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In recent years, redundancy in parallel manipulators has been studied broadly due to its capabil-
ity of overcoming some of the drawbacks of parallel manipulators including small workspaces and singular
configurations. Internal redundancy, first introduced for serial manipulators, refers to the concept of adding
movable masses to some links so as to allow to control the location of the centre of mass and other dynamic
properties of some links. This concept has also been referred to as variable geometry. This paper investigates
the dfects of internal redundancy on the dynamic properties of a planar parallel manipulator while performing
a family of trajectories. More specifically, the RR planar manipulator, where a movable mass has been
added to the distal link, is allowed to trace trajectories with rounded corners fiekdt radii. The proposed
method uses the manipulator's dynamic model to actively optimise the location of the redundant masses at
every point along the trajectory to improve the dynamic performance of the manipulator. Numerical examples
are shown to support the idea.

to one or more branches of the manipulatiele(let, 1996

Wang and Gosseljr2004. This type of redundancy can en-

hance the dexterity of the manipulator as well as enlarge
Redundancy in parallel manipulators is normally divided into the workspace. Additionally, kinematic redundancy allows to
kinematic redundancy, actuation redundancy and branch rep|an trajectories far from certain singular configurations as
dundancy(ee and Kim 1993 Zanganeh and Angelgs994  the inverse displacement problem has an infinite number of
Merlet 1996 Ruggiu and Carreteyd009 Boudreau and  solutions (thus often allowing for the manipulator to remain
Nokleby, 2012. Actuation redundancy consists of replac- as far as possible from singular configuration&prahimi
ing passive joints with active oneZgnganeh and Angeles et al, 2008.
1994 Cheng et al.2003 2011, Nokleby et al, 2005 where Redundant parallel manipulators have been widely used to
the number of degrees-of-freedom or mobility of the manip-improve the trajectories of parallel robots. For instar@ea
ulator does not change. Although actuation redundancy cagt al. (2007) showed that kinematically redundant manipu-
help either eliminate or reduce singular configurations, is-|ators can #&ectively avoid singular configurations thus in-
sues such as force interference make the manipulators morgeasing the singularity-free workspace of the parallel ma-
complex to analyze, design and contrbir(nani and Pod-  pipulator.
horodeski 2004 Garg et al. 2009. The second type of re-  Ruggiu and Carreter¢2010 applied an optimisation pro-
dundancy is called branch redundancy where an extra accedure on a kinematically redundant parallel manipulator to
tuated branch is added to the manipulateirrbani et al,  minimise the acceleration of the actuators while following
2007). Branch redundancy can improve the force capabili-certain trajectories. The method was applied on a kinemati-
ties of the manipulator and reduce the number of singularca|ly redundant parallel manipulator following square paths

configurations. The third type of redundancy is called kine-wjth rounded corners. They showed that the accelerations of
matic redundancy where active joints and links are added



A 3-DOF planar parallel manipulator shown in Fig is cho-
sen to investigate thefect of internal redundancy in parallel
manipulators. The manipulator is a symmetrical RRRma-
nipulator with base®;G,G3) and end &ector A;A2A3) as
equilateral triangles. The three revolute actuators to move the
manipulator’s endfector are located &, the base joint of
each branch. The length of the proximal links, i.e., li@8;
(i=1,2,3), has been denoted by while the length of the
distal link, i.e.,BiA; (i = 1,2,3) has been denoted by
In order to study the concept of internal redundancy, a por-
_ _ o o tion of the distal link (the portion fronB; to A') protrudes on
Serial manipulator with internal redundancy in link 2. the opposite side of the revolute jointBtand creates a lin-
The location of masmg cgn be changed without altering the posi- ear track fromA; toAi’ where the redundant mass can slide
tion of the end &ector (pointp). on (see Fig2b). The position of the mass relative to the el-
bow joint B; is given bys and is measured in the direction of

the actuated joints on the kinematically redundant manipu-fo“.' Since Fhe Massas; are mounted on trgcks or prismatic
oints, their position along\A' can be actively controlled.

