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In this paper, we propose afffieient numerical scheme to compute sparse matrix inversioris for
Implicit Differential Algebraic Equations of large-scale nonlinear mechanical systems. We first formulate me-
chanical systems with constraints by Dirac structures and associated Lagrangian systems. Second, we show
how to allocateinput-output relationgo the variables in kinematical and dynamical relations appearing in
DAEs by introducing an oriented bipartite graph. Then, we also show that the matrix inversion of Jacobian
matrix associated to the kinematical and dynamical relations can be carried out by using the input-output rela-
tions and we explain solvability of the sparse Jacobian matrix inversion by using the bipartite graph. Finally,
we propose anfiicient symbolic generation algorithm to compute the sparse matrix inversion of the Jacobian
matrix, and we demonstrate the validity in numerid@logency by an example of the stanford manipulator.

merical technique of sparse matrix inversions for VLSI cir-

cuits or networks has been developed by using the block-

triangularization of matrices (see, for instan@¥landea et
Multibody systems such as space structures, manipulators|, 19773 Murata et al, 1985, where a structural analysis
etc. are known to be represented as implicit mechanical syss effectively made by means gfraph and matroid theory
tems with kinematical constraints, holonomic or nonholo- (for instance, refer tddurota 2000). In these conventional
nomic, which may be eventually eXpressed by ImpIICIt non- approacheS, one may proper|y find (pi.\yotsin the Gaus-
linear Differential-Algebraic Equations (DAEs). In particu- sjan elimination process at each time step in an ad hoc way
lar, for the numerical integration of such DAEs, we need to (where we note that the choice of pivots is quite relevant with
employ stifly stable implicit numerical integrators such as input-output relationss will be shown shortly). This eventu-
Backward Diferentiation Formula (seelachtel etal.197%  a|ly requires much CPU time to calculate the inversion of the
Brayton et al. 1972, since the DAEs are to be highly nonlin- - jacobian matrix unless utilizing som@etive sparse matrix
ear and stt in general. On the other hand, one may face at ag|gorithms. Namely, it is almost impossible to figure out a
serious problem in CPU time for solving the implicit nonlin- prior fill-in andfill-out in Gaussian elimination sind@po-
ear algebraic equations, especially, for the case of large-scal@gical structureof such a sparse Jacobian matrix might be
systems. Namely, increasing degrees of freedom of the sysso much random and complicated. Thus, we need to develop
tem, it eventually requires much CPU time in computing the an ficient numerical algorithm of sparse matrix inversion
matrix inversion of Jacobian matrix of the Imp||C|t DAEs in for So|ving |arge_sca|e |mp||C|'[ DAEs in a systematic way.
Newton’s iteration at each time, since the Jacobian matrix In this paper, we devek)p a graph-theoretic approach to
of discretized nonlinear algebraic equations may be randongomputing sparse matrix inversion for large-scale nonlinear
sparse in general. mechanical systems by using Dirac structures and associated

A major StUmbling blocKies in the fact that the Jacobian |mp||c|'[ Lagrangian Systems_ The under|ying idea is to re-

matrix has the random sparseness as well as highly nonlingard a mechanical system as an interconnected system of
ear in terms of generalized coordinates. So far, some nu-



elements, in which systems are comprisedafstitutive re-  each poingge W. If the dimension ofA(q) is n—m, then we
lations of physical elementsstructural relationsamong the  can choose a basgs,, 1(0), én:2(q), . . .,en(q) of A(Q).

physical relations, anchusal (input-output) relationsmong Recall that the constraint sets can be also represented by
physical variables. In particular, focusing upon tinput- the annihilator ofA(q), which is denoted bw°(q) spanned
output relationsassociated with all the kinematical and dy- by such one-forms that we write as',w?,...,w™. Using
namical relations of original mechanical systems, we developrg : T*Q — Q locally denoted byz=(g,p)—~ q and Tng :
bipartite graphsand then we show how the sparse matrix TT*Q — TQ;(q, p,q, p) + (q,9), it follows that

inversion can be made byfectively using the input-output o ,

relations. Furthermore, we explain solvability for the sparseT-Q ={(@.P.4.p) [d € U, € A(Q)}.

