onT∗Q andΩ[ :
TT∗Q→ T∗T∗Q be the associated bundle map. Then, a Dirac
structureD∆Q onT∗Q induced from∆Q can be defined by, for
eachz∈ T∗qQ,

D∆Q (z) = { (wz,αz) ∈ TzT
∗Q×T∗zT∗Q |

wz ∈ ∆T∗Q(z) and αz−Ω
[(z) ·wz ∈ ∆

◦
T∗Q(z) }.

2.2 Local representations

Let us choose local coordinatesqi onQ so thatQ is locally
represented by an open setW⊂ Rn. The constraint set∆Q
defines a subspace ofTQ, which we denote by∆(q) ⊂ Rn at

each pointq ∈W. If the dimension of∆(q) is n−m, then we
can choose a basisem+1(q),em+2(q), . . . ,en(q) of ∆(q).

Recall that the constraint sets can be also represented by
the annihilator of∆(q), which is denoted by∆◦(q) spanned
by such one-forms that we write asω1,ω2, . . . ,ωm. Using
πQ : T∗Q→Q locally denoted byz= (q, p) 7→ q and TπQ :
TT∗Q→ TQ; (q, p, q̇, ṗ) 7→ (q, q̇), it follows that

∆T∗Q � {(q, p, q̇, ṗ) | q ∈ U, q̇ ∈ ∆(q)} .

Let points inT∗T∗Q be locally denoted by (q, p,β,u), where
β is a covector andu is a vector. Then, the annihilator of∆T∗Q

is locally represented as

∆◦T∗Q � {(q, p,β,u) | q ∈ U, β ∈ ∆◦(q) andu= 0} .

Since we have the local formulaΩ[(q, p)·w(q,p) = (q, p,−ṗ, q̇),
the condition α(q,p) −Ω

[(q, p) ·w(q,p) ∈ ∆
◦
T∗Q reads α+ ṗ ∈

∆◦(q), andw− q̇= 0, whereα(q,p) = (q, p,α,w) and w(q,p) =

(q, p, q̇, ṗ). Thus, the induced Dirac structure is locally repre-
sented by

D∆Q (q, p) = {((q̇, ṗ), (α,w)) | q̇ ∈ ∆(q),

w= q̇, α+ ṗ ∈ ∆◦(q)} .
(2)

Representation (I): let us introduce a matrix representation
of D∆Q given in Eq. (2). First, letNT(q) be ann×m matrix
whosem-column vectorsω1(q), ...,ωm(q) span the basis of
∆◦(q), namely,NT(q) = [ω1(q), ...,ωm(q)] and the distribution
∆(q) ⊂ Rn � TqQ may be represented by

∆(q) = {q̇ ∈ Rn | N(q) q̇= 0} .

Using Lagrange multipliersλ = (λ1, ...,λm) ∈ Rm, one has

∆◦(q) =
{
β ∈ (Rn)∗ | β = NT(q)λ

}
.

Thus, the induced Dirac structure can be represented by

D∆Q (q, p) = {((q̇, ṗ), (α,w)) | N(q)q̇= 0,

w= q̇, α+ ṗ= NT(q)λ
}
.

(3)

Representation (II): as shown in Eq. (3), for Representa-
tion (I) for the induced Dirac structure, we utilized the La-
grange multipliers, which representconstraint forcesin con-
strained mechanical systems. Here, we develop another rep-
resentation ofD∆Q on T∗Q without using the Lagrange mul-
tipliers.

Let us choose an n× (n−m) matrix B(q) =
[em+1(q), . . . ,en(q)], whose column vectors span the basis of
∆(q). Then, it follows that the distribution∆(q) ⊂ Rn � TqQ

can be also represented by

∆(q) = {q̇ ∈ Rn | q̇= B(q)u} ,

whereu= (um+1, ...,un) ∈ Rn−m. Note that the orthogonality
condition betweenN(q) andB(q) holds:

BT(q)NT(q) = 0.

Mech. Sci., 4, 243–250, 2013 www.mech-sci.net/4/243/2013/



H. Yoshimura: A graph-theoretic approach to sparse matrix inversion 245

The above condition naturally comes from the fact that∆◦ is
the annihilator of the distribution∆; namely, in other words,
the basisem+1(q), ...,en(q) is orthogonal to the dual basis
ω1(q), ...,ωm(q) at eachq ∈ Q. Therefore, one can read that

∆◦(q) =
{
β ∈ (Rn)∗ | BT(q) β = 0

}
.