lator are significantly less than the ones needed for a nont s : o
redundant manipulator. More specifically, the distancg from elbow jointB; to the

Recently, a new type of redundancy called internal redun.centre of massns can be actively controlled thus changing

dancy has been the focus of some attention in the context oﬁheTOVﬁ r?II dynarlmtc ptrr(])pzrtles apﬂm:t; olf “nksﬁiAl" th
serial manipulatorsukobratovt et al, 2000. Similar to the 0 help complete the dynamic model, éach element has

types of redundancy described earlier, a new set of degreetgeen given a mass while symmetry has been assumed to sim-

of freedom (DOF) is added to the serial manipulator. How- plify the analysis. Moreover, the links have been modelled

ever, in contrast with the redundant actuatorgankhks de- as slender_trhoijhs. _The riroxwfnal Ika ha}[/edarlll tl)::n ass;gned a
scribed earlier, the new DOF is used to change the internagassml with their centre ot mass localed haltway between
i and B; while all three distal links have been assigned a

geometry of a link resulting in the change of the location of ith thei tre of located halfway bet
the link’s centre of mass and its inertial mass distribution pa_massmz wi €r centre of mass located haltway between

rameters (i.e., its mass moment of inertia). Since the changes'/ aqui. The moving platiorm has been ?‘55'9”60' a mass

are made within the internal members of the link, the redun-"e with its barycentre located at the centroid of the moving

dant DOF does not have a diredfext on the end féector platform.

pose (i.e., position and orientation). More specifically, in ref-

erence to Figl, the position of the mass in link 2 can be

changed without altering the pose of the effiiéeor. This

allows for diferent internal motions for a given trajectory of

the end &ector thus adding control to some dynamic param- The inverse dynamic problem of a 3-RRR planar parallel ma-

eters of the manipulator to attempt to improve its dynamichipulator with 3-DOF of internal redundancy is developed in

performance for specific tasks. this section. The dynamic model is obtained using the Prin-
In this paper, the concept of internal redundancy is ap-Cip|e of Virtual Work as well as d’Alembert’s principle. The

plied to a planar parallel manipulator. First, a &R ma- derivation is similar to that presentedivu et al.(2011). For

nipulator with internal redundancy in all three branches isthis purpose, a complete kinematic model of the manipulator

described and its kinematic and dynamic equations (S2cts. Needs to be developed to derive the velocity and acceleration

and3) are derived. Then, an optimisation problem is formu- €quations. In addition to that, inertial forces and moments of

lated where the displacement of each of the portable massed! the links need to be calculated.

at every point throughout a trajectory is sought to minimise  Note that in what follows, the equations are derived for

the torques at the base actuators (SéctThe architectural ~€ach of the three legs. Therefore, indéxthe equations that

parameters and trajectory planning algorithm are explainedollow is assumed to respectively take the values 1, 2 and 3

through a numerical example and are presented in Sect. When deriving the equations for legs 1, 2 and 3.

and then discussed in more detail in Séct-inally, Sect.7

presents the conclusions and briefly discusses potential fuz

ture work.

The base coordinate fran@-xy (denoted by{O}) shown in
Fig. 2 is fixed on pointG;. Also, a moving coordinate frame
P-xnyn (denoted by{N}) is attached to the barycentre of the



3-RRR planar manipulatoi@) basic kinematic parame-
ters andb) location of the centre of mass of each componkgraré

fixed values whiles are variable).

moving platform. The position vector & in the base coor-
dinate frame is defined as follows:

Ig =rg +1p

wherer g describes the position vector of poft, rg, is the
position vector of poinG; andd, is the angle linkG; B; makes
with the x-axis (i.e., the actuation variable for the motor lo-
cated af5;). The position vector o is expressed as follows:

r'a =rIp +|2

wherer p, is the position vector of poind;, 8 describes the
angle of linkB; A; with respect to the horizontad direction,
rp is the position vector of poinp and rx is the position
vector of A; expressed in frami. The rotation matribR de-
scribing framgN} relative to framgO} is defined as follows:

cosy -—Sina

- [sina cosw

The constraint equation of motion is written as follows:
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wherel; is the portion of the distal link fron®; to A.

