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Complex multibody system models that contain bodies with small mass or nearly singular inertia
tensor may sfiier from high frequency solution components that deteriorate the sdfigepcy in time inte-
gration. Singular perturbation theory suggests to neglect these small mass and inertia terms to allow a more
efficient computation of the smooth solution components. In the present paper, a recursive multibody formal-
ism is developed to evaluate the equations of motion for a tree strudtidredy system witltO(N) complexity
even if isolated bodies have a rank-deficient body mass matrix. The approach is illustrated by some academic
test problems in 2-D.

lar perturbation theory, seé¢airer and Wanng1996), and its

extensions to singularly perturbed problems in the context of

multibody dynamics by ubich (1993 and Stumpp(2008.
Classical time integration methods in technical simulation Related pr0b|ems are, e.g., the mode”ing of serial Spring-
are tailored to problems with smooth solution. Small SyS-damper elements using an auxiliary zero mass body be-
tem parameters in a mathematical model may introduc&ween spring and dampeEich-Soellner and Bhrer, 1998
rapidly oscillating or strongly damped solution components Section 1.3.4), the modification of inertia forces for high-
that cause prOblemS intime integration. Singular perturbatiorfrequency eigenmodes of flexible bodies in mu|t|body sys-
theory gives much insight in the analytical background of tem models for the analysis of elastohydrodynamic bearing
these phenomena and allows furthermoreféinient approx- coupling inSchinen(2003 and recently proposed methods
imation ofsmoothsolutions neglecting all terms that contain from FE contact mechanics Hager and WohIimut2009).
small parameters, see, e gairer and Wannef1996. For real-time applications in multibody dynamics, the ne-

The application of these classical results to multibody dy-glection of inertia forces for small mass bodies was studied
namics is non-trivial since the numerical algorithms for eval- by Eichberger and Rulk&2004. A more detailed analysis
uating the equations of motionffeiently (multibody for-  shows, that this neglection of inertia forces is straightfor-
malisms) are based on regularity assumptions that may be Viyard if all small mass bodies of the multibody system are
olated if small mass and inertia terms are neglected. A modifeaf bodies in the kinematic tree. In numerical experiments
fied multibody formalism for chain structured multibody sys- for the model of a walking mobile robot (mobot) with fti
tems with an isolated “zero mass” body was developed incontact forces between lightweight legs and ground floor, the
Arnold et al.(2010. numerical &ort was reduced by a factor of 4, Sékeber et al.
The present paper is a revised and extended version of the12.

author’s contribution to this conference paper. A recursive The singular perturbation analysis is technically more
multibody formalism is developed for tree structured systemscomplicated for multibody system models with small mass
with bodies that stiier from a rank-deficient body mass ma- podies having in the kinematic tree a successor of substan-
trix and may be considered as limit case of systems with bodtjally larger mass since classical multibody formalisms and

ies of (very) small mass or nearly singular inertia tensor. Thistopological solvers are not applicable to the limit case of zero
research is guided by well known results from general singu-



mass bodies in a kinematic chain. Burgermeister et al. for some positive constamt> 0. This smooth solution re-
(2011, a smoothed velocity approximation for small mass mains in ar0O(e)-neighbourhood of the solutigyy(t), zo(t))
bodies was proposed as a work-around. of the reduced problem that results from setting formally the
In the present paper, we discuss an alternative approacperturbation parameter in)to ¢ := 0. We get
that extends the recursive multibody formalism directly to
kinematic trees containing bodies of vanishing mass orrank¥y, = (Yo, 20). (2a)
deficient inertia tensor. The classical set of second orderg = y(y,, z) (2b)
equations of motion in the joint coordinatet) is substi-
tuted by a suitable combination of second and first orderwith y,(0) = y° and z,(0) being implicitly defined by Zb).
ODEs describing the system dynamics in the limit case ofThe general solution of the singularly perturbed problém (
a zero mass body. These results extend the previous analyas the form
sis for chain structured systemsAmnold et al. (2010 and
may be considered as a next step to extend advanced multie.(t) = y2(t) + en,(t/€) = yo(t) + O(e), (3a)
body formalisms for flexible multibody systems to models 7 (ty = A(t)+¢,(t/e) = 2o(t) + O(e) + £, (t/2) (3b)
with bodies of (very) small mass.
The remaining part of the paper is organized as follows:yjth smooth functionsy,(t/c), ¢, (t/) that decay like

Basic results of singular perturbation theory and its applica-exp(4t/s) for some positive constate (0,8), seeHairer
tion to multibody system dynamics are recalled in SBcA and Wanne(1996 Theorem V1.3.2).