Thus, the induced Dirac structureD∆Q ⊂ TT∗Q⊕T∗T∗Q can
be represented without using the Lagrange multipliers as

D∆Q (q, p) = {((q̇, ṗ), (α,w)) | N(q)q̇= 0,

w= q̇, BT(q)(α+ ṗ) = 0
}
.

2.3 Ehresmann connection and structural relations

We briefly review an Ehresmann connection associated with
nonholonomic mechanical systems; as to the details, for ex-
ample, refer toYoshimura and Marsden(2006b).

Assume that there is a bundle structure with a projection
π : Q→R for Q; that is, there exists another manifoldR
called the base. We call the kernel ofTqπ at any pointq ∈ Q
thevertical spacedenoted byVq. An Ehresmann connection
A is a vertical vector-valued one-form onQ, which satisfies

1. Aq : TqQ→Vq is a linear map at each pointp ∈ Q,

2. A is a projection :A(vq) = vq, for all vq ∈ Vq.

Thus, we can split the tangent space atq such thatTqQ =

Hq⊕Vq, whereHq = KerAq is the horizontal space atq.
Suppose there exist nonholonomic constraints∆Q ⊂ TQ,

which are given bym(< n) algebraic equations forn gener-
alized velocity vectorv= q̇= (q̇1, ..., q̇n) ∈ ∆(q) ⊂ TqQ as in
Eq. (1). Let us choose an Ehresmann connectionA such that
Hq = ∆Q(q) or we assume that the connection is chosen such
that the constraints are written asA · vq = 0, where the con-
straint distribution∆Q is spanned by a set ofm independent
one-forms, which is given, in local coordinatesqi = (rα, sa)
for Q, by

ωa = dsa− Ja
α(r, s)drα.

In a matrix representation,

N(q) v=
[

Im −J(q)
] [ v◦

v∗

]
= om, (4)

where v is locally split into dependentvelocity v◦= q̇◦=
(q̇1, ..., q̇m) and v∗= q̇∗= (q̇m+1, ..., q̇n) independentvelocity
andJ is a submatrix associated with the constraints. Ge-
ometrically speaking, this splitting corresponds to a choice
of Ehresmann connectionsfor the given constraints (see
Yoshimura and Marsden, 2006b).

Corresponding to the annihilator, one has the dynami-
cal relations associated to the generalized force vectorQ=
(Q1, ...,Qn) ∈ ∆◦(q) ⊂ T∗qQ dual tov as

BT(q) Q=
[
J(q)T In−m

] [ Q◦

Q∗

]
= on−m, (5)

(             )

B  Q = on -m
T

Dynamical ConstraintsKinematical Constraints

Principle of Virtual Work

for all for all

(             )

Figure 1. Duality principle.

where∆◦
Q

denotes the annihilator of∆Q, andQ◦=(Q1, ...,Qm)
andQ∗=(Qm+1, ...,Qn) are the generalized force vectors dual
to v◦ andv∗ respectively. On the other hand, the input-output
relation betweenQ◦ andQ∗ is reverse tov◦ andv∗; namely,
Q◦ is the input andQ∗ the output. In the above, theorthogo-
nality conditionholds:

BT(q)NT(q) = 0.

The matricesN(q) and B(q) are calledconnection ma-
trices (seeYoshimura, 1995). This orthogonality condition
denotesprinciple of virtual work, which is given by

〈Q,v〉 = 0, for all v ∈ ∆(q) andQ ∈ ∆◦(q),

where〈, 〉 denotes a duality pairing.
The dual set of constraints given by Eqs. (4) and (5) in-

dicatesstructural relations, namely, it represents how phys-
ical elements are interconnected. Thus, we sometimes call
the structural relation aninterconnection among the physi-
cal elements. In circuit theory, it is known that Eqs. (4) and
(5) correspond to KCL and KVL and also that the virtual
work principle is known asTellegen’s theorem. Furthermore,
there exists a relation calledduality principle as in Fig.1,
which is known asPlanck-Okada-Arsove principlein circuit
theory (seeYoshimura, 1995).