The inverse displacement problem of the RRplanar ma-
nipulator is written as follows:

6 =i+ i )

wherey; is defined as follows:

i = atanXa, ya) (6)

where atan2 is the quadrant corrected inverse tangent func-
tion, while x5 andya, are the Cartesian components of the
position of A; relative toG; and are written as follows:

Xa = X—l3c08p - xg, (7)
ya = Y-lssingi—yg (8)
wherex andy are Cartesian positions of poift I3 is the

radius of the moving platform (i.e., the distance betw®en
andA;) andg; is given by

5
¢1=a+g ¢2=a+€ﬂ ¢3=a—7—2r~ 9)

The equation for; is written as follows:

12-15+%2 +y2
Ui = cos‘l(M]. (10)
211(x4, +yi_)
Taking the time derivative of Eqlf leads to
. 2| —sing
g = |19|[ cosy, ] (11)

where§; is the angular velocity of actuator The linear ve-
locity of point A is written as follows:

COsBi
wherevp is the vector describing the linear velocity of point
P. Matrix N is defined as follows:
0 -1
1 of
The angular velocity of linkg; A is derived from Eq.12)
and is written as follows:

= | =8 S - o) 1)
2 2

fa=Ve+aNRrY =ig +|2jsi[ ~SIngi ] (12)

N = (13)

The linear acceleration of poin& andA; is obtained as
the time derivative of Eqs1() and (L2):

= | —sing, 2| cossi
as, 16 cosh; ] Ilg‘[ sing, ] (15)
an = ap+aNRr) —a”Rr) (16)



where ap is the linear acceleration of poirR. The time  angular velocity of linkB;A; are obtained fromd (Eq. 18)
derivative of Eq. {4) leads to and from Eq. 14), respectively and are written as follows:

i I ; Sing; b sing; d; siné,
.. —S|nﬁ Cos@ ) 1 g i i i i i
Bi= [ I : : (an —ag) Hiz [—ai cosyy -—bycoss -d COSQi} (25)
—B[CC’SB' S'”ﬁ (A -ta). an Ge = [%° W]([ e & [+NRag)
. . . . —l1 sing;
In order to generate the Jacobian matrix, the time deriva- | 1, cost (26)

tive of EqQ. @) yields
wheree; =[1 0 0", =[0 1 " ande;=[0 0 1] .

’C—?l ’c—?l ’c—dl The link Jacobian sub-matrix related to the angular veloc-
J= -C_az -C_bz —C_&z (18) ity of the moving platform and the link Jacobian sub-matrix
& B -G related to the linear velocity of poiftare written as follows:
C3 C3 C3
_ . _ Gy = € (27)
where the elements of this Jacobian matrix are as follows: 100
Hy = [ ] (28)
a = —hy(X-Xg)+hscoss; +h;coss (19) 010
b = —hi(y-yg)+hising + hysing (20)
¢ = hs[(y-ye)cost - (x-Xg)sing] (21)
T N Here, the Newton-Euler formulation is applied to develop the
+sin@ — ¢i) L S :
4 = nh _ . 22 inertial forces and the inertial moments of each moving body
T Z[Fy_yGi)COS(p' — (x=Xg)singi] (22)  apout its centre of mass. Then, these inertial forces and mo-
—sin@ - ¢i) ments are calculated about pivotal points (i.e., poitS;

andG;j). The inertial force and moment of lin&; B; about

wherexg, andyg, are the Cartesian components of the posi- pivotal pointG; are written as follows:

tion of pointG; (Gosselln and Angele$988 while h; = ,1|3 |
ho= L andhs= 2. Fi = _ml(Eléi [-sing; cos]”

