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Abstract. In recent years, redundancy in parallel manipulators has been studied broadly due to its capabil-
ity of overcoming some of the drawbacks of parallel manipulators including small workspaces and singular
configurations. Internal redundancy, first introduced for serial manipulators, refers to the concept of adding
movable masses to some links so as to allow to control the location of the centre of mass and other dynamic
properties of some links. This concept has also been referred to as variable geometry. This paper investigates
the effects of internal redundancy on the dynamic properties of a planar parallel manipulator while performing
a family of trajectories. More specifically, the 3-RRR planar manipulator, where a movable mass has been
added to the distal link, is allowed to trace trajectories with rounded corners and different radii. The proposed
method uses the manipulator’s dynamic model to actively optimise the location of the redundant masses at
every point along the trajectory to improve the dynamic performance of the manipulator. Numerical examples
are shown to support the idea.

1 Introduction

Redundancy in parallel manipulators is normally divided into
kinematic redundancy, actuation redundancy and branch re-
dundancy (Lee and Kim, 1993; Zanganeh and Angeles, 1994;
Merlet, 1996; Ruggiu and Carretero, 2009; Boudreau and
Nokleby, 2012). Actuation redundancy consists of replac-
ing passive joints with active ones (Zanganeh and Angeles,
1994; Cheng et al., 2003, 2011; Nokleby et al., 2005) where
the number of degrees-of-freedom or mobility of the manip-
ulator does not change. Although actuation redundancy can
help either eliminate or reduce singular configurations, is-
sues such as force interference make the manipulators more
complex to analyze, design and control (Firmani and Pod-
horodeski, 2004; Garg et al., 2009). The second type of re-
dundancy is called branch redundancy where an extra ac-
tuated branch is added to the manipulator (Firmani et al.,
2007). Branch redundancy can improve the force capabili-
ties of the manipulator and reduce the number of singular
configurations. The third type of redundancy is called kine-
matic redundancy where active joints and links are added

to one or more branches of the manipulator (Merlet, 1996;
Wang and Gosselin, 2004). This type of redundancy can en-
hance the dexterity of the manipulator as well as enlarge
the workspace. Additionally, kinematic redundancy allows to
plan trajectories far from certain singular configurations as
the inverse displacement problem has an infinite number of
solutions (thus often allowing for the manipulator to remain
as far as possible from singular configurations) (Ebrahimi
et al., 2008).

Redundant parallel manipulators have been widely used to
improve the trajectories of parallel robots. For instance,Cha
et al. (2007) showed that kinematically redundant manipu-
lators can effectively avoid singular configurations thus in-
creasing the singularity-free workspace of the parallel ma-
nipulator.

Ruggiu and Carretero(2010) applied an optimisation pro-
cedure on a kinematically redundant parallel manipulator to
minimise the acceleration of the actuators while following
certain trajectories. The method was applied on a kinemati-
cally redundant parallel manipulator following square paths
with rounded corners. They showed that the accelerations of
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Fig. 1: Serial manipulator with internal redundancy in link 2. The
location of mass ms can be changed without altering the position
of the end effector (point p).

degrees of freedom (DOF) is added to the serial manipula-
tor. However, in contrast with the redundant actuators and/or
links described earlier, the new DOF is used to change the
internal geometry of a link resulting in the change of the lo-
cation of the link’s centre of mass and its inertial mass dis-
tribution parameters (i.e., its mass moment of inertia). Since
the changes are made within the internal members of the link,
the redundant DOF does not have a direct effect on the end
effector pose (i.e., position and orientation). More specifi-
cally, in reference to Figure 1, the position of the mass ms in
link 2 can be changed without altering the pose of the end ef-
fector. This allows for different internal motions for a given
trajectory of the end effector thus adding control to some dy-
namic parameters of the manipulator to attempt to improve
its dynamic performance for specific tasks.

In this paper, the concept of internal redundancy is applied
to a planar parallel manipulator. First, a 3-RRR manipulator
with internal redundancy in all three branches is described
and its kinematic and dynamic equations (Sections 2 and 3)
are derived. Then, an optimisation problem is formulated
where the displacement of each of the portable masses at ev-
ery point throughout a trajectory is sought to minimise the
torques at the base actuators (Section 4). The architectural
parameters and trajectory planning algorithm are explained
through a numerical example and are presented in Section 5
and then discussed in more detail in Section 6. Finally, Sec-
tion 7 presents the conclusions and briefly discusses potential
future work.

2 The 3-RRR Manipulator with Internal Redundancy

A 3-DOF planar parallel manipulator shown in Figure 2a
is chosen to investigate the effect of internal redundancy
in parallel manipulators. The manipulator is a symmetrical
3-RRR manipulator with base (G1G2G3) and end effector
(A1A2A3) as equilateral triangles. The three revolute actu-
ators to move the manipulator’s end effector are located at

Gi, the base joint of each branch. The length of the proxi-
mal links, i.e., linksGiBi (i= 1,2,3), has been denoted by l1
while the length of the distal link, i.e., BiAi (i= 1,2,3) has
been denoted by l2.

In order to study the concept of internal redundancy, a por-
tion of the distal link (the portion from Bi to A′i) protrudes
on the opposite side of the revolute joint at Bi and creates
a linear track from Ai to A′i where the redundant mass ms

can slide on (see Figure 2b). The position of the mass rela-
tive to the elbow joint Bi is given by si and is measured in
the direction of Ai. Since the masses ms are mounted on
tracks or prismatic joints, their position along AiA′i can be
actively controlled. More specifically, the distance si from
elbow joint Bi to the centre of mass ms can be actively con-
trolled thus changing the overall dynamic properties and ef-
fects of links A′iAi.