2.4 Implicit DAEs for Lagrangian systems

Here, we show how the notion of Dirac structures can be
fit into the formulation of implicit Lagrangian systems (see
Yoshimura and Marsden, 2006a,b, 2008). Let L be a La-
grangian onTQ, which is given by

L(q, q̇) =
1
2
〈q̇◦, M q̇◦〉 −U(q◦),

where we assume thatL is only associated to ˙q◦, M is a mass
matrix whose components are functions ofq◦, andU denotes
a potential energy function ofq◦. This implies thatL is pos-
sibly degenerate.
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TheLagrange-d’Alembert principle is given by
b∫

a

〈
d
dt
∂L
∂q̇
−
∂L
∂q
, δq

〉
dt+

b∫
a

〈F, δq〉dt = 0,

whereδq satisfies the constraint

N(q)δq= om.

So, one can obtain the dual dynamical relation

BT(q)Q= on−m,

where

Q=
d
dt
∂L
∂q̇
−
∂L
∂q
+ F

and it directly induces

Q=

[
Q◦

Q∗

]
=

 M v̇◦ + f (q◦,v◦)−
∂U
∂q◦

τ

 , (6)

where

d
dt
∂L
∂q̇
−
∂L
∂q
=

 M v̇◦ + f (q◦,v◦)−
∂U
∂q◦

0


and

F =

[
0
τ

]
.

Notice thatτ indicates the external forces. Of course, equa-
tions of motion can be written as

BT(q)

(
d
dt
∂L
∂q̇
−
∂L
∂q
+ F

)
= on−m.

Furthermore, one has thesecond-order condition(seeMars-
den and Ratiu, 1999):

q̇◦ − v◦ = om, (7)

q̇∗ − v∗ = on−m. (8)

From Eqs. (4), (5), (6), (7) and (8), we can obtain the follow-
ing local differential-algebraic equations

G(x(t), ẋ(t);u(t)) = 0, (9)

wherex= (q,v,Q) = (q◦,q∗,v◦,v∗,Q◦,Q∗) ∈W×W×W∗ de-
notes the state variables andu= τ ∈ (Wn−m)∗ = (Rn−m)∗ the
input variables. In the above, we locally setTQ �W×W and
T∗Q �W×W∗, and henceTQ⊕T∗Q �W×W×W∗, where
Q �W=Wm×Wn−m = Rm×Rn−m is ann-dimensional vector
space which is a model space forQ. Thus, the mathemati-
cal model of the Lagrangian system is given by the implicit
DAEs:

G =



G1

G2

G3

G4

G5

G6


=



q̇◦−v◦

q̇∗−v∗

v◦−Jv∗

JT Q◦+Q∗

Q◦−M v̇◦ − f (q◦,v◦)−∂U/∂q◦

Q∗−τ


. (10)

3 Sparse tableau approach

From the viewpoint of numerical analysis for mechani-
cal systems, there exist two kinds of dynamical problems;
namely, theforward dynamicsandinverse dynamics.

Recall thatW=Wm×Wn−m = Rm×Rn−m is the model space
for Q. The forward dynamics analysis is the case in which
given a smooth input vector

u(t) := τ(t) ∈ (Wn−m)∗ = (Rn−m)∗

as avector functionof time t, numerically integrate Eq. (9)
in terms oft to obtain

x(t) = (q◦(t),q∗(t),v◦(t),v∗(t),Q◦(t),Q∗(t))

as theoutput, where x ∈W×W×W∗. On the other hand,
the inverse dynamics analysis is the case in which given a
smooth input vector

u(t) := q∗(t) ∈Wn−m = Rn−m

as avector functionof time t, then compute

x(t) = (q◦(t),v◦(t),v∗(t),Q◦(t),Q∗(t), τ(t))

as the output, in which casex ∈Wm×W×W∗ × (Wn−m)∗.
In this paper, we explore the case of the inverse dynam-

ics analysis by the sparse tableau approach, where the state
vector is given byx= (q◦,v◦,v∗,Q◦,Q∗, τ). To do this, let
us first discretize Eq. (9) at time t = tn. By using theBack-
ward Differentiation Formula (BDF)developed by Gear (see,
for instance,Brennen et al., 1995), the time-derivative term
ẋn = ẋ(tn) associated to the state vectorxn = x(tn) may be ap-
proximately discretized by the backwardsxn−i = x(tn−i) as