—%éf [coss; sinei]T) (29)
Since the Principle of Virtual Work is applied to develop the M: = —@l (30)
dynamic model of the 3-RRR manipulator, link Jacobian ma- it
trices have to be derived. When the erfibetor is subjected Whered;, 6 andé; are the angular displacement, angular ve-
to a virtual displacement, the link Jacobian sub-matrix re-locity and angular acceleration of actuatpandli; is the
lated to the linear velocity provides the virtual displacementmoment of inertia of linkG; B; about poinG;.
of a point on a link, while the link Jacobian sub-matrix re-  The influence of internal redundancy appears in the iner-
lated to angu|ar Ve|ocity produces the virtual angu|ar dis-tial force and moment of the distal links where the moment
placement of a link (also referred to as partial velocity andof inertia and mass centre of the links vary with respect to the
partial angular velocity matrices by some authdvs, et al, position of ms. The equations for the inertial force and mo-
2009 2011). PointsG;, B; andP are considered as the pivotal ment about poinB; of the distal links are written as follows:
oints of linksG;B;, BiA; and the moving platform, respec- ~ _ AT aing. T
Fively. The link Jacobian sub-matrix reglla?ed to the ar?gularFI2 - mZtOt(aBi +igfi [=sing; coshi]

velocity of link G;B; is written as follows: —ripB? [cosB; Sinﬂi]T) - ms§ [cosB; singi]"
Gu=|2 2 1) 23) - 2m§SBi [-sing;) cos)]" (31)
Mi2 = —Bili2 — Mpofi2[-SING;  cOBi]ag

The link Jacobian sub-matrix related to the linear velocity _oms & (32)
of point G; is zero since the velocity of that point is zero.
The link Jacobian sub-matrix related to the linear velocity of Wheres:, i andj; are the displacement, angular velocity and

pointG; is thus written as: angular acceleration of the passive joints angy is the total
mass of linkA'A;, i.e.,mpor = Mp+Ms. Also, ag, describes the
Hi;=0 (24) linear acceleration of poir;, i, is the distance between the

centre of mass of linky A; and pointB; while I, is the mo-
The link Jacobian sub-matrix related to the linear velocity ment of inertia of the distal link with respect &. The dis-
of point B; and the link Jacobian sub-matrix related to the tance from poinB; to the barycentre of the redundant mass



is s while § ands describe the velocity and acceleration of The optimisation problem is written as follows:
ms. The position of the centre of mass of the distal link and

3
its moment of inertia vary with respect to the position of the min Z(Ti(s) _AT)? (38)
portable mass and are written as follows: S —
MsS + Mprg, subject to -l,<s <l (39)
rp = —— =°%2 (33) _ ..
M + Mg ~Smax < § < Smax (40)
liz = lxa+Mms(s) (34) ~Snax < § < Smax (41)

whererg, is the position of the centre of mass of the distal wherer; refers to the optimised torque of actuataat ev-
link (excludingms) and is equal to zero for the case when ery time stepz;is the torque value obtained when a similar
BiA is equal toBA/, andlxp is the moment of inertia of  manipulator without internal redundancy is used and a

link A’A; about its centre of mass (excluding). codticient between 0 and 1 which makes the objective func-
The inertial force and moment of the moving platform tion flexible on the percentage of the optimised torque value
about pointP is written as follows: with respect to the torques of the non-redundant manipula-

Feo— 35 tor. The optimisation variable (i.es) is the distance from
NS TMhae (35) joint B; to the barycentre of the redundant mass. In B),(

My = —aln (36) the value ofs has been constrained so as to keep it within

track A’A;. Also, the rate of change &f (i.e., s) is bounded

the angular acceleration of the moving platform, respectivelyIn the positive and negative directions to a maximum abso-

while m, andly represents the mass and the moment of iner—IUte valuesmax (With Smax> 0). In addition to that, the rate
tia of the moving platform of change ofs (i.e., §) is bounded to a maximum absolute

value Snax. These limits prevent any sudden changes in the
motion of the portable masses. The choice of the objective
function will be clearer when the results are presented.