To help complete the dynamic model, each element has
been given a mass while symmetry has been assumed to sim-
plify the analysis. Moreover, the links have been modelled
as slender rods. The proximal links have all been assigned a
mass m1 with their centre of mass located halfway between
Gi and Bi while all three distal links have been assigned a
mass m2 with their centre of mass located halfway between
A′i and Ai. The moving platform has been assigned a mass
me with its barycentre located at the centroid of the moving
platform.

3 Dynamic Model of the Redundant 3-RRR Manipula-
tor

The inverse dynamic problem of a 3-RRR planar parallel ma-
nipulator with 3-DOF of internal redundancy is developed in
this section. The dynamic model is obtained using the Prin-
ciple of Virtual Work as well as d’Alembert’s principle. The
derivation is similar to that presented in Wu et al. (2011). For
this purpose, a complete kinematic model of the manipulator
needs to be developed to derive the velocity and acceleration
equations. In addition to that, inertial forces and moments of
all the links need to be calculated.

Note that in what follows, the equations are derived for
each of the three legs. Therefore, index i in the equations
that follow is assumed to respectively take the values 1, 2
and 3 when deriving the equations for legs 1, 2 and 3.

3.1 Kinematics

The base coordinate frame O-xy (denoted by {O}) shown
in Figure 2 is fixed on point G1. Also, a moving coordinate
frame P -xNyN (denoted by {N}) is attached to the barycen-
tre of the moving platform. The position vector of Bi in the
base coordinate frame is defined as follows:

rBi
= rGi

+ l1

[
cosθi
sinθi

]
(1)

Figure 1. Serial manipulator with internal redundancy in link 2.
The location of massms can be changed without altering the posi-
tion of the end effector (pointp).

the actuated joints on the kinematically redundant manipu-
lator are significantly less than the ones needed for a non-
redundant manipulator.

Recently, a new type of redundancy called internal redun-
dancy has been the focus of some attention in the context of
serial manipulators (Vukobratovíc et al., 2000). Similar to the
types of redundancy described earlier, a new set of degrees
of freedom (DOF) is added to the serial manipulator. How-
ever, in contrast with the redundant actuators and/or links de-
scribed earlier, the new DOF is used to change the internal
geometry of a link resulting in the change of the location of
the link’s centre of mass and its inertial mass distribution pa-
rameters (i.e., its mass moment of inertia). Since the changes
are made within the internal members of the link, the redun-
dant DOF does not have a direct effect on the end effector
pose (i.e., position and orientation). More specifically, in ref-
erence to Fig.1, the position of the massms in link 2 can be
changed without altering the pose of the end effector. This
allows for different internal motions for a given trajectory of
the end effector thus adding control to some dynamic param-
eters of the manipulator to attempt to improve its dynamic
performance for specific tasks.

In this paper, the concept of internal redundancy is ap-
plied to a planar parallel manipulator. First, a 3-RRR ma-
nipulator with internal redundancy in all three branches is
described and its kinematic and dynamic equations (Sects.2
and3) are derived. Then, an optimisation problem is formu-
lated where the displacement of each of the portable masses
at every point throughout a trajectory is sought to minimise
the torques at the base actuators (Sect.4). The architectural
parameters and trajectory planning algorithm are explained
through a numerical example and are presented in Sect.5
and then discussed in more detail in Sect.6. Finally, Sect.7
presents the conclusions and briefly discusses potential fu-
ture work.

2 The 3-RRR manipulator with internal redundancy

A 3-DOF planar parallel manipulator shown in Fig.2a is cho-
sen to investigate the effect of internal redundancy in parallel
manipulators. The manipulator is a symmetrical 3-RRR ma-
nipulator with base (G1G2G3) and end effector (A1A2A3) as
equilateral triangles. The three revolute actuators to move the
manipulator’s end effector are located atGi , the base joint of
each branch. The length of the proximal links, i.e., linksGi Bi

(i = 1,2,3), has been denoted byl1 while the length of the
distal link, i.e.,BiAi (i = 1,2,3) has been denoted byl2.

In order to study the concept of internal redundancy, a por-
tion of the distal link (the portion fromBi to A′i ) protrudes on
the opposite side of the revolute joint atBi and creates a lin-
ear track fromAi to A′i where the redundant massms can slide
on (see Fig.2b). The position of the mass relative to the el-
bow joint Bi is given bysi and is measured in the direction of
Ai . Since the massesms are mounted on tracks or prismatic
joints, their position alongAiA′i can be actively controlled.
More specifically, the distancesi from elbow jointBi to the
centre of massms can be actively controlled thus changing
the overall dynamic properties and effects of linksA′i Ai .

To help complete the dynamic model, each element has
been given a mass while symmetry has been assumed to sim-
plify the analysis. Moreover, the links have been modelled
as slender rods. The proximal links have all been assigned a
massm1 with their centre of mass located halfway between
Gi and Bi while all three distal links have been assigned a
massm2 with their centre of mass located halfway between
A′i and Ai . The moving platform has been assigned a mass
me with its barycentre located at the centroid of the moving
platform.