Jacobian matrix inversion associated to the DAEs by using o points inT*T*Q be locally denoted byg( p,,u), where
the bipartite graph. Finally, we propose afi@ent and sys-  giq 5 covector and is a vector. Then, the annihilator 8% o
tematic symbolic generation algorithm to compute the sparseg locally represented as

matrix inversion of the Jacobian matrix and we demonstrate
its validity in numerical iciency by an example of the stan- A7, = {(g,p.8,u) | g€ U, 8 € A°(g) andu = 0}.

ford manipulator.
Since we have the local formul® (q, P)-Wq.p) = (G, P,—P.0),

the condition a(qp — Q°(Q. P) - Wigp) € AS., readsa+pe
A°(g), andw—q =0, wherea(qp = (g, p,@,W) andwg,p) =
(9, p,G, p)- Thus, the induced Dirac structure is locally repre-

Let us reviewDirac structuresand associatednplicit La-
sented by

grangian systemsy following Yoshimura and Marsden
(20063b, 2008. Daq(@ p) = {((G, P). (@, W)) | G € A(0),

. i 2
w={Q, a+ peA’(q)}. @

_ _ . _ _ Representation (1): let us introduce a matrix representation
Let Q be ann-dimensional configuration manifold, whose of Dy, given in Eq. Q). First, letNT(q) be annx m matrix

kinematical constraints are given by a constraint distributionyyhosem-column vectorsw'(q), ...,™(q) span the basis of
Aq c TQ, given by, at eacly € Q, A°(q), namelyNT(q) = [w*(q). ..., ™(q)] and the distribution
A(g) cR" = T4@ may be represented by

_ o A(@) = {qeR"N(@)q = 0}.
wherew? aremone-forms orQ. Define the distributiort:q
onT*Q by Using Lagrange multiplierd = (13, ..., An) € R™, one has

Aq(@) ={veTqQ | (0*(q),v) =0, a=1,...m}, 1)

At = (Trg) M(A) c TT'Q, A°(@) = {Be R |B=N"(@)1}.
whereTrg : TT*Q— TQ is the tangent map of the cotan- Thus, the induced Dirac structure can be represented by
gent bundle projectiong : T*Q — Q, while the annihilator Dao (@, p) = {((&, P), (@, W)) | N(@)g = O,

of At.q can be defined by, for eadte T;Q, )

w=g, a+p=NT(g)1}.

At.q(d ={az € T, T'Q| (a7, W) =0 Representation (I): as shown in Eq.3), for Representa-

for allw; € At.o(2)}. tion (1) for the induced Dirac structure, we utilized the La-
_ _ grange multipliers, which represetunstraint forcesn con-
Let Q be the canonical symplectic structureBrQ andQ’:  strained mechanical systems. Here, we develop another rep-

TT*Q — T*T*Q be the associated bundle map. Then, a Diracresentation oD,, on T*Q without using the Lagrange mul-
structureD,, onT*Q induced fromAq can be defined by, for  tipliers.

eachze T,Q, Let us choose an nx(n-m) matrix B(q)=
. [em1(Q),...,en(q)], whose column vectors span the basis of
Dag(d ={(Wza7) e T, T'QX T, T'Q | A(q). Then, it follows that the distribution(q) c R" = T,Q
W, € Atq(2) and a,— Q'(2)-w; € AS. @) can be also represented by

A(@) ={qeR"|g=B(g)u},

whereu = (U™2,...,u") e R"™™. Note that the orthogonality

Let us choose local coordinatgson Q so thatQ is locally condition betweem(q) andB(q) holds:

represented by an open 3&tc R". The constraint sehg
defines a subspace R, which we denote bA(g) cR"at BT (g)N"(q) = 0.