whereap and a’ are the linear acceleration of poiRtand

The dynamic equation of the 3RR is written as follows: During the optimisation procedure, the positiomgf, i.e.,
s ) variables, changes to minimise the sum of the squared ac-
T T AT Ru tuator torques within that specific time step. To achieve this,
Jr o+ - Zl [H" G"] [F'J M'J] the following steps are followed:
i=1 j=
+ [HT GT][FN My]T =0 (37) 1. Define the reference trajectory (point-to-point): the
N N desired trajectory is planned in Cartesian space and the
whereld is the Jacobian matrix of the manipulatepresents displacement, velocity and acceleration of the actuators
the torque vectort;; are the link Jacobian sub-matrices re- are obtained using the corresponding inverse kinematic
lated to velocity ands;; are the link Jacobian sub-matrices solutions.

related to the angular velocity of the linkdy andGy repre-
sent the link Jacobian sub-matrix related to velocity and the
link Jacobian sub-matrix related to the angular velocity of
the moving platformF;; andM;; are inertial forces and mo-
ments of the robot links anfely andGy, represent the inertial

force and moment of the moving platform. 3. Define the search spacethe displacements of the re-
dundant actuators through the trajectory are used as the
design variables for the optimisation process.

2. Calculate the torques of the non-redundant manipu-
lator: the torque values of the manipulator without in-
ternal redundancy is calculated for the defined reference
trajectory.

placement, velocity and acceleration of the efié@or are portable masses and a user-defined maximum velocity
known. These can be used to calculate the kinematic proper- ~@nd maximum acceleration of the redundant actuators,
ties of all active joints for every point in the trajectory while the upper and lower bounds of the optimisation vari-

the dynamic equations can be used to compute the actuator ~ables are calculated.

torques. Since the necessary torques to move thefégrta

are a function of the position, velocity and acceleration of the

portable masses, moving the redundant masses (i.e., chang-

ing 5, § ands fori = 1,2,3) will also have a directféect on

the torques at the base-mounted actuators. 6. Define the optimisation stopping criteria: the difer-
Here, variables are optimised to minimise the manipula- ence between two consequent optimisation search vari-

tor’s total torque at a specific time step within the trajectory. ables (i.e., displacement of the portable masses) as well

5. Define the initial condition: the initial position of the
portable masses needs to be adjusted affetts the
optimisation results.
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The norm of the velocity (in m3) and the acceleration (in m4 of reference trajectories.