recursive multibody formalism and the resulting mixed setof  For many st integrators, the numerical solution af)(

firstand second order equations of motion for a body of rank-may be decomposed as well in a smooth part and a rapidly
deficient body mass matrix are derived in S8cEinally, two  decaying part reflecting the transient behaviour for initial val-
Simple test prOblemS are discussed in S&ciome basic in- ues(yg(O)’ 26(0)) that do not be|0ng to a smooth solution. If
formation on Moore-Penrose pseudo-inverses is provided ifhere is no particular interest in this transient phase, an ap-
AppendixA. proximate numerical solution may be obtained much more
efficiently solving for given initial valueg,(0) := y.(0) the
DAE (2) by appropriate time integration methodtairer and
Wanner 1996 Chapter VI). Note, that the initial valueg(0)
in DAE (2) are not free but have to satisfy the consistency
After a short introduction to singularly perturbed ODEs conditiony(y,(0), z(0)) = 0.
we consider in the present section singular perturbations in Lubich(1993 extended these classical results to a class of
multibody system models that are caused bff sitential ~ Singular singularly perturbed problems
forces, see Sec2.1 Furthermore, some typical problems in
the dynamical simulation of multibody system models with M ()6 = ¥(q, §) iVU(q) @)
small mass bodies are illustrated by the analysis of two cou-
pled oscillators in SecR.2

with q(t) denoting the position coordinates of a multibody
system. MatrixM (q) is the symmetric positive definite mass
matrix andy(q, §) denotes a vector of forces and momenta.
The crucial term in 4) are the (very) sff potential forces
—-&£72VU(q) that depend on the perturbation parameteith
0< e < 1. If the potentialU(q) attains a local minimum on
a manifold/ and is strongly convex along all directions
o(Y., Z), (1a)  thatare non-tangential tty, then the smooth solution ofi{
y(y,.2.) (1b) may be approximated up t©(s?) by the solutiongy(t) of
a constrained (dlierential-algebraic) system witly(t) € U,
with a small perturbation parameter 0 that are considered (t>0). In general, this constrained system may be solved
at a finite time interval [(t¢], seeHairer and Wannef1996 much more #iciently than the original singularly perturbed
Chapter VI) and the references therein. problem @), seeHairer and Wannef1996.
For any given initial valug®, the singularly perturbed sys-  In Stumpp(2008), these results were extended to mechan-
tem (1) has a smooth solutiofy?(t), 2(t)) with y?(0) = y° if ical systems with strong damping forces™*D(q)q in the
the right hand side of the singularly perturbed subsystian (- right hand side of4). In the limit cases — 0, the solution
has a Jacobian with eigenvalues satisfying along each solwef the singularly perturbed problem is again approximated
tion trajectory(y.(t), z.(t)) the condition by the solution of a DAE problem that can be obtained in a
robust and fficient way by standard DAE time integration
ReAi [(dy/0z:)(Y,, 2)] < -8 <0 methods, seblairer and Wannef1996.

The generic form of singularly perturbed ODEs are parti-
tioned systems

Ye
£z,



Pai:

oscillating small masey, seeBurgermeister et a(2011).

T
Example problem: two coupled oscillators with a fast Pr: \
0

m: 108 m, 104 mp
steps: 496 1489 13
Oscillations and number of time steps for decreasing

mass ratiosn,/m, (BDF solver DASSL with tolerances 19 for

The eigenfrequency of a harmonic oscillator is given b . :
9 N Y 9 y absolute and relative errors), deargermeister et a{2011).

w = vc/m with massm and spring constant. High fre-
quency oscillations in a mechanical system may not only be
introduced by (very) sfi potential forces but also by poten-
tial forces of moderate size that act on a body with (very)
small mass.

In Burgermeister et a(2011), this phenomenon was stud- (very) small masses or (nearly) singular inertia tensors in a
ied for the simple model problem in Fid. In two cou-  mytibody system model may be interpreted as small pertur-
pled oscillators, a small mas®s; is connected to a large pations. The analysis of Se@t1suggests to study a reduced
massm, and the reference system byfsiprings with con-  gystem that neglects these perturbations. Therefore, we con-
stantscy, ¢; and damping with damping parameteks d2.  sider now the limit case of multibody systems that have one

Both bodies can only move along the x-axis. Additional or more bodies with zero mass or singular inertia tensor, i.e.,
forcesF(t) are only acting omm,. In absolute coordinates yith a rank-deficient body mass matrix.

p(t) = (pa(t), p2(t))", the equations of motion are given by In that case, classical recursive multibody formalisms
. . (“O(N)-formalisms”) like the ones bfrandl et al.(19889,
mpr = F()-dipr—cips (53)  Lubich et al.(1992 and Eichberger(1994 fail since they
+ (P2 — P1) + C2(P2 — P1), use the inverse of projected body mass matritksvadia
Mofs = —0a(Po— pu) - CaPa— Pu). (5b) and Phohomsi2009 consider multibody systems with sin-