ẋn = −

k∑
i=0

1
h
αi xn−i (1≤ k≤ 6), (11)

whereh= tn− tn−1 denotes a time step,k is a backward order
andαi indicates the coefficient associated to thei-th back-
ward order. Substituting Eq. (11) into Eq. (9), we obtain the
discretized nonlinear algebraic equations as follows:

G(xn, ẋ(xn);u(tn)) = 0. (12)

Recall the algorithm of theSparse Tableau Approachis given
in Fig. 2 (seeHachtel et al., 1971; Brayton et al., 1972),
where we linearize Eq. (12) at each time stept = tn as

J(x(r)
n ) 4x(r)

n = −G(x(r)
n ), (13)

and whereJ = [∂Gi/∂x j ]
∣∣∣
t=tn

is theJacobian matrixand4x(r)
n

denotes ther-th iteratedcorrector vectorat tn. Then, it fol-
lows

x(r+1)
n = x(r)

n +4x(r)
n

= x(r)
n − J−1(x(r)

n )G(x(r)
n ).

(14)
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Figure 2. Sparse tableau method.

In the Newton method, it is necessary to take initial values
near from the solutionxn and thek-th prediction formula xPr

n
is given by

xPr
n = x(0)

n = −

k∑
i=1

γi xn−i ,

whereγi is thei-th coefficient.
In the inverse dynamics analysis, the state vector is given

by x= (q◦,v◦,v∗,Q◦,Q∗, τ) and it follows from Eq. (10) that
the Jacobian matrix is given as in Fig.3, whereIn stands for
then-th degree unit matrix.

4 Bipartite graphs

4.1 Input-output relations

The Jacobian matrixJ(x(r)
n ) obtained in Eq. (13) apparently

has the characteristic of random sparseness. So, we develop

J

Figure 3. Jacobian matrix.

an efficient symbolic generation for computations of the
sparse Jacobian matrix inversion for Newton’s iterations. To
do this, let us consider aninput-output relation among state
variables for every relation in (10). Now, we can uniquely
allocate the input-output relation to the kinematical and dy-
namical relations in Eqs. (4) and (5) as follows:

v◦ −Jv∗ = om (output :v◦, input :v∗),

JT Q◦ +Q∗ = on−m (input :Q◦, output :Q∗).

Similarly, for the second-order conditions betweenv=
(v◦,v∗) andq̇= (q̇◦, q̇∗), one has

q̇◦ − v◦ = om (output :q̇◦, input : v◦),
q̇∗ − v∗ = on−m (input : q̇∗, output : v∗).

Furthermore, as to the equations of motion, it follows

Q◦ −M v̇◦ − f (q◦,v◦)
− ∂q◦U = om (output :Q◦, input : q◦,v◦),

Q∗ − τ = on−m (input :Q∗, output :τ).

The input-output relations in the mentioned above can be de-
termined by physicalcausality. Needless to say that the time
derivative terms ˙x(tn) are expressed in terms of the backwards
xn−i(tn), i = 0, ...,6 by using the BDF as in equation (11). Cor-
responding to the Jacobian matrixJ in (13), define thecausal
Jacobian matrix Ĵ by assigning−1 to the input and+1 to the
output as to thej-th variable in thei-th relation associated to
Ji j as

Ĵi j =


−1 : the j-th variable is input,
+1 : the j-th variable is output,
0 : otherwise.

Thus, the causal Jacobian matrixĴ is given in Fig.4.
In the above,̂Im indicates them-th unit matrix. Note that there
exists an element with+1 in each row, which plays a role
of the pivot in the Gaussian elimination. Further,Îm,n−m is
them× (n−m) matrix, in which+1 are allocated to non-zero
components of them× (n−m) matrixJ .