as the diference between their objective function values
are monitored at every iteration of optimisation. Once
they have met the pre-defined user threshold, the optiThe procedure has been studied on two trajectories with
misation procedure stops. rounded corners which have been planned in the Cartesian
space. For both trajectories, the enleetor moves on a
7. Optimise the position of the portable mass:a non- straight line with an initial velocity of 0 m3 while keeping
linear multi-variable constrained optimisation is con- the end &ector with constant orientation. As the tracking
ducted to minimise the active-joint torques in E8g8) velocity reaches a user defined velocity in a specified time
(0.2mstin 0.4 s), the endfector tracks the trajectory with
— The displacement, velocity and acceleration of the @ constant velocity. The abrupt acceleration change between
base actuators are calculated at every step of thé = 0-8 andt=10s occurs when the endrector enters the
optimisation procedure. rounded corner segment. and normal acceleratlor} occurs. The
end dfector decelerates in @s) to come to a stop in the last
— The current velocity and acceleration of the redun- point of the trajectory. However, the radii of the rounded cor-
dant actuators are calculated using the time historyners of the trajectories areffiirent.
of the redundant actuators. The trajectory’s initial position ig; =[1 0.4]". Also, the
radii of the round corners amre= 0.025m andr = 0.013m.
Each trajectory starts from poipg and goes in the positive
Y direction. Once the endfector moves @7 m in theY di-
rection, the rounded corner commences (the rounded corner
is a quarter of a circle). Thereafter, the erfteetor travels
0.07 m in the negativa direction. The norm of the Cartesian
velocity and the acceleration of the enffiegtor is presented
The manipulator’s architectural parameters for the currentn Fig. 3. Since the radii of the rounded corners ar@eatent,
example are as follows: all proximal link lengths are set tothe total length of the trajectories are not the same.
1m (i.e.,l; =1m for all legs). Also, all distal link lengths The optimisation problem was implemented in Matlab.
are set to 1 m (i.el, =1m for all legs) where a track has The functionfminconwas used to perform the constrained
been attached to every distal link to allow the portable masdocal optimisation in Egs.38) to (40). More particularly, the
to move froms = —1 to 1 m. The base and moving platforms Sequential Quadratic Programming (SQP) with Hessian up-
are equilateral triangles inscribed in circles of 1 m ar&b@n date option withinfminconwas used. The SQP method is
in radius, respectively. The masg of each of the proximal an alternative approach for handling inequality constraints in
links is 1 kg while the distal links have a mass = 1 kg (in- non-linear programming where SQP finds the minimum of a
cluding the mass of the track) and the effiéetor has mass sequence of quadratic programming sub-problems. The ob-
me = 0.5 kg andmg = 3kg. jective function is estimated with a quadratic function and

— The objective function value is determined.
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(a) Base joint torque for 7 =0.025 m (b) Base joint torque for r =0.013 m

The torques of the ground actuators (in Nm) fot 0.

is minimised subject to the linearised constraints. In thismotion of the portable mass remains constant as well as its
method, the Hessian of the Lagrangian function is estimatedmproving &fect on the torque.
at every iteration using a quasi-Newton update method. This Figure 4b presents the result of the optimised torques
approximation is used to create a quadratic programmingagainst non-optimised ones for the trajectory with a smaller
sub-problem and its solution is applied to generate a searclounded corner radius (i.e.=0.013 m). As can be seen in
direction for the line search procedufddtcher 1987). the torque plot of joints 2 and 3, the optimised value of the
In the current numerical example, the velocity of the torques are greater than the non-optimised value when the
portable masses is allowed to vary in the range betweernd dfector goes through the rounded corner. This is due to
-1ms?tand+1ms?. The maximum absolute value of the the acceleration of the portable mass (i), which meets
acceleration of the portable masses is considered as7 m sthe pre-defined threshold (see Féfp). At this point, the ac-
andmg = 3kg fori =1,2,3. celerations of the portable masses remain constant as well as
their efect on the inertial force of the distal link. Similar to
the results for the trajectory with= 0.025m, the velocity
of the portable mass two meets the limittat 0.4 s and the
corresponding acceleration drops to zero. It has been noticed
Figured4a illustrates the comparison between the torque valthat the optimised value of the torque of joint 2 and 3 will
ues obtained from the optimisation routine and the manip-pe less than non-optimised one if the limit of the accelera-
ulator without internal redundancy (i.ens = Iga =0) for  tion of the portable mass is increased to 12/ Also, there
the trajectory withr = 0.025m as the radius of the rounded is a small jump at the optimised torque value of joint 1 at
corner and1=0. As shown in Fig.4a, the manipulator t=0.8s. This is due to the acceleration of the portable mass
with internal redundancy can follow the reference trajectorythat meets the limit.
with significantly lower torques (approximately T0Nm) in Figure5a shows the result of optimisation of the torques
both the accelerating and decelerating phases as well as ther the trajectory withr = 0.025 m wiled = 0.5. Since the op-
rounded corner area. However, the optimised torque for jointimised torque values need to be as small as half of the torque
two is greater than the non-optimised onet at0.65s. As  values of non-redundant manipulator, the portable masses
can be seen in Figa, the acceleration of the portable mass need to produce smaller inertial forces and moments in com-
is zero at = 0.65 s which means the velocity of the portable parison with the scenario with= 0 (Fig.4a). Consequently,
mass meets the limits. Consequently, tfiee ofs; is elim-  the portable masses move with smaller velocity and acceler-
inated from the dynamic equation at that instant. Also, theation (Fig.6c) which prevents them from meeting the limits.
optimised torque for joint two at=0.9s is slightly greater  As it is seen in Fig6c, all portable masses move with rela-
than the optimised torque of actuators one and three at th@vely smaller acceleration in comparison with Fég. Also,
same time instant. As it is shown in Fifa, the accelera-  the second portable mass does not meet the velocity limit at
tion of the second portable mass meets the limtt-a0.9s.  t = 0.65s. The displacement of the portable masses is shown
Consequently, the inertial force that is produced due to the
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The torques of the ground actuators (in Nm) and displacement of the portable masses (in smQ.fa25 m andl = 0.5.