The above condition naturally comes from the fact thats
the annihilator of the distribution; namely, in other words,
the basisen;1(q),...,en(q) is orthogonal to the dual basis
w*(q), ...,w™(q) at eachy € Q. Therefore, one can read that

A(Q) ={pe R |B"(0) =0}

Thus, the induced Dirac structuBa,, c TT'*Q& T*T*Q can
be represented without using the Lagrange multipliers as

D (& P) = {((@ ). (o W) N3 =0,
w=4, BT (e)(a +p) =0}.

Principle of Virtual Work

(Q.v) =0
(B"Q,v") =0 \ (Q°,Nv) =0
* N N
for all v / for all Q°
Kinematical Constraints Dynamical Constraints
Nv = o,, NG B"Q =0,
(v = BvY) @Q=N"Q)
NTBET —o

Duality principle.

We briefly review an Ehresmann connection associated with
nonholonomic mechanical systems; as to the details, for ex-

ample, refer tovoshimura and Marsdef20061).

whereA?

o denotes the annihilator @y, andQ°=(Qy, ..., Qm)

Assume that there is a bundle structure with a projectionandQ*=(Qm.1, ..., Qn) are the generalized force vectors dual

m:Q— R for @; that is, there exists another manifaki
called the base. We call the kernelTjr at any pointg € Q
thevertical spacalenoted byV,. An Ehresmann connection
Ais a vertical vector-valued one-form @ which satisfies

1L Aq:TqQ — Vqis alinear map at each poipte @,
2. Ais a projection A(vg) = Vg, for all vq € V.

Thus, we can split the tangent spacegaduch thatT,Q =
Hy® Vg4, whereH, = KerA is the horizontal space gt
Suppose there exist nonholonomic constraitigsc TQ,
which are given bym(< n) algebraic equations far gener-
alized velocity vectow == (¢%....q") € A(Q) € T(Q as in
Eq. 1). Let us choose an Ehresmann connectiasuch that

to v° andv* respectively. On the other hand, the input-output
relation betweer®)° and Q" is reverse to andv*; namely,

Q° is the input andl* the output. In the above, thwthogo-
nality conditionholds:

BT(q)N'(q) =0.

The matricesN(g) and B(qg) are calledconnection ma-
trices (seeYoshimura 1995. This orthogonality condition
denotegprinciple of virtual work which is given by

(Q,v) =0, forallve A(g) andQ € A°(q),

where(,) denotes a duality pairing.
The dual set of constraints given by Eg4) énd 6) in-

Hqy = Aq(q) or we assume that the connection is chosen suchyicatesstructural relations namely, it represents how phys-

that the constraints are written Asvgy = 0, where the con-
straint distributionAq is spanned by a set ofiindependent
one-forms, which is given, in local coordinatgs= (r®, %)
for @, by

w? =ds? — J3(r, 9)dr.

In a matrix representation,

N@ V=] In | -T(@ | [ﬁ] - on, @

where v is locally split into dependentvelocity v=¢° =
@ ....gM and v'=g*=(g™3,....q") independentvelocity

and J is a submatrix associated with the constraints. Ge-
ometrically speaking, this splitting corresponds to a choice

of Ehresmann connectionfor the given constraints (see
Yoshimura and Marsde2006H).

ical elements are interconnected. Thus, we sometimes call
the structural relation aimterconnection among the physi-

cal elements. In circuit theory, it is known that Eg4) &nd

(5) correspond to KCL and KVL and also that the virtual
work principle is known a3ellegen’s theorenturthermore,
there exists a relation callegtbality principle as in Fig.1,
which is known ag’lanck-Okada-Arsove principie circuit
theory (seefoshimura 1995.