3 Dynamic model of the redundant 3-RRR
manipulator

The inverse dynamic problem of a 3-RRR planar parallel ma-
nipulator with 3-DOF of internal redundancy is developed in
this section. The dynamic model is obtained using the Prin-
ciple of Virtual Work as well as d’Alembert’s principle. The
derivation is similar to that presented inWu et al.(2011). For
this purpose, a complete kinematic model of the manipulator
needs to be developed to derive the velocity and acceleration
equations. In addition to that, inertial forces and moments of
all the links need to be calculated.

Note that in what follows, the equations are derived for
each of the three legs. Therefore, indexi in the equations that
follow is assumed to respectively take the values 1, 2 and 3
when deriving the equations for legs 1, 2 and 3.

3.1 Kinematics

The base coordinate frameO-xy (denoted by{O}) shown in
Fig. 2 is fixed on pointG1. Also, a moving coordinate frame
P-xNyN (denoted by{N}) is attached to the barycentre of the
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Fig. 2: 3-RRR planar manipulator: a) basic kinematic parameters
and b) location of the centre of mass of each component (li are fixed
values while si are variable).

where rBi
describes the position vector of point Bi, rGi

is
the position vector of point Gi and θi is the angle link GiBi
makes with the x axis (i.e., the actuation variable for the mo-
tor located at Gi). The position vector of Ai is expressed as
follows:

rAi
= rBi

+ l2

[
cosβi
sinβi

]
= rp+RrNAi

(2)

where rAi is the position vector of point Ai, βi describes the
angle of link BiAi with respect to the horizontal x direction,
rp is the position vector of point p and rNAi

is the position
vector of Ai expressed in frame N . The rotation matrix R
describing frame {N} relative to frame {O} is defined as
follows:

R =

[
cosα −sinα
sinα cosα

]
. (3)

The constraint equation of motion is written as follows:

‖rAi
−rBi

‖= l2 (4)

where l2 is the portion of the distal link from Bi to Ai.

3.2 Inverse Displacement Problem

The inverse displacement problem of the 3-RRR planar ma-
nipulator is written as follows:

θi = γi±ψi (5)

where γi is defined as follows:

γi = atan2(xAi
,yAi

) (6)

where atan2 is the quadrant corrected inverse tangent func-
tion. while xAi

and yAi
are the Cartesian components of the

position of Ai relative to Gi and are written as follows:

xAi
= x− l3cosφi−xGi

(7)
yAi

= y− l3sinφi−yGi
(8)

where x and y are Cartesian positions of point P , l3 is the
radius of the moving platform (i.e., the distance between P
and Ai) and φi is given by

φ1 =α+
π

6
φ2 =α+

5π

6
φ3 =α− π

2
. (9)

The equation for ψi is written as follows:

ψi = cos−1

(
l21− l22 +x2

Ai
+y2

Ai

2l1(x2
Ai

+y2
Ai

)

)
. (10)

3.3 Velocity and Acceleration

Taking the time derivative of equation (1) leads to

ṙBi
= l1θ̇i

[
−sinθi
cosθi

]
(11)

where θ̇i is the angular velocity of actuator i. The linear
velocity of point Ai is written as follows:

ṙAi
= vP + α̇NRrNAi

= ṙBi
+ l2β̇i

[
−sinβi
cosβi

]
(12)

where vP is the vector describing the linear velocity of point
P . Matrix N is defined as follows:

N =

[
0 −1
1 0

]
. (13)

The angular velocity of link BiAi is derived from equa-
tion (12) and is written as follows:

β̇i =

[
−sinβi
l2

cosβi
l2

]
(ṙAi− ṙBi) (14)

The linear acceleration of points Bi and Ai is obtained as
the time derivative of equations (11) and (12):

aBi = l1θ̈i

[
−sinθi
cosθi

]
− l1θ̇2i

[
cosθi
sinθi

]
(15)

aAi
= aP + α̈NRrNAi

− α̇2RrNAi
(16)

Figure 2. 3-RRR planar manipulator:(a) basic kinematic parame-
ters and(b) location of the centre of mass of each component (l i are
fixed values whilesi are variable).

moving platform. The position vector ofBi in the base coor-
dinate frame is defined as follows:

r Bi = rGi + l1

[
cosθi

sinθi

]
(1)

wherer Bi describes the position vector of pointBi , rGi is the
position vector of pointGi andθi is the angle linkGi Bi makes
with the x-axis (i.e., the actuation variable for the motor lo-
cated atGi). The position vector ofAi is expressed as follows:

r Ai = r Bi + l2

[
cosβi

sinβi

]
= r p+Rr N

Ai
(2)

wherer Ai is the position vector of pointAi , βi describes the
angle of linkBiAi with respect to the horizontalx direction,
r p is the position vector of pointp and r N

Ai
is the position

vector ofAi expressed in frameN. The rotation matrixR de-
scribing frame{N} relative to frame{O} is defined as follows:

R =
[
cosα −sinα
sinα cosα

]
. (3)

The constraint equation of motion is written as follows:

‖r Ai − r Bi ‖ = l2 (4)

wherel2 is the portion of the distal link fromBi to Ai .