4.2 Oriented bipartite graphs

Let us illustrate the input-output relations as to the Ja-
cobian matrix J = [Ji j (x)] = [∂Gi/∂x j ]

∣∣∣
t=tn

by introducing

www.mech-sci.net/4/243/2013/ Mech. Sci., 4, 243–250, 2013
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J

Figure 4. Causal Jacobian matrix.

bipartite graphs. Recall that thei-th row of the Jacobian ma-
trix J = [Ji j (x)] = [∂Gi/∂x j ]

∣∣∣
t=tn

corresponds to thei-th vec-
tor functionGi(x, ẋ;u) and the j-th column corresponds to
j-th vectorx j respectively, wherei, j = 1, ...,N(= 3n). Here,
Gi(x, ẋ;u) = 0 are theN-th order DAEs andx= (x1, ..., x6) =
(q◦,v◦,v∗,Q◦,Q∗, τ) is theN-vector.

Given the causal Jacobian matrix̂J associated toJ, let
Vr = {G1,G2, . . . ,GN } be the row-set of Ĵ and let Vc =

{∆x1, ...,∆x6} be thecolumn-set of Ĵ . Here, we assignVr

andVc to vertex setV := Vr ×Vc.
Now, there are nonzero elements (±1) in thei-th row of the

causal Jacobian matrix and suppose that they are in thek-th
andl-th columns. For instance, as to the first equationG1 = 0,
one has the kinematical relation betweenx1 = q◦ andx2 = v◦

as ẋ1− x2 = 0. By the BDF discretization, the corresponding
linearized equation is given as

−
1
h

(α0∆x1)−∆x2 = 0.

In order to illustrate input-output relations among the state
variables bygraphs, let us definearc-setby

A= {( j, i) | Ĵi j , 0, i ∈ Vc, j ∈ Vr },

where the arcs represent somerelations between vertices
in Vc (state variables) as to every vertex (equation) inVr .
Furthermore, the direction of an arc indicatescausalityor
an input-output relation among state variables associated to
the column vertices. Leta ∈ A be an arc. Let us introduce a
maps : A→ V, which is given by, for an arca ∈ A, s(a) de-
notes theinitial vertexof a. Similarly, define a mapt : A→ V,
which is given by, for an arca ∈ A, t(a) indicates thetermi-
nal vertexof a. So, we can define the set ofvertices incident
to a by {s(a), t(a)}. Sometimes,s(a) is called thesourceof
a and t(a) the target of a. Hence, we can define adirected
bipartite graph by

B= (Vr ,Vc,A, s, t),

by which we can illustrate theinput-output relations associ-
ated to the Jacobian matrixas shown in Fig.5.
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4.3 Perfect matching

A matching M ⊂ A of a bipartite graphB= (Vr ,Vc,A, s, t) is
defined by aset of arcs without common vertices. Especially,
M is called aperfect matching if it is a matching which
matches all vertices of the graph, namely, every vertex of the
graph is incident to exactly one edge of the matching:s(M) =
Vr andt(M) = Vc.

In Fig.6, the arcs that are drawn by the broken lines consist
of the perfect matching. If a perfect matching exists inB, the
corresponding Jacobian matrixJ is asquareandnonsingular
matrix since|Vr | = |Vc|. Here,|V|means the size ofV, namely,
the number of elements in the set of verticesV.

Let us see that|V+| = |V−| is equivalent with the fact that
the Jacobian matrix isdiagonalizable. First, let us show the
following relation:

Perfect matchings exist inB⇒ J is diagonalizable.

This is clear because a perfect matching can be detected
by the elementary row and column operationsin matrix;
namely, (1) interchanging two rows or columns; (2) adding
a multiple of one row or column to another; (3) multiply-
ing any row or column by a nonzero element, although
there might be several perfect matchings for a given bipar-
tite graph. Next, let us show the following relation:

J is diagonalizable⇒ Perfect matchings exist inB.

That the Jacobian matrixJ is diagonalizable means that one
can properly select a pivot in each row or column from
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nonzero elements of the matrix. In other words, the rank
of J is equal toN . Recall that acover is defined as a pair
(V̄r , V̄c) of V̄r ⊂ Vr andV̄c ⊂ Vc such that there exist no arcs
betweenVr\V̄r and Vc\V̄c. For the case in which RankJ=
N = |V|/2, the number of the minimum cover for the vertex
setV = (Vr ,Vc) of the bipartite graphB is to beN . It follows
from the König-Egerv́ary theorem that the number of arcs in
a maximum matching is equal to the number of vertices in a
minimum vertex cover; namely,

max{|M| | M : matching}

=min{|V̄r |+ |V̄c| | (V̄r , V̄c) : cover}.