Here, we show how the notion of Dirac structures can be
fit into the formulation of implicit Lagrangian systems (see
Yoshimura and Marsder2006ab, 2008. Let L be a La-
grangian onr @, which is given by

~ 1 ~O ~O (o]
Corresponding to the annihilator, one has the dynami-L(an)= (@ Mg y=u(@),

cal relations associated to the generalized force ve@ter
(Q1,-.,Qn) € A°(g) c TgQ dual tov as

B"@ Q=] J@T | Inm | (5)

Q0
Q* :| - On—m,

where we assume thhatis only associated tg°; M is a mass
matrix whose components are functiongiofandU denotes
a potential energy function @f. This implies thal is pos-
sibly degenerate



ThelLagrange-d’Alembert principle is given by

I

wheresq satisfies the constraint

N(q) 5q = Om.
So, one can obtain the dual dynamical relation
B' (q)Q = On-m,
where
doL oL
O daq aa "
and it directly induces

H

Q*
where

dJL 6L

daoL oL

a aq 6q 6q>dt+f<F oqQydt =0,

MV + f(0°,V° U

T

Q (6)

ou
o

MV + f(q°,v°) —
0

From the viewpoint of numerical analysis for mechani-
cal systems, there exist two kinds of dynamical problems;
namely, thforward dynamicgndinverse dynamics

Recall thatVv = WmxW"™ = R™xR""Mis the model space
for Q. The forward dynamics analysis is the case in which

given a smooth input vector
u(t) == 7(t) e (W) = R™")"

as avector functionof time t, numerically integrate Eq9j
in terms oft to obtain

x(t) = (@° (0.0 (®). v’ ),V (1), Q(1). Q"(1)

as theoutput where xe WxW xW*. On the other hand,
the inverse dynamics analysis is the case in which given a
smooth input vector

ui) :=g't)ewmM=R"M
as avector functiorof timet, then compute

x(t) = (4" (1), V(1. v'(1). Q° (1), Q"(1). 7(1))

as the output, in which cases W™ x W x W* x (W"M)*,
In this paper, we explore the case of the inverse dynam-
ics analysis by the sparse tableau approach, where the state

Notice thatr indicates the external forces. Of course, equa-yector is given byx = (¢°,v°,v",Q°, Q7). To do this, let

tions of motion can be written as
+ F) = On_m.

Furthermore, one has tlsecond-order conditiofseeMars-
den and Ratipy1999:

9 -V =om, (7)
q* - V* = On_m. (8)

From Eqgs. 4), (5), (6), (7) and @), we can obtain the follow-
ing local differential-algebraic equations

G(x(t), X(t); u(t)) =0,

wherex=(q,v,Q) = (q°,g*,V°,V*,Q°, Q") e Wx W x W* de-
notes the state variables and 7 € (W"™)* = (R™™M)* the
input variables. In the above, we locally e = Wx W and
T*Q=WxW*, and hencd Qe T*'Q = W x W x W*, where
Q=W=W"xW"M=RMxR"™Mis ann-dimensional vector
space which is a model space f@r Thus, the mathemati-
cal model of the Lagrangian system is given by the implicit
DAEs:

(9)

G, qo —\V°
G, g -v*
Gs AEAA

G= 10
Gy | | ITQ+Q (10)
Gs Q*—Mv - f(q°,v)-0U/oq°
GG Q*—T

us first discretize Eq.9) at timet = t,. By using theBack-
ward Differentiation Formula (BDFileveloped by Gear (see,
for instance Brennen et a).1995, the time-derivative term
Xn = X(tn) associated to the state vect@r= x(t,) may be ap-
proximately discretized by the backwands; = x(t,_i) as

K
1
== 2

whereh = t, —t,_; denotes a time stef,is a backward order
and a; indicates the cd@icient associated to theth back-
ward order. Substituting Eqly) into Eq. ©), we obtain the
discretized nonlinear algebraic equations as follows:

G(Xn, X(Xn); U(tn)) = 0.

Recall the algorithm of th8parse Tableau Approaéhgiven
in Fig. 2 (seeHachtel et al. 1971, Brayton et al. 1972,
where we linearize Eq1@) at each time step=t, as

= -G(x),

and where] = [0G; /6x,]|t " is theJacobian matrixandax{
denotes the-th iteratedcorrector vectorat ty. Then, it fol-
lows

(1<k<6), (11)

(12)

IOE) axy (13)

X0 = X0+ 2D

- OG0, (4



START

G(z(t,) x(tn) 5 u(tn))