3.2 Inverse displacement problem

The inverse displacement problem of the 3-RRR planar ma-
nipulator is written as follows:

θi = γi ±ψi (5)

whereγi is defined as follows:

γi = atan2
(
xAi ,yAi

)
(6)

where atan2 is the quadrant corrected inverse tangent func-
tion, while xAi andyAi are the Cartesian components of the
position ofAi relative toGi and are written as follows:

xAi = x− l3 cosφi − xGi (7)

yAi = y− l3 sinφi − yGi (8)

wherex and y are Cartesian positions of pointP, l3 is the
radius of the moving platform (i.e., the distance betweenP
andAi) andφi is given by

φ1 = α+
π

6
φ2 = α+

5π
6

φ3 = α−
π

2
. (9)

The equation forψi is written as follows:

ψi = cos−1

 l21− l22+ x2
Ai
+ y2

Ai

2l1(x2
Ai
+ y2

Ai
)

 . (10)

3.3 Velocity and acceleration

Taking the time derivative of Eq. (1) leads to

ṙ Bi = l1θ̇i

[
−sinθi

cosθi

]
(11)

whereθ̇i is the angular velocity of actuatori. The linear ve-
locity of point Ai is written as follows:

ṙ Ai = vP+ α̇NRr N
Ai
= ṙ Bi + l2β̇i

[
−sinβi

cosβi

]
(12)

wherevP is the vector describing the linear velocity of point
P. Matrix N is defined as follows:

N =
[
0 −1
1 0

]
. (13)

The angular velocity of linkBiAi is derived from Eq. (12)
and is written as follows:

β̇i =

[
−sinβi

l2

cosβi

l2

] (
ṙ Ai − ṙ Bi

)
(14)

The linear acceleration of pointsBi andAi is obtained as
the time derivative of Eqs. (11) and (12):

aBi = l1θ̈i

[
−sinθi

cosθi

]
− l1θ̇

2
i

[
cosθi

sinθi

]
(15)

aAi = aP+ α̈NRr N
Ai
− α̇2Rr N

Ai
(16)
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where aP is the linear acceleration of pointP. The time
derivative of Eq. (14) leads to

β̈i =

[
−sinβi

l2

cosβi

l2

] (
aAi −aBi

)
−β̇

[
cosβi

l2

sinβi

l2

] (
ṙ Ai − ṙ Bi

)
. (17)

In order to generate the Jacobian matrix, the time deriva-
tive of Eq. (4) yields

J =


−a1
c1

−b1
c1

−d1
c1

−a2
c2

−b2
c2

−d2
c2

−a3
c3

−b3
c3

−d3
c3

 (18)

where the elements of this Jacobian matrix are as follows:

ai = −h1(x− xGi )+h3 cosθi +h1 cosφi (19)

bi = −h1(y− yGi )+h1 sinθi +h2 sinφi (20)

ci = h3[(y− yGi )cosθi − (x− xGi )sinθi ] (21)

+sin(θi − φi)

di = h2[(y− yGi )cosφi − (x− xGi )sinφi ] (22)

−sin(θi − φi)

wherexGi andyGi are the Cartesian components of the posi-
tion of pointGi (Gosselin and Angeles, 1988) while h1 =

1
l1l3

,

h2 =
1
l1

andh3 =
1
l3

.

3.4 Link Jacobian matrices

Since the Principle of Virtual Work is applied to develop the
dynamic model of the 3-RRR manipulator, link Jacobian ma-
trices have to be derived. When the end effector is subjected
to a virtual displacement, the link Jacobian sub-matrix re-
lated to the linear velocity provides the virtual displacement
of a point on a link, while the link Jacobian sub-matrix re-
lated to angular velocity produces the virtual angular dis-
placement of a link (also referred to as partial velocity and
partial angular velocity matrices by some authors,Wu et al.,
2009, 2011). PointsGi , Bi andP are considered as the pivotal
points of linksGi Bi , BiAi and the moving platform, respec-
tively. The link Jacobian sub-matrix related to the angular
velocity of link Gi Bi is written as follows:

Gi1 =
[
−ai

ci

−bi

ci

−di

ci

]
. (23)

The link Jacobian sub-matrix related to the linear velocity
of point Gi is zero since the velocity of that point is zero.
The link Jacobian sub-matrix related to the linear velocity of
pointGi is thus written as:

H i1 = 0 (24)

The link Jacobian sub-matrix related to the linear velocity
of point Bi and the link Jacobian sub-matrix related to the

angular velocity of linkBiAi are obtained fromJ (Eq. 18)
and from Eq. (14), respectively and are written as follows:

H i2 =
l1
ci

[
ai sinθi bi sinθi di sinθi

−ai cosθi −bi cosθi −di cosθi

]
(25)

Gi2 =
[
−sinβi

l2
cosβi

l2

] ([
e1 e2

]
+NRr Ai e

T
3

−

[
−l1 sinθi

l1 cosθi

]
Gi1

)
(26)

wheree1 = [1 0 0]T , e2 = [0 1 0]T ande3 = [0 0 1]T .
The link Jacobian sub-matrix related to the angular veloc-

ity of the moving platform and the link Jacobian sub-matrix
related to the linear velocity of pointP are written as follows:

GN = eT
3 (27)

HN =

[
1 0 0
0 1 0

]
. (28)

3.5 Inertial force and inertial moment

Here, the Newton-Euler formulation is applied to develop the
inertial forces and the inertial moments of each moving body
about its centre of mass. Then, these inertial forces and mo-
ments are calculated about pivotal points (i.e., pointsAi ,Bi

andGi). The inertial force and moment of linkGi Bi about
pivotal pointGi are written as follows:

Fi1 = −m1

(
l1
2
θ̈i [−sinθi cosθi ]

T

−
l1
2
θ̇2

i [cosθi sinθi ]
T

)
(29)

Mi1 = −θ̈i I i1 (30)

whereθi , θ̇i andθ̈i are the angular displacement, angular ve-
locity and angular acceleration of actuatori, and I i1 is the
moment of inertia of linkGi Bi about pointGi .