gular mass matrix but do not exploit the system’s topology to

The small mass can oscillate very fast depending on thévaluate the equations of motiofiieiently by a sequence of
ratio of the masses and spring parameters. If the perturbatiofPrward and backward recursions in the kinematic tree.
parametet := m; gets smaller, the frequency of the oscilla- I this section, we describe the multibody system by the
tions increases and a time integration method with stepsiz&Psolute position and orientation of &l bodies relative to
control would choose very small stepsizes to resolve thesé€ inertial frame and use joint coordinates as generalized co-
oscillations and meet the integration tolerances. The numbeprdinates for a tree structured system ( “mixed coordinates”),
of time steps and the computing time increase significantlyS€€ alsoSchiehlen(1997). As in Lubich et al.(1992 and
see Fig2. In the limit cases = my = 0, the inertia forces of ~ Eich-Soeliner and #hrer (1999, the recursive multibody
the first mass point are neglected asd)(results in an im- formalism is interpreted as a block Gaussian elimination for

plicit first order diferential equation a sparse, (very) large block-structured system of linear equa-
tions with the block structure being determined by the topol-
0=F()-dipr—Capy+do(pz = pr) +Cop—py).  (6) 09 Of the multibody system.

Using generalized inverses, the recursive formalism of

The fast oscillations of the small mass disappear and the intuPich et al.(1992 is modified to skip bodies with rank-
tegrator can use large stepsizes, see Eig. deficient body mass matrix in the seconql forward recursion,

In a system description by relative coordinates see Sects3.2 an_df&& The result|_ng equa_t|0ns_ Qf motlon_are
q(d) = (D), G(0)T with pa(t) = qu(t) and pa(t) — pa(t) not longer explicit bgt form a (Ilne_arly) implicit seF of first
=: gu(t), the limit processs — O causes substantial prob- and seco.nd order flierential equatlpns (Secd.4). Fl_nally,
lems since the equations of motioBbj of the large mass W€ show in Sect3.5 by some anal.ytlcal tran.sformatlons that
depend onp; = @, + &, but Gi = P does not appear irb). the equations pf motion fqrm a flrs'_[ o_rder index-1 DAE if a
Furthermore, the dierentiation of €) w.r.t. timet shows that ~ Cetain regularity assumption is satisfied.
Ga1(t) depends on the time derivative Bft) in the limit case
e=m =0.



Functionsk := 9k;/at and k" summarize partial time
derivatives and all lower order terms in the first and sec-
ond time derivative of ), respectively. They may depend
on the (absolute) coordinates of the root body, on the ab-

Recursive multibody formalisms are tailored to tree struc-
tured systems. Here, the tertnee structurecorresponds to

the structure of the labelled graph being associated to th%olute coordinatep := (p py) of the remaining\ bod-
-— SEXEES

rnulUbody system model'. In this graph, each (rigid or flex- ies in the system, on the corresponding joint coordinates
ible) body of the system is represented by a vertex. Two ver-

) : 4= (0g,...,0y) and onfy, pandq.
tlr::es of the grgx_ph grz_cor_mer(]:ted bly_bar:j edge if and ((j)nlly i Note, that 9) is simplified substantially for all bodies )"
the correspon ing bo |es.|n.t e mu tibo ysystem Model arghat follow directly the root bodyr{ = 0) since the root body
connected by a joint restricting their relative motion. is inertially fixed (. = 0):

The graph of a tree structured multibody system is acyclic, ”i '
i.e., it is free of loops. Then, the multibody system has an_ . 4 1.5 o 1) : D i
root body () that corresponds to the root vertex of the 0=KiR+3iG+ k" (o Po- P 2.0.GY) I m=0. (10)
tree structured graph and is supposed to be inertially fixed. In recursive multibody formalisms, it is supposed that po-
All other bodies ¢) have a uniquely defined predecessor sition and velocity of the root bodypg(t), p(t)) and all joint
(#)¥) in the kinematic tree. Each body){) may have suc-  coordinatesy (), ¢(t), (i = 1,...,N), at a current time are
cessors )V being characterized by, =i or, equivalently,  known. Starting from the root body, the absolute position
by jeli:={k:m =i} with an index set; that represents and velocity coordinates (t), p(t) of all N bodies ¢)®,
the set of all successors of a given body{ in the multi- (i =1,...,N), may then be computed recursively usiiy (
body system model. Bodies without successars ) cor- and @), respectively, forward recursio.
respond to leafs of the kinematic tree and are therefore called
“leaf bodies”.

We suppose that position and orientation of bog{)(may
be characterized by (absolute) position coordingtéy e RY
with d = 6 for 3-D models and = 3 for 2-D models (the po-  The equations of motion of a multibody system wNrbod-
sition of point masses may be Characterizedjbyg abso- ies may be obtained from the equilibrium conditions for
lute coordinates in 3-D and hyZ 2 absolute coordinates in forces and momenta for each individual body that are for-
2-D, see Sectd below). Therelative position and orienta- Mulated in absolute coordinatgs
tion of body )® w.r.t. its predecessos(*) is characterized

by joint coordinates;(t) € R™ representing the; degrees of M + K + Z HjT/‘i =fi, (i=1...N). (11)
freedom of the joint connecting)() with (e)¢): Jeli