F Differential-Algebraic Equation
=0

Initial Value

n=0, t,=0, z(t) =z z(t) =1

»
v
BDF Method

. 1<
Ty ==—7" Q; Ty k=
hiZ:(l (1=k=6)

Gz Ty (@a); ul(tn)

~Newton Method

F Discretized Algebraic Equation
=0

w,i?l = -_21’71' Tpi1i (r=0,1
=

Ini’siz}l Value(Predictor)
t
=k=6)

0G;
Jacobian Matrix J = oz,
|t
[
Matrix JAz (J) =- G(il) 5:))
Inversion A:IZ(T) _ J'IG(iE (r)

2T 20 1 22l

YES

@ Convergence Test

ot

END

Sparse tableau method.

q° v° vt Q° QF T
(70;(70) Im 71771
_Inf'm,
78(;7v*) I -7
T = s " T
T 0¢° J [n—m

of 0 1) of
T 9q° (QTOM - ()w) I

L [nfm_]nfm_

Jacobian matrix.

an dficient symbolic generation for computations of the
sparse Jacobian matrix inversion for Newton'’s iterations. To
do this, let us consider @anput-output relation among state
variables for every relation inl(Q). Now, we can uniquely
allocate the input-output relation to the kinematical and dy-
namical relations in Eqs4) and 6) as follows:

V' =9V =0n (output v, input :v*),
JTQ° + Q" =0n_m (input : Q°, output : Q).
Similarly, for the second-order conditions betwegns:
(v,v*) andg = (¢°,g"), one has
g -V’ =0n (output:g°, input: Vv°),
g -v'=o0,m (input:q", output:v").
Furthermore, as to the equations of motion, it follows
Q° -Mv - f(q°,V)

—-dpU =0n (output:Q°, input: g°,v°),
Q —7=0nm (input: Q*, output :7).

The input-output relations in the mentioned above can be de-
termined by physicatausality. Needless to say that the time
derivative term(t,) are expressed in terms of the backwards
Xn-i(tn), i =0,...,6 by using the BDF as in equatiohl). Cor-

In the Newton method, it is necessary to take initial values'®SPonding to the Jacobian matdiin (13), define thecausal

near from the solution, and thek-th prediction formula §'

is given by

k
XrFm)r = Xgo) = —Z)’i Xn-i»
i=1

wherey; is thei-th codiicient.

Jacobian matrix J by assigning-1 to the input and-1 to the
output as to thg-th variable in the-th relation associated to
Jij as

A -1 : thej-thvariable is input,
Jij=4 +1 the j-th variable is output,
0 : otherwise

In the inverse dynamics analysis, the state vector is giverThus, the causal Jacobian matiiss given in Fig.4.

by x=(g°,v°,v*,Q°,Q*,7) and it follows from Eq. 10) that
the Jacobian matrix is given as in FR.wherel, stands for

then-th degree unit matrix.

r

The Jacobian matrix'l(xf1

)) obtained in Eq. 13) apparently

In the abovel, indicates then-th unit matrix. Note that there
exists an element with1 in each row, which plays a role
of the pivot in the Gaussian elimination. FurthE]q,n_m is
themx (n—m) matrix, in which+1 are allocated to non-zero
components of thenx (n—m) matrix 7.

Let us illustrate the input-output relations as to the Ja-

has the characteristic of random sparseness. So, we devel@pbian matrix J = [J;;(X)] = [ﬁGi/axj]lt:tn by introducing



q° v° v* Q° Q" T

I +[m, _I’m,
+IH,* m
~ 7Im +Im*Im,nfm
J=] = N
7In7m,m 7lnfm,m+Infm
Im 7Im +[m
L _Inf'm, +['n,7'm,_

Causal Jacobian matrix.

bipartite graphs Recall that the-th row of the Jacobian ma-
trix J =[J;(X)] = [6Gi/6xj]|t:tn corresponds to theth vec-
tor function Gj(x, x;u) and thej-th column corresponds to
j-th vectorx; respectively, wheré j = 1,..., N(= 3n). Here,
Gi(x, x;u) = 0 are theN-th order DAEs and = (Xq, ..., Xg) =
(°,v, v, Q°, Q% 1) is the N-vector.