in Fig. 5b where they are initial at 0 and are allowed to move The objective function is flexible to determine the percent-
between-1 and 1. age of improvement of the optimised torques with respect to

The torque values of the joints are relatively small in all the torque values of the same manipulator without internal
cases when the endfector moves with a constant velocity. redundancy. As greater improvement of the torques requires
When the acceleration of the enfilextor is zero, the inertial higher limits of the velocity and the acceleration for portable
forces and moments of the links decrease. In addition to thatinasses, the objective function can be adjusted to keep the
the inertial force of the endffector will turn to zero. optimisation variables away from the limits.

The obtained simulation results suggest that if a manipu-
lator can not follow a trajectory with a rounded corner due
to the torque limits of the ground joints, it will be feasi-
ble through application of internal redundancy (without al-

The dynamic model of a 34RR planar parallel manipulator tering the ground actuators). This is possible as the dynamic
involving a portable mass on the distal links is developed.forces required to perform the more demanding trajectories
The total of the squared actuators torques is investigated. ARre shared by both the base actuators as well as the additional
Optimisation algorithm is implementEd to find the Optlmal actuators on the distal links.
position of the portable masses while the efié@or under- There are a few parameters théieat the the simulation
goes an arbitrary trajectory with a rounded corner. such as Cartesian velocity of the enfieetor, the radius of

The concept was tested on two trajectories witffiedent  the rounded corner and the allowed limits of the velocity
rounded corners using the same Cartesian velocity. The regnd acceleration of the portable masses. For instance, hav-
sults of the conducted tests Suggest that the motion of th%g a re|ative|y |arge endfiector Ve|ocity demands greater
portable masses can improve (i.e., reduce) the ground agorque values at the ground joints. Consequently, the portable
tuator torques for both accelerating and decelerating secmasses need to generate greater forces and moments on the
tions. Also, the base actuator torques improve when the engistal links which is proportional to the limits of the veloc-
effector tracks the rounded corner with= 0.025m. How- ity and acceleration of the portable masses. Moreover, due
ever, the optimised torques are greater than the the nonte aforementioned force sharinfjezt, the balance between
optimised ones around the rounded corner for the trajectoryhe contribution of the two sets of actuators to the specific
withr = 0.013 m. Since the trajectory with Sharper cornerim- task needs to be Carefu”y considered (e.g_, using an objec-
poses greater torque values on the ground joints, the motiofye function that considers both sets of actuators).
of the portable masses need to generate greater inertial forces os future work, it is suggested to look at the trajectory
and moments on the distal links to improve the torque valuegylobally rather than point-to-point motion planning. In that
at rounded corner. However, the changes in inertial forcegase, the position of the portable masses can be adjusted with

and moments of the distal links are limited due the limits respect to the any up-coming critical situation (i.e., rounded
that have been defined for the velocity and acceleration otorner).

the portable masses.
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