The body mass matritl; e R4 contains mass and iner-
0= Ki(p, Py G- 1) () y |

tia tensor of body €)) and is supposed to be symmetric,

Here and in the following we suppose tha (s locally positive semi-definite. The equilibrium conditions contain
: ; the reaction forces of the joints connecting boe)fX with
uniquely solvable w.r.tp, and that the Jacobidfy = dk;/dp, _ > joints g Do _
is non-singular along the solution. In its most simple form, 'tS predecesson«,: #i) and with its successors in the kine-
Eq. (7) definesp explicitly by p(t) = ri(p, (), Gi(t). t) resuit- matic tree K p;, | € li). All remaining forces and momenta
inginK; = lg. acting on body €)® are summarized in the force vector
The kinematic relations7J at the level of position coordi- ~ fi = fi(R.P.6.4.1) € R%. . _ _
nates imply relations at the level of velocity and acceleration ~The specific structure %f the joint reaction forces with La-
coordinates that may formally be obtained by (totafjeti ~ 9grange multipliergy(t) € RY that satisfy

entiation of ) w.r.t. timet: I =0, (i=1...N), (12)

d
0 = KO P, . qO.1) results from the joint equationg)(and from d’Alembert's
s r 0] principle since the virtual work of constraint forces vanishes
= Kik+Hipg 316+ k7 (po, .60, (8) for all (virtual) displacements being compatible wit#).(
In (12), matrixJ; denotes the Jacobian of the constraint func-

0 = Kip+Hip +Jg + kW P P. .G, 0.t 9
B+ HiBy 96+ KT (R Po P P66 © tion k; w.r.t. joint coordinates; € R", see SecB.1above.

with For leaf bodies«)®, the equilibrium conditionsl(l) get a
simpler form sincd; = {j : 7j =i} = 0. We obtain
e ki dxd e ki dxd e ki dxn; P =1 " }
Kiji=— eR™, Hji=—eR™, Jj:=— eR™", — —
n ap,, aq; MiKip +p = £ (13)

Itis supposed that the joint coordinatgé) are defined such ~ with f; := KiTfi, KiT:=(K)* and the symmetric, posi-
that all Jacobiang; have full column rank: rank = n; < d. tive semi-definite mass matriM; := Ki‘TMiKi‘l.



One of the basic components of recursive multibody for-leaf bodies and following all branches of the kinematic tree
malisms are algorithms to transform the equilibrium condi- to the root, the compact formi8) of the equilibrium condi-

tions (L1) recursively forall bodies ¢)) to the simpler form

tions may be obtained recursively for Allbodies ¢)® of the

(13) with suitableM; and f;. With the common assumption multibody system. The condensed mass matri¢es R,

that all body mass matricéd; are non-singulag; may be
expressed in terms df, , M;, f; andk"™ by block Gaussian
elimination applied to¥), (12) and (3), see, e.g.Lubich
etal.(1992.

It is an important observation that thiackward recur-

are symmetric, positive semi-definite.

The backward recursion witM;, f; being defined by
(17) is well-defined whenever all body mass matridéds
(i=1,...,N), are symmetric, positive semi-definite and ma-
trices K; are non-singular. Assuming additionally that the

sion may be generalized to multibody systems with rank- body mass matriced; € R are positive definite, matrices
deficient body mass matrick as long as all body mass ma- M; € R%d andeTM iJj € R™" in (17) are non-singular and
tricesM; are symmetric, positive semi-definite. In the follow- (JjTMij)+ may be substituted b)JII\ZjJ,—)‘l. In that special
ing, this will be shown by mathematical induction: let us sup- case, the recursive definitiors7 are well known from clas-

pose that the equilibrium conditions of all successe)d (of
body ()® are given in form13), i.e.,
MK;Bj+p; = fi. (). (14)

Sinceu; belongs to the null space df, see [2), we get

(ld - MJJJ'(J}—M_J'J]')+J}—)[JI~_
(la=M;j3;7M 3" I1)(F; - M K;y)

Hj

with the Moore-Penrose pseudo-inver'slérflﬁ,-JJ-)+ of the

projected body mass matrD{M jJj e RN, see Remarlt
in AppendixA. Because ofj = i, the termK; py; is given by

Ky =—H;p - 350 - k", (15)
see 0), and we obtain finally
pi = (Mj=M;3Q7M;3) T MH; iy (16)

+(la=MJ;(ITM; ) 3D)(F + M k()
since
(M} =M ;3337 M;3)" 3T M)J; 4
= M °C(ly, - (CTC)*(CTC)G; = MO i = 0
with C := M7%J;, see Lemmaa in AppendixA.
Multiplying (11) from the left byK; " and insertingu;

from (16) for all j € I;, the equilibrium conditions for body
(¢)® get the more compact form 8) with

M; = K TMK? (17a)
+ > KTTHT (M =M 3,37 M3 3 MH K2,
j€|i
fi = KT (17b)

= Y KTTHT (la = M35 3T M) 37+ M k).

jeli

Lemmal in AppendixA shows that matrixM; in (179 is

sical multibody formalisms, see, e.gybich et al.(1992.