Given the causal Jacobian matrixassociated ta, let
V; ={G1,G,,...,Gy} be the row-set of J and let V. =
[AXq,...,AXg} be thecolumn-setof J . Here, we assigw,;
andV, to vertex setV =V, x V.

Now, there are nonzero elemergdl] in thei-th row of the
causal Jacobian matrix and suppose that they are ik-the
andl-th columns. For instance, as to the first equaGen- 0,
one has the kinematical relation betweer= g° andx, = V°

asx; — X = 0. By the BDF discretization, the corresponding

linearized equation is given as

1
—F](QQAX]_) — A% =0.

In order to illustrate input-output relations among the state

variables bygraphs let us definarc-setby
A={(j,i)1 g #0,ie Ve, je Vi),
where the arcs represent somgdations between vertices

in V; (state variables) as to every vertex (equation)/jn
Furthermore, the direction of an arc indicateusality or

Row Column
Ve Ve °
Gl Ax, = Aq
o
G, AT, = AV V. V.
a
G, Az, = AV* G, 1 Az,
A . R o output
G4 Ty = Q 2 AL,
G:, AT, = AQ* input
Gy Axg = AT

Directed bipartite graph.

Perfect matching.

A matching M c A of a bipartite grapB = (V;, V., A, s, t) is
defined by aset of arcs without common vertic&specially,

M is called aperfect matching if it is a matching which
matches all vertices of the graph, namely, every vertex of the
graph is incident to exactly one edge of the matchsgiyt) =

V; andt(M) = V..

In Fig. 6, the arcs that are drawn by the broken lines consist
of the perfect matching. If a perfect matching exist8jihe
corresponding Jacobian matdis asquareandnonsingular
matrix sincgV;| = |V¢|. Here [V| means the size &f, namely,
the number of elements in the set of vertites

Let us see thav*| = V7| is equivalent with the fact that
the Jacobian matrix idiagonalizable First, let us show the

an input-output relation among state variables associated tgy||owing relation:
the column vertices. Led € A be an arc. Let us introduce a
maps: A — V, which is given by, for an ara € A, s(a) de-
notes thenitial vertexof a. Similarly, define amap: A -V,
which is given by, for an ara € A, t(a) indicates thaermi-
nal vertexof a. So, we can define the setwdrtices incident
to a by {s(a),t(a)}. Sometimesgs(a) is called thesource of

a andt(a) the target of a. Hence, we can definedirected
bipartite graph by

Perfect matchings exist iB = J is diagonalizable.

This is clear because a perfect matching can be detected
by the elementary row and column operations matrix;
namely, (1) interchanging two rows or columns; (2) adding
a multiple of one row or column to another; (3) multiply-
ing any row or column by a nonzero element, although
there might be several perfect matchings for a given bipar-

tite graph. Next, let us show the following relation:

B=(V,,V,, t), - . : .
(Vr.Ve. A s ) J is diagonalizable> Perfect matchings exist iB.

by which we can illustrate thimput-output relations associ-
ated to the Jacobian matrixs shown in Fig5.

That the Jacobian matriXis diagonalizable means that one
can properly select a pivot in each row or column from



nonzero elements of the matrix. In other words, the rankf Iy I Av* ] _Ggl)_
of J is equal toN. Recall that acoveris defined as a pair AW 4 Av® o
(Vr, Vo) of V; c V, andV, c V such that there exist no arcs ! _;" A<2” Ao wa
betweenV,\V, andV:\V,. For the case in which Rardk J; i) 4 . E1
N =|V|/2, the number of the minimum cover for the vertex Ag A&(’)l) IZ’; AQ G41
setV = (V,, V) of the bipartite graptB is to beN. It follows A A Iy, AQ” Gy
from the Kbnig-Egenary theorem that the number of arcs in | In—m —In—m || AT | _Ggl) i

a maximum matching is equal to the number of vertices in a

minimum vertex cover; namely, Diagonalized Jacobian matrix.

max|M|| M : matching [ 7 Av* ] _G?')_
= min{|V;| + Vel | (i, Ve) : cove. I, A Av® G
Ay ae | fa
So, the size of the maximum matching is to Ne=|V|/2 I A | | a®
and therefore we have shown that the matching is a perfect In_m AQ* el
matching. As shown in Fid, there exists a perfect matching I ~Tnem || A ] _G§32> |
M ={a; = (X1,G1), a2 = (X2,G3), a3 = (X3,G>), Reduced Jacobian matrix.