So, the size of the maximum matching is to beN = |V|/2
and therefore we have shown that the matching is a perfect
matching. As shown in Fig.6, there exists a perfect matching

M ={a1 = (x1,G1),a2 = (x2,G3),a3 = (x3,G2),

a4 = (x4,G5),a5 = (x5,G4),a6 = (x6,G5)} ⊂ A.

For each arca ∈ M, one can choose the targetx= t(a) as the
pivot associated to thek-th equation, wherek= s(a) is the
source ofa. Thus, the proof has been done.

Therefore, we can conclude the following relation:

Perfect matchings exist inB⇔ J is diagonalizable.

In this way, thesolvability of the linearized Eq. (13) is clar-
ified in the context of the perfect matching by using the bi-
partite graph associated to the causal Jacobian matrix. Recall
that nonzero elements of̂J correspond to arcs of the bipar-
tite graph and hence the number of nonzero elements and the
number of the arcs are the same. In our study, in each row,
there is only one output variable, which implies thatthe arcs
associated with the output variables never share the vertices
of other output arcsin the bipartite graph. Therefore, the set
of edges of output variables has perfect matching.

5 Sparse matrix inversion

5.1 Symbolic generation

Next, we show how the sparse matrix inversion of the Jaco-
bian matrix can be done by symbolic manipulation. By the
information from the causal Jacobian matrix, selecting the
pivot, the Jacobian matrix can bediagonalizedas shown in
Fig. 7, whereG(k) is thek-th tableau error vector, A(k) rep-
resents a matrix in the Jacobian matrix for thek-th step of
elementary operations. Next, after forward Gaussian elimina-
tion for the Jacobian matrix, we can easily obtain the reduced
Jacobian matrix as in Fig.8. Note that we can do this by sym-
bolic manipulation. Furthermore, after backward elimination
as to the reduced Jacobian matrix by symbolic manipulation,

Figure 7. Diagonalized Jacobian matrix.

Figure 8. Reduced Jacobian matrix.

we can obtain the following corrector vector consequently:

∆τ =G(2)
6 ,

∆Q∗ = −G(3)
5 ,

∆Q◦ = −G(3)
4 ,

∆q◦ = −
A(2)

2

G(2)
3

,

∆v◦ = −(G(2)
2 −A(1)

2 ·G
(2)
3 ),

∆v∗ =G(1)
1 .

Thus, we can develop the inversion of the Jacobian matrix,
i.e.,∆x(r)

n = −J−1(x(r)
n )G(x(r)

n ) can be explicitly done by sym-
bolic manipulation with the causal information of̂J. As a
result, we can make symbolic generation of Eq. (14).

5.2 Numerical analysis

Let us demonstrate the validly of our symbolic generation
scheme by an example of theStanford manipulatorwith 6
degrees of freedom as shown in Fig.9. One can set up 96,
150, 210, 390, 738 system equations of DAE models for the
stanford manipulator, where the numbers of systems equa-
tions correspond to those of the unknown variables according
to the elimination of redundant variables.

We examine to compare the CPU time required in the rou-
tine of the Jacobian matrix inversion in each time step for the
three cases: (1) Ordinary Gaussian elimination method (with-
out any sparse matrix algorithm), (2) Sparse Gaussian elimi-
nation method of the inner product algorithm (as to the open-
source subroutine, seeMurata et al., 1985), (3) our method.
The comparison of the required CPU time is illustrated in
Fig. 10. As a result, our method of sparse matrix inversions
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Figure 9. Stanford manipulator.
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Figure 10. Comparison of CPU time.

has a great advantage in the CPU time efficiency in compari-
son with other approaches.

6 Conclusions

We have shown symbolic generation of sparse matrix inver-
sion for large-scale mechanical systems. We have set up Im-
plicit DAE models in the context of Lagrangian systems and
we have shown the input-output relations as to the Jacobian
matrix associated with linearized equations. Then, we have
shown the solvability of the linearized equations by using
the bipartite graph. Furthermore, we have proposed symbolic
generation of the random sparse matrix inversion for the Ja-
cobian matrix. Finally, we have demonstrated the validity
of our approach by numerical analysis with an example of
the Stanford manipulator comparing with the inner-product
sparse matrix Gaussian elimination algorithm as well as the
standard Gaussian elimination algorithm.
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