The influence of internal redundancy appears in the iner-
tial force and moment of the distal links where the moment
of inertia and mass centre of the links vary with respect to the
position ofms. The equations for the inertial force and mo-
ment about pointBi of the distal links are written as follows:

Fi2 = −m2tot

(
aBi + r i2β̈i

[
−sinβi cosβi

]T
−r i2β̇

2
i
[
cosβi sinβi

]T)
−mss̈i

[
cosβi sinβi

]T
−2msṡi β̇i

[
−sin(βi)cos(βi)

]T (31)

Mi2 = −β̈i I i2−m2totr i2
[
−sinβi cosβi

]
aBi

−2mssi ṡi β̇i (32)

whereβi , β̇i andβ̈i are the displacement, angular velocity and
angular acceleration of the passive joints andm2tot is the total
mass of linkA′i Ai , i.e.,m2tot =m2+ms. Also,aBi describes the
linear acceleration of pointBi , r i2 is the distance between the
centre of mass of linkA′i Ai and pointBi while I i2 is the mo-
ment of inertia of the distal link with respect toBi . The dis-
tance from pointBi to the barycentre of the redundant mass
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is si while ṡi and s̈i describe the velocity and acceleration of
ms. The position of the centre of mass of the distal link and
its moment of inertia vary with respect to the position of the
portable mass and are written as follows:

r i2 =
mssi +m2rG2

m2+ms
(33)

I i2 = IA′i Ai +ms(si)
2 (34)

whererG2 is the position of the centre of mass of the distal
link (excludingms) and is equal to zero for the case when
BiAi is equal toBiA′i , and IA′i Ai is the moment of inertia of
link A′i Ai about its centre of mass (excludingms).

The inertial force and moment of the moving platform
about pointP is written as follows:

FN = −mnaP (35)

MN = −α̈IN (36)

whereaP and α̈ are the linear acceleration of pointP and
the angular acceleration of the moving platform, respectively
while mn andIN represents the mass and the moment of iner-
tia of the moving platform.

3.6 Dynamic model

The dynamic equation of the 3-RRR is written as follows:

JTτ +

3∑
i=1

2∑
j=1

[
HT

i j GT
i j

] [
Fi j M i j

]T

+
[
HT

N GT
N

]
[FN M N]T = 0 (37)

whereJ is the Jacobian matrix of the manipulator,τ presents
the torque vector,H i j are the link Jacobian sub-matrices re-
lated to velocity andGi j are the link Jacobian sub-matrices
related to the angular velocity of the links,HN andGN repre-
sent the link Jacobian sub-matrix related to velocity and the
link Jacobian sub-matrix related to the angular velocity of
the moving platform,Fi j andM i j are inertial forces and mo-
ments of the robot links andFN andGN represent the inertial
force and moment of the moving platform.

4 Trajectory optimisation

When planning a trajectory in the Cartesian space, the dis-
placement, velocity and acceleration of the end effector are
known. These can be used to calculate the kinematic proper-
ties of all active joints for every point in the trajectory while
the dynamic equations can be used to compute the actuator
torques. Since the necessary torques to move the end effector
are a function of the position, velocity and acceleration of the
portable masses, moving the redundant masses (i.e., chang-
ing si , ṡi ands̈i for i = 1,2,3) will also have a direct effect on
the torques at the base-mounted actuators.

Here, variablessi are optimised to minimise the manipula-
tor’s total torque at a specific time step within the trajectory.

The optimisation problem is written as follows:

min
si

3∑
i=1

(τi(si)− λτ̄i)
2 (38)

subject to −l2 ≤ si ≤ l2 (39)

−ṡmax≤ ṡi ≤ ṡmax (40)

−s̈max≤ s̈i ≤ s̈max (41)

whereτi refers to the optimised torque of actuatori at ev-
ery time step, ¯τi is the torque value obtained when a similar
manipulator without internal redundancy is used andλ is a
coefficient between 0 and 1 which makes the objective func-
tion flexible on the percentage of the optimised torque value
with respect to the torques of the non-redundant manipula-
tor. The optimisation variable (i.e.,si) is the distance from
joint Bi to the barycentre of the redundant mass. In Eq. (39),
the value ofsi has been constrained so as to keep it within
trackA′i Ai . Also, the rate of change ofsi (i.e., ṡi) is bounded
in the positive and negative directions to a maximum abso-
lute valueṡmax (with ṡmax> 0). In addition to that, the rate
of change of ˙si (i.e., s̈i) is bounded to a maximum absolute
value s̈max. These limits prevent any sudden changes in the
motion of the portable masses. The choice of the objective
function will be clearer when the results are presented.

During the optimisation procedure, the position ofmsi , i.e.,
variablesi , changes to minimise the sum of the squared ac-
tuator torques within that specific time step. To achieve this,
the following steps are followed:

1. Define the reference trajectory (point-to-point): the
desired trajectory is planned in Cartesian space and the
displacement, velocity and acceleration of the actuators
are obtained using the corresponding inverse kinematic
solutions.

2. Calculate the torques of the non-redundant manipu-
lator: the torque values of the manipulator without in-
ternal redundancy is calculated for the defined reference
trajectory.

3. Define the search space:the displacements of the re-
dundant actuators through the trajectory are used as the
design variables for the optimisation process.

4. Define the bounds: based on the current position of the
portable masses and a user-defined maximum velocity
and maximum acceleration of the redundant actuators,
the upper and lower bounds of the optimisation vari-
ables are calculated.