The second time derivativ@) of the kinematic relationsr}
defines the acceleratiof of body ()@ in terms of the ac-
celerationfy,, of its predecessore]™ and in terms of the
corresponding joint coordinatég. Eliminating the joint co-
ordinates, all (absolute) acceleratiggs(i = 1,...,N), may
be computed recursively starting at the root body sjice O
(forward recursior). _ _
Left multiplication of ©) by (J]"M;Ji)*JM; results in

(97 MiJ)* (T Midy) G
= —(TMJ) ITMi(Hip, + k™) = (37 M) JF £

(18)

since
ITMKi B =37 f =3 =37 1,

see (2) and @3). If M; e R™d is symmetric, positive def-
inite thenJ;"M;J; e R is symmetric, positive definite as
well and (8) defines an explicit expression fdf because
of (JTMiJi)*(I'MiJ) =1, in that case. In general, how-
ever, Eq. 18) determines only; := rankJ;"M;J;) < n; com-
ponents off; € R", see also Remarkh in AppendixA.
Substituting 18) in (9), we get the expression

N a9
—KL; (|ni - (JiTMiJi)+(JiTMiJi)) G

with

Ho o= K g-Ji@TMI) ITMOH; (20a)

K= KM 33T M3y T MK (20b)

S SRN IO VINDANAR

that proves to be useful in the forward recursiodﬂMiJi
is rank-deficient. The main fierence between the full rank
and the rank-deficient case is the additional non-zero term

symmetric, positive semi-definite since it is a finite sum of (In = (37MiJ))*(37MiJ))) ¢; in the right hand side of1) if
symmetric, positive semi-definite matrices. Starting from ther; = rank 3 M;J;) < n.



It is an important (and non-trivial) observation that this (f}, = 0). Let a body ¢)\) be given with ranM,— =dand de-

additional term does notict the successors of body){
in the kinematic tree (if there are any). Suppdse 0 and
consider a (direct) successa)) of body @)@, ; =i. In
the condensed equilibrium conditiorisy, the reaction force
between bodies-Q(J) and @) is represented by; € R that

depends ory, f; andk!", see (6):

=1+ MK H B+ K. (21a)

From (19), we see that the right hand side @fL§ contains
the product of matrices

3= MK H KT (1 — (3T MiJ) " (3TM )
that is rewritten as

Jj=(Mj =M J;ITM;3)* 3T M )2

-BjJi(I, = (CTC)*(CTC))
with
Bi = (M =MJ@OTM ) ITMYPHIKE, (1ely),
Bo = MK,
C = (BgBo+ > BIB) 3 =M1,

lel;

see (79. Lemma3 from AppendixA provesjj = Ogxn, re-
sulting in

pj = 1+ MK (=HjHip, - Ak + K), (21b)
see @13 and (19).

The two alternative representationsgfin (21a,b) pro-
vide two diferent ways to evaluatg, by forward recursion,

see (4):

0
0 =

I}
MK (p +Hip + K"),
1} 1}
Min(Pj—HjHipn.—HjEi()+E§ ).

(22a)
(22b)

To keep the presentation compact, we assume in the follow- _

ing that the bodies with rank-deficient body mass matfix

note its predecessor by= ;. If 7; =0 ori =7; # 0 and the
condensed mass matiik; of the predecessor is non-singular
then pj has been computed before apdmay be obtained
from (229 sinceK ; was supposed to be non-singular:

] _(“)

p=-Hjp - (24a)

Otherwise,i = 7j # 0 andM; is rank-deficient and the cor-
responding body mass matii; has to be rank-deficient as
well. Then, body ¢)) may be skipped in the forward re-
cursion since assumptio23) guarantees tha, has been
computed before ang; may be obtained fron2@h):
b, = HiHip, +H K" -k (24b)
The proposed forward recursion algorithm evalugteer
all bodies ¢) with non-singulaM ; provided that the tech-
nical assumptiond3) is satisfied and the body mass matrices
M; are symmetric, positive semi-definite for &llbodies of
the multibody system modelj € 1,...,N). It provides fur-
thermore the algorithmic basis to evaluate the equations of
motion as mixed second and first order system for the joint
coordinatesy) = (q,...,d)-

Let us consider again a body){? with non-singulaiM ; and
denote = x. Multiplying (15) from the left bijTM j» we get

@TM3))d; = =ITM(H;p + KI) - 7 f; (25a)
sinced MK p; =] f;—J7p; =37 £}, see (4) and (L2).