&y = (X4,Gs), a5 = (Xs5,G4), 86 = (X6,Gs)} C A.

For each ar@e M, one can choose the target t(a) as the we can obtain the following corrector vector consequently:
pivot associated to thk-th equation, wheré& = s(a) is the 5. _ @
source ofa. Thus, the proof has been done. 6

« 3
Therefore, we can conclude the following relation: AQ" = ‘G(5 ),
AQ° =-GY,

Perfect matchings exist iB & J is diagonalizable. A(zz)
AQ° = -—5;,

In this way, thesolvability of the linearized Eq.13) is clar- G2

ified in the context of the perfect matching by using the bi- AV = _(G(z) _ A(zl) . G(Z))
partite graph associated to the causal Jacobian matrix. Recall (1)2 3
that nonzero elements df correspond to arcs of the bipar- AV’ =Gy

tite graph and hence the number of nonzero elements and the . . . .
Thus, we can develop the inversion of the Jacobian matrix,

number of the arcs are the same. In our study, in each row, RPN ) b licitlv d b
there is only one output variable, which implies tita arcs ~ -€:A%" = —J7(xa)G(xq") can be explicitly done by sym-

associated with the output variables never share the vertice?oncI man|pulat|or|1( with tEeI_causaI |nforma]:t|on df As a
of other output arcén the bipartite graph. Therefore, the set result, we can make symbolic generation of Bg(
of edges of output variables has perfect matching.

Let us demonstrate the validly of our symbolic generation
scheme by an example of ttf&tanford manipulatowith 6
degrees of freedom as shown in F8).One can set up 96,
150, 210, 390, 738 system equations of DAE models for the
Next, we show how the sparse matrix inversion of the Jacostanford manipulator, where the numbers of systems equa-
bian matrix can be done by symbolic manipulation. By the tions correspond to those of the unknown variables according
information from the causal Jacobian matrix, selecting theto the elimination of redundant variables.
pivot, the Jacobian matrix can lagagonalizedas shown in We examine to compare the CPU time required in the rou-
Fig. 7, whereG® is thek-th tableau error vectarAX rep- tine of the Jacobian matrix inversion in each time step for the
resents a matrix in the Jacobian matrix for thth step of  three cases: (1) Ordinary Gaussian elimination method (with-
elementary operations. Next, after forward Gaussian eliminaout any sparse matrix algorithm), (2) Sparse Gaussian elimi-
tion for the Jacobian matrix, we can easily obtain the reducechation method of the inner product algorithm (as to the open-
Jacobian matrix as in Fi@. Note that we can do this by sym- source subroutine, sédurata et al. 1985, (3) our method.
bolic manipulation. Furthermore, after backward elimination The comparison of the required CPU time is illustrated in
as to the reduced Jacobian matrix by symbolic manipulationfig. 10. As a result, our method of sparse matrix inversions
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has a great advantage in the CPU tinffecency in compari-
son with other approaches.

We have shown symbolic generation of sparse matrix inver

sion for large-scale mechanical systems. We have set up Im-
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we have shown the input-output relations as to the Jacobian
matrix associated with linearized equations. Then, we have
shown the solvability of the linearized equations by using

the bipartite graph. Furthermore, we have proposed symbolic
generation of the random sparse matrix inversion for the Ja-
cobian matrix. Finally, we have demonstrated the validity

of our approach by numerical analysis with an example of

the Stanford manipulator comparing with the inner-product

sparse matrix Gaussian elimination algorithm as well as the
standard Gaussian elimination algorithm.