5. Define the initial condition: the initial position of the
portable masses needs to be adjusted as it affects the
optimisation results.

6. Define the optimisation stopping criteria: the differ-
ence between two consequent optimisation search vari-
ables (i.e., displacement of the portable masses) as well
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(b) Reference trajectory r=0.013 m

Fig. 3: The norm of the velocity (in m/s) and the acceleration (in m/s2) of reference trajectories.

motion of the portable mass remains constant as well as its
improving effect on the torque.

Figure 4b presents the result of the optimised torques
against non-optimised ones for the trajectory with a smaller
rounded corner radius (i.e., r= 0.013 m). As can be seen in
the torque plot of joints 2 and 3, the optimised value of the
torques are greater than the non-optimised value when the
end effector goes through the rounded corner. This is due to
the acceleration of the portable mass (i.e., s̈1) which meets
the pre-defined threshold (see Figure 6b). At this point, the
accelerations of the portable masses remain constant as well
as their effect on the inertial force of the distal link. Similar
to the results for the trajectory with r= 0.025 m, the velocity
of the portable mass two meets the limit at t= 0.4 s and the
corresponding acceleration drops to zero. It has been noticed
that the optimised value of the torque of joint 2 and 3 will
be less than non-optimised one if the limit of the accelera-
tion of the portable mass is increased to 12 m/s2. Also, there
is a small jump at the optimised torque value of joint 1 at
t= 0.8 s. This is due to the acceleration of the portable mass
that meets the limit.

Figure 5a shows the result of optimisation of the torques
for the trajectory with r = 0.025 m wile λ = 0.5. Since
the optimised torque values need to be as small as half of
the torque values of non-redundant manipulator, the portable
masses need to produce smaller inertial forces and moments
in comparison with the scenario with λ= 0 (Figure 4a. Con-
sequently, the portable masses move with smaller velocity
and acceleration (Figure 6c) which prevents them from meet-
ing the limits. As it is seen in Figure 6c, all portable masses
move with relatively smaller acceleration in comparison with
Figure 6a. Also, the second portable mass does not meet the
velocity limit at t= 0.65 s. The displacement of the portable
masses is shown in Figure 5b where they are initial at 0 and
are allowed to move between −1 and 1.

The torque values of the joints are relatively small in all
cases when the end effector moves with a constant velocity.
When the acceleration of the end effector is zero, the inertial
forces and moments of the links decrease. In addition to that,
the inertial force of the end effector will turn to zero.

7 Conclusions

The dynamic model of a 3-RRR planar parallel manipulator
involving a portable mass on the distal links is developed.
The total of the squared actuators torques is investigated. An
optimisation algorithm is implemented to find the optimal
position of the portable masses while the end effector under-
goes an arbitrary trajectory with a rounded corner.

The concept was tested on two trajectories with different
rounded corners using the same Cartesian velocity. The re-
sults of the conducted tests suggest that the motion of the
portable masses can improve (i.e., reduce) the ground actu-
ator torques for both accelerating and decelerating sections.
Also, the base actuator torques improve when the end ef-
fector tracks the rounded corner with r = 0.025 m. How-
ever, the optimised torques are greater than the the non-
optimised ones around the rounded corner for the trajectory
with r= 0.013 m. Since the trajectory with sharper corner
imposes greater torque values on the ground joints, the mo-
tion of the portable masses need to generate greater inertial
forces and moments on the distal links to improve the torque
values at rounded corner. However, the changes in inertial
forces and moments of the distal links are limited due the
limits that have been defined for the velocity and accelera-
tion of the portable masses.

The objective function is flexible to determine the percent-
age of improvement of the optimised torques with respect to
the torque values of the same manipulator without internal

Figure 3. The norm of the velocity (in m s−1) and the acceleration (in m s−2) of reference trajectories.

as the difference between their objective function values
are monitored at every iteration of optimisation. Once
they have met the pre-defined user threshold, the opti-
misation procedure stops.

7. Optimise the position of the portable mass:a non-
linear multi-variable constrained optimisation is con-
ducted to minimise the active-joint torques in Eq. (38).

– The displacement, velocity and acceleration of the
base actuators are calculated at every step of the
optimisation procedure.

– The current velocity and acceleration of the redun-
dant actuators are calculated using the time history
of the redundant actuators.

– The objective function value is determined.

5 Numerical example

5.1 Architectural parameters and analysed trajectory

The manipulator’s architectural parameters for the current
example are as follows: all proximal link lengths are set to
1 m (i.e., l1 = 1 m for all legs). Also, all distal link lengths
are set to 1 m (i.e.,l2 = 1 m for all legs) where a track has
been attached to every distal link to allow the portable mass
to move fromsi = −1 to 1 m. The base and moving platforms
are equilateral triangles inscribed in circles of 1 m and 0.25 m
in radius, respectively. The massm1 of each of the proximal
links is 1 kg while the distal links have a massm2 = 1 kg (in-
cluding the mass of the track) and the end effector has mass
me = 0.5 kg andms = 3 kg.

5.2 Trajectory planning

The procedure has been studied on two trajectories with
rounded corners which have been planned in the Cartesian
space. For both trajectories, the end effector moves on a
straight line with an initial velocity of 0 m s−1 while keeping
the end effector with constant orientation. As the tracking
velocity reaches a user defined velocity in a specified time
(0.2 m s−1 in 0.4 s), the end effector tracks the trajectory with
a constant velocity. The abrupt acceleration change between
t = 0.8 andt = 1.0 s occurs when the end-effector enters the
rounded corner segment and normal acceleration occurs. The
end effector decelerates in (0.4 s) to come to a stop in the last
point of the trajectory. However, the radii of the rounded cor-
ners of the trajectories are different.