As before, we get an alternative expression from substitut-
ing in the right hand side of263 the termf according to

(29):
(37 M3))8; - ITMH KR (I = (3TMi) (3TMid)) 6
ITM(H;Hip, +HK" - k") - T f (25b)

are isolated in the kinematic tree, i.e., the predecessor of he simpler expressior2§g can be used whenevef =

a body )" with rank-deficientM; is either the root body
(7 = 0) or a body with non-singular body mass matrix:

rankMij<d = (m=0 or rankM, =d). (23)

For 7 # 0, this assumption implies thlﬁ,,i is non-singular
as well since a symmetric, positive semi-definite malifix
with rankM , = d is positive definite andi ., is defined by a

sum ofK;iTM,riK;i1 and a finite number of symmetric, posi-

tive semi-definite matrices, se&7g.
The technical assumptior2g) allows to evaluate recur-
sively p; for all bodies with non- smguIaM starting at

the root body ¢)© that was supposed to be inertially fixed (J7M;J)& = —J7 Mi(Hip,, +

ori =mj # 0 andM; is non-singular sincg has been evalu-
ated by forward recursion in that case. E2plf) shows that
the situation is substantially more complicated # 7 # 0
andM,; is rank-deficient since in that case bo@){ and the
corresponding acceleration tefjphave been skipped in the
forward recursion angh, has to be used instead.

In the latter case, the technical assumpt@8) uarantees
that jy,, is really available from the forward recursion since
eitherr; = 0 orm; # 0 andM,, is non-singular. Therefore, the
right hand side ofZ5g with (j,i) being substituted byi,(r;)
may be evaluated straightforwardly:

k") - 37 f,. (26)



In (26), the co@icientJTM iJi of §; is symmetric, positive

semi-definite and may therefore be diagonalized, see Re-

mark1in AppendixA:

Ai O

JiTMiJi =A 00

XAxT_x( )XiTeR”X”‘.

Here, A; e R"™" with r; = rank@7M;J;) < n; is a positive

For a formal analysis of equations of motid2b), we intro-
duce velocity coordinates := py,

XT4;-Ti6 if i=x#0 and rani; <d,
Xjq; otherwise
(29)

diagonal matrix containing the non-zero eigenvalues of

JMiJi. Matrix X; e R™" is orthogonal. The projector

In, ~(3TM;J))*(3TM;J;) in (25b) may be expressed as

Lo = (BT M) ETMT) = Xi(ln — AT XX ADXT
N——

=1,
T L e

Multiplying (26) from the left byX;", we end up with a de-
coupled system of; linearly implicit second order éieren-
tial equations

(27)

Ki( I OfiX(ﬂi—ri) )Xqul
= - ( Irl Orlx(nl_rl) )XITJIT(M|(H| bﬂi +

(28a)
k") + £)

and n; —r; additional equations that do not containand
may further be simplified to

On-r, = (Op—rxr, Tner IXT 7 (28b)
since O -ryxr, Inor )XTITMi(Hi B, + k") vanishes be-
cause 27) and Lemma2b with C := M”ZJI € R™M imply
(O(ni_ri)Xfi |ni—ri )XiTJiTMi =

= (O(rlﬁri)xri Ini—r, )@( g |n8ri )XiTJiTMi

=y
= (O(ni—r-)xri |ni—ri )X'T(lni _(\]'TMiJi)(JTMiJ')Jr)JTMi
= (On-ryxr, In-r X[ (In = (CTC)(CTC)")CTM;"
= Oni><d

The equations of motion for the multibody system modeI

are given_by 25b) for all bodies ) with i:=x;#0
and rankM; <d and by @5g for the remaining bod-
ies, (j= .,N). They are composed ofy;r; lin-
early implicit second order ferential equations26b),
(289 and X;(n —ri) additional equations28b) to define
(O—ryxr; In-r )X{ G, (i=1,...,N), see also the detailed
discussion in Sect3.5 below. Similar to a classical resid-
ual formalism, sedichberger(1994), the residuals in25)

may be used to integrate the equations of motion by general

purpose DAE solvers like Bst, seeBrenan et al(1996).

(j=1,...,N), with
Tj = A7XTITM H K, (I = (3TMIJ) (T M) -

Because of 29), the joint coordinates]; may also be ex-
pressed in terms of ;= (vy,...,VN):

=@ vy, (j=1...N),

with
oM = {

since rani; < d and the technical assumptio3j imply
G = X;v. For all bodies ¢)) with rankM; < d, vectorv; is
split according to

()

with
o= ( Iy Orix(ni-n) ) X g eR",
g = (O(ni—fi)Xfi In—r; ) XiTqi eR"N,

In the full rank case (ranl; =d), we setn, :=Vv; € R"
and leave(; “empty” since ri =rank@M;Ji) =n;, i.e.,
ni —ri = 0. In the rank-deficient case (ralk <d = r; <),
the technical assumptior2) guarantees tha¥l; is non-
singular resulting imp; = vj. With (29) and the diagonalized
projector in @7), we see that); may be written as a linear
combination ofy; andd; that is independent of;:

X (VJ +TinVi) if
Xjv; otherwise

i:=n;#0 and rant; <d,

(30)

(31)

= Xj(vi+T) = Xjm+X AT XTITMH KL, x.(%i )
i

The time derivative of; in (29) depends on time derivatives
of
= X7 (po(®), PO, A1), Ty =T;(po(t), R(1), a(t). 1)

Wlth p= p(py, a,1), see {). Letx =X (pO Vo, g, g,t) and
=T, i(Po, Vo, 0, G, t) be defined such that

X; W——(XTW) (weRM), TjW=%(TJW),(W€Rn”J).



For bodies ¢)! with i:=7;#0 and rani; <d, we get
from (29), (30) and from the product rule
Vi = X[G;-Tig +XquJ' -Tig

= X]-qu —qui +X}—XJ(VJ +TinVi) —TinVi .
Multiplying the equations of motion26b) from the left by
A;X], we observe

APXTOTM ) = AFXTXGAXT = X]

and end up with

iy = Vi = X)X+ TXiw) = TXivg
+ATXTI (M (H i, + HiKY k() - ).

(32)

Since py,, has been evaluated by forward recursion and the

joint coordinategy are given in terms of, v, py(t), vo(t) and
t, see B0), the system of; first order diterential equations
(32) may be written as

1; :cpEZ](q,v,t) if i:=m;#0 and rani; <d.

In the same way,289 is seen to imply a system af <n;
first order diferential equations

i =g vt) =
_K;l( Iri OriX(ni*ri) )Xi-r‘]iT(I\Zi(Hi pﬂi + ki(“)) + f_l)
+ (I, Orix(ni—ri) )X|TV| .

(o)1)

mj

(.)(0)

N

Two planar configurations illustrating the analysis of
Sect.3, seeArnold et al.(2010.

academic test problems frodrnold et al. (2010 to illus-

trate the basic steps of these investigations. We consider a
chain of two mass points)?, () in 2-D with i = 7j and

7 = 0. l.e., body ¢)® follows in the kinematic chain directly

the inertial system (“root”) and is the predecessor of body

Finally the n; —r; equations 28h) are written as algebraic (4)() |n Sect.3, there are no specific physical assumptions

equations

Onl_rl =7i (q,V, t) .

With these transformations, the equations of motion ar

re-formulated as dierential-algebraic system2)( with
>i(ni +1;) differential variablesy, = (qtb---’qNJ]lv“'"]N)
satisfying @a) with right hand sideszpil] of dimensionn;
and right hand sidegi[z] of dimensionrj, (i=1,...,N), and
>.i(ni —r;) algebraic variablesy = ¢ :=({4,...,{y) satisfy-
ing (2b) with functionsy;, (i=1,...,N).

The algebraic equation2lf) define implicitly the “alge-
braic” velocity componentg, = ¢, if the Jacobiay/d¢ is

on the joints between bodies){®) and )@ and between
bodies ¢)" and @)1, respectively. Therefore, the result-
ing set oft; explicit second order tlierential equation284

€andn; —r; implicit first order diferential equation28b) for
body () describes arbitrary joint configurations and has a
substantially more complex mathematical structure than the
corresponding equations of motion in a classical multibody
formalism.

In the test problems, bodies)f) and @)) are repre-
sented by point masses with= 2 degrees of freedom, see
Fig. 3. The root body €)© is inertially fixed resulting in
p,, () = 0. The absolute coordinates of bodie}'{ and )"

non-singular along the solution. In practical applications, thisare denoted by, = (pi.y. pi )7, P = (Pix Piy)” € R2 In this

regularity assumption will typically be satisfied dfy;/d¢;
is non-singular for all bodiese}® with r; = rankM; < n;,

simplified setting, the diagonal mass matridés M; have
format 2x 2 and the joint Jacobians satisllye R>" and

(i=1,...,N), which may be achieved by appropriate damp- Jj eRZM,

ing terms in the force vectof; that should depend on the

velocity coordinates; = ( O, Inr )qui, see £8b).
A more detailed analysis of the regularity of Jacohiguiol
is subject of further research.

The theoretical analysis of Se@&generalizes the results of

Bodies ¢)© and )@ are connected by two linear spring-
damper elements acting parallel to the x-axis and y-axis,
see Fig.3. Then, =2 degrees of freedom in this joint are
represented by joint coordinateg(t) = p(t) € R? such that
the functionsk®, k™ in (8), (9) and (L0) vanish iden-
tically, Ki=1,, Hj=Jj=-l,. The free motion of body
() in y-direction is represented by the joint coordinate
iy () == Pjy(t) — Piy(t).

For the configuration in the upper plot of Fig,

Arnold et al.(2010 from chain structured systems to gen- bodies ¢)? and @) are connected by another lin-
eral tree structured systems. In this section, we recall twcear spring-damper element acting parallel to the x-axis.



The joint hasnj=2 degrees of freedom with joint co-
ordinatesgq; = (qjx.0jy)" € R? and gjx(t) := pjx(t) - pix(t).
Functionsk?’, k{" in (8) and @) vanish identicallyK ; = I,
Hj=J;=-l>.

In absolute coordinates, the equations of motion are givenm

In the limit casem, = 0, a combined set af = 1 second or-
der diferential equation fog x(t) andn; —r; = 1 first order
differential equation fog; ,(t) is obtained, see als@§g and
(28D with J; = -, X; =1, andA; = m;:

by i i,é = _ji,xgi,x = Cix¥ix
. . = —GiyQy—CiyQiy-
MmpPix = _di,x Pi,x — Ci,xPi x> (338.) h q bl h | q
_ TS (n —n For this second test problem, we have a scalar joint coordi-
= +d +C , : . .. .
i g P Prc) + G P = Pra) 33b nateq; = gjy € R that is again not explicitly defined but has
Mpy = - "ypi_’y B Ci"y Piys (33b) 4o satisfy the linearly implicit second orderfidirential equa-
m; Pj.x —dj,x(pj,x - Pix) — Cj,x(pj,x —Pix), (33c) tion
m; bj,y = 0 (33d) .. .
. o m;j(djy +Giy) =0,
becauseX?) with J; = Jj = -l impliesy; = uj = 0.
With J; = I, Egs. (79 and (L7b) simplify to M; = M; see @5h) and @5h).

and f; = f;. If the massm of body ()" vanishes, we get
Mi=M; =mil, =0o and r = rank(JiTMiJi) =0, Xj=1».
The equations of motion for coordinatggt) are composed
of rj =0 second order flierential equations28g and the
n; —r; = 2 implicit first order diferential equations

—0i xGi x — Ci x0ix + djx0j.x + CjxTj.x )

0: f = .
' ( —diyGiy — CiyGiy

see P8b). This result is in perfect agreement witi3a,b) in
the limit casem; = 0.

The joint coordinates; = p; — g; are not defined explicitly
if M; = 0. The equations of motior26b) yield

m; (qj,x +Gix) = _dj,xcﬁ,x = Cjx0j.x> (35a)
m;(djy + Giy) 0. (35h)

In the lower plot of Fig3, the relative motion of bodys}))
w.r.t. body @)@ is restricted in x-direction by the scalar con-
straintp; x(t) = pix(t) + li. The joint has only; = 1 degree of
freedomq;(t) = gjy(t) with a joint Jacobianlj = —(0,1)",

K; =13, H;j = -l The update formulal(7a with M; = m,
Mj = mjl; results in

(34)

M;

M+ ;-3 (90 1 (§))7(0 18ty
_ (mgmj rg).

In (170, we havef; = f; sincek{’ = k! = 0andf; = 0. The
equations of motion in absolute coordinates are

MPix—Mjx = —0ixPix—CixPix (36a)
Mmpy = —diyPiy—_CiyPiy, (36b)
m; Pj.x + ij.x 0, (36c¢)
m ﬁj,y = 0. (36d)

Because ofpjx(t) = pix(t), we obtainu;(t) = —m;pPj«(t) =
—m; P x(t) and the equations of motioBa,b) get the form
(m + mj)bi,x

mpiy =

_di,xpi,x - Ci,xpi,x,
~diyPiy—CiyPiy-

Motivated by results from singular perturbation theory,
multibody system models with bodies of small mass or
nearly singular inertia terms are analysed considering the
limit case of systems with rank-deficient body mass matri-
ces. Replacing in a classical recursive multibody formalism
the inverse of condensed body mass matrices by their Moore-
Penrose pseudo-inverse, the backward recursion phase may
be adapted to the rank-deficient case.

The crucial point in the analysis is the evaluation of ac-
celerations for successors of bodies with rank-deficient body
mass matrix in the forward recursion phase. It was shown that
bodies with rank-deficient body mass matrix may simply be
skipped in forward recursion. The acceleration coordinates
of joints leaving such bodies to one of its successors are not
given in explicit form but satisfy a linearly implicit equation
that may be handled conveniently by common general pur-
pose DAE solvers.

For each body with rank-deficient body mass matrix, a
mixed system of first and second ordeffeliential equations
is obtained resulting in a first order DAE that has index 1 for
multibody system models with appropriate damping terms in
the force elements acting at the “zero mass” body. Further
investigations will be necessary to analyse practical aspects
of this index-1 assumption in more detail.

In future research, the basic framework that has been de-
veloped in the present paper for tree structured rigid multi-
body system models will be extended to flexible systems and
to multibody system models with (holonomic) constraints.
These additional results will provide the algorithmic basis
for a reference implementation in industrial multibody sys-
tem simulation software.



Yo ;= diagy ., o, that summarizes the positive singular val-
ueso, > o5 >...> oy >0 of matrix C. Here,r < n denotes
the rank ofC and the remaining singular values vanish iden-
tically: ory1=...=0n=0.

To make the paper self-contained, we summarize in this ap- Applying (A1) to
pendix some basics of numerical linear algebra. A compre-

hensive discussion of these topics is given