The trajectory’s initial position isp1 = [1 0.4]T . Also, the
radii of the round corners arer = 0.025 m andr = 0.013 m.
Each trajectory starts from pointp1 and goes in the positive
Y direction. Once the end effector moves 0.07 m in theY di-
rection, the rounded corner commences (the rounded corner
is a quarter of a circle). Thereafter, the end effector travels
0.07 m in the negativex direction. The norm of the Cartesian
velocity and the acceleration of the end effector is presented
in Fig. 3. Since the radii of the rounded corners are different,
the total length of the trajectories are not the same.

The optimisation problem was implemented in Matlab.
The functionfminconwas used to perform the constrained
local optimisation in Eqs. (38) to (40). More particularly, the
Sequential Quadratic Programming (SQP) with Hessian up-
date option withinfminconwas used. The SQP method is
an alternative approach for handling inequality constraints in
non-linear programming where SQP finds the minimum of a
sequence of quadratic programming sub-problems. The ob-
jective function is estimated with a quadratic function and
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Fig. 4: The torques of the ground actuators (in N.m) for λ= 0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−5

0

5

τ
1

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−5

0

5

τ
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−5

0

5

τ
3

Sec

Optimized
No internal redundancy

(a) Base joint torque

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

0

1
S
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

0

1

S
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

0

1

Sec

S
3
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Fig. 5: The torques of the ground actuators (in N.m) and displacement of the portable masses (in m) for r=0.025 m and λ=0.5.

redundancy. As greater improvement of the torques requires
higher limits of the velocity and the acceleration for portable
masses, the objective function can be adjusted to keep the
optimisation variables away from the limits.

The obtained simulation results suggest that if a manipu-
lator can not follow a trajectory with a rounded corner due
to the torque limits of the ground joints, it will be feasi-
ble through application of internal redundancy (without al-
tering the ground actuators). This is possible as the dynamic
forces required to perform the more demanding trajectories
are shared by both the base actuators as well as the additional
actuators on the distal links.

There are a few parameters that affect the the simulation
such as Cartesian velocity of the end effector, the radius of
the rounded corner and the allowed limits of the velocity
and acceleration of the portable masses. For instance, hav-

ing a relatively large end effector velocity demands greater
torque values at the ground joints. Consequently, the portable
masses need to generate greater forces and moments on the
distal links which is proportional to the limits of the veloc-
ity and acceleration of the portable masses. Moreover, due
the aforementioned force sharing effect, the balance between
the contribution of the two sets of actuators to the specific
task needs to be carefully considered (e.g., using an objec-
tive function that considers both sets of actuators).

As future work, it is suggested to look at the trajectory
globally rather than point-to-point motion planning. In that
case, the position of the portable masses can be adjusted with
respect to the any up-coming critical situation (i.e., rounded
corner).

Acknowledgement. The authors acknowledge the financial support

Figure 4. The torques of the ground actuators (in Nm) forλ = 0.

is minimised subject to the linearised constraints. In this
method, the Hessian of the Lagrangian function is estimated
at every iteration using a quasi-Newton update method. This
approximation is used to create a quadratic programming
sub-problem and its solution is applied to generate a search
direction for the line search procedure (Fletcher, 1987).

In the current numerical example, the velocity of the
portable masses is allowed to vary in the range between
−1 m s−1 and+1 m s−1. The maximum absolute value of the
acceleration of the portable masses is considered as 7 m s−2

andmsi = 3 kg for i = 1,2,3.

6 Results and discussion

Figure4a illustrates the comparison between the torque val-
ues obtained from the optimisation routine and the manip-
ulator without internal redundancy (i.e.,msi = IBi A′i

= 0) for
the trajectory withr = 0.025 m as the radius of the rounded
corner andλ = 0. As shown in Fig.4a, the manipulator
with internal redundancy can follow the reference trajectory
with significantly lower torques (approximately 10−1 Nm) in
both the accelerating and decelerating phases as well as the
rounded corner area. However, the optimised torque for joint
two is greater than the non-optimised one att = 0.65 s. As
can be seen in Fig.6a, the acceleration of the portable mass
is zero att = 0.65 s which means the velocity of the portable
mass meets the limits. Consequently, the effect of s̈1 is elim-
inated from the dynamic equation at that instant. Also, the
optimised torque for joint two att = 0.9 s is slightly greater
than the optimised torque of actuators one and three at the
same time instant. As it is shown in Fig.6a, the accelera-
tion of the second portable mass meets the limit att = 0.9 s.
Consequently, the inertial force that is produced due to the

motion of the portable mass remains constant as well as its
improving effect on the torque.

Figure 4b presents the result of the optimised torques
against non-optimised ones for the trajectory with a smaller
rounded corner radius (i.e.,r = 0.013 m). As can be seen in
the torque plot of joints 2 and 3, the optimised value of the
torques are greater than the non-optimised value when the
end effector goes through the rounded corner. This is due to
the acceleration of the portable mass (i.e., ¨s1) which meets
the pre-defined threshold (see Fig.6b). At this point, the ac-
celerations of the portable masses remain constant as well as
their effect on the inertial force of the distal link. Similar to
the results for the trajectory withr = 0.025 m, the velocity
of the portable mass two meets the limit att = 0.4 s and the
corresponding acceleration drops to zero. It has been noticed
that the optimised value of the torque of joint 2 and 3 will
be less than non-optimised one if the limit of the accelera-
tion of the portable mass is increased to 12 m s−2. Also, there
is a small jump at the optimised torque value of joint 1 at
t = 0.8 s. This is due to the acceleration of the portable mass
that meets the limit.

Figure5a shows the result of optimisation of the torques
for the trajectory withr = 0.025 m wileλ = 0.5. Since the op-
timised torque values need to be as small as half of the torque
values of non-redundant manipulator, the portable masses
need to produce smaller inertial forces and moments in com-
parison with the scenario withλ = 0 (Fig.4a). Consequently,
the portable masses move with smaller velocity and acceler-
ation (Fig.6c) which prevents them from meeting the limits.
As it is seen in Fig.6c, all portable masses move with rela-
tively smaller acceleration in comparison with Fig.6a. Also,
the second portable mass does not meet the velocity limit at
t = 0.65 s. The displacement of the portable masses is shown
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Fig. 5: The torques of the ground actuators (in N.m) and displacement of the portable masses (in m) for r=0.025 m and λ=0.5.

redundancy. As greater improvement of the torques requires
higher limits of the velocity and the acceleration for portable
masses, the objective function can be adjusted to keep the
optimisation variables away from the limits.

The obtained simulation results suggest that if a manipu-
lator can not follow a trajectory with a rounded corner due
to the torque limits of the ground joints, it will be feasi-
ble through application of internal redundancy (without al-
tering the ground actuators). This is possible as the dynamic
forces required to perform the more demanding trajectories
are shared by both the base actuators as well as the additional
actuators on the distal links.

There are a few parameters that affect the the simulation
such as Cartesian velocity of the end effector, the radius of
the rounded corner and the allowed limits of the velocity
and acceleration of the portable masses. For instance, hav-

ing a relatively large end effector velocity demands greater
torque values at the ground joints. Consequently, the portable
masses need to generate greater forces and moments on the
distal links which is proportional to the limits of the veloc-
ity and acceleration of the portable masses. Moreover, due
the aforementioned force sharing effect, the balance between
the contribution of the two sets of actuators to the specific
task needs to be carefully considered (e.g., using an objec-
tive function that considers both sets of actuators).

As future work, it is suggested to look at the trajectory
globally rather than point-to-point motion planning. In that
case, the position of the portable masses can be adjusted with
respect to the any up-coming critical situation (i.e., rounded
corner).
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Figure 5. The torques of the ground actuators (in Nm) and displacement of the portable masses (in m) forr = 0.025 m andλ = 0.5.

in Fig. 5b where they are initial at 0 and are allowed to move
between−1 and 1.

The torque values of the joints are relatively small in all
cases when the end effector moves with a constant velocity.
When the acceleration of the end effector is zero, the inertial
forces and moments of the links decrease. In addition to that,
the inertial force of the end effector will turn to zero.

7 Conclusions

The dynamic model of a 3-RRR planar parallel manipulator
involving a portable mass on the distal links is developed.
The total of the squared actuators torques is investigated. An
optimisation algorithm is implemented to find the optimal
position of the portable masses while the end effector under-
goes an arbitrary trajectory with a rounded corner.

The concept was tested on two trajectories with different
rounded corners using the same Cartesian velocity. The re-
sults of the conducted tests suggest that the motion of the
portable masses can improve (i.e., reduce) the ground ac-
tuator torques for both accelerating and decelerating sec-
tions. Also, the base actuator torques improve when the end
effector tracks the rounded corner withr = 0.025 m. How-
ever, the optimised torques are greater than the the non-
optimised ones around the rounded corner for the trajectory
with r = 0.013 m. Since the trajectory with sharper corner im-
poses greater torque values on the ground joints, the motion
of the portable masses need to generate greater inertial forces
and moments on the distal links to improve the torque values
at rounded corner. However, the changes in inertial forces
and moments of the distal links are limited due the limits
that have been defined for the velocity and acceleration of
the portable masses.

The objective function is flexible to determine the percent-
age of improvement of the optimised torques with respect to
the torque values of the same manipulator without internal
redundancy. As greater improvement of the torques requires
higher limits of the velocity and the acceleration for portable
masses, the objective function can be adjusted to keep the
optimisation variables away from the limits.

The obtained simulation results suggest that if a manipu-
lator can not follow a trajectory with a rounded corner due
to the torque limits of the ground joints, it will be feasi-
ble through application of internal redundancy (without al-
tering the ground actuators). This is possible as the dynamic
forces required to perform the more demanding trajectories
are shared by both the base actuators as well as the additional
actuators on the distal links.

There are a few parameters that affect the the simulation
such as Cartesian velocity of the end effector, the radius of
the rounded corner and the allowed limits of the velocity
and acceleration of the portable masses. For instance, hav-
ing a relatively large end effector velocity demands greater
torque values at the ground joints. Consequently, the portable
masses need to generate greater forces and moments on the
distal links which is proportional to the limits of the veloc-
ity and acceleration of the portable masses. Moreover, due
the aforementioned force sharing effect, the balance between
the contribution of the two sets of actuators to the specific
task needs to be carefully considered (e.g., using an objec-
tive function that considers both sets of actuators).

As future work, it is suggested to look at the trajectory
globally rather than point-to-point motion planning. In that
case, the position of the portable masses can be adjusted with
respect to the any up-coming critical situation (i.e., rounded
corner).
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Fig. 6: The acceleration of the portable masses (in m/s2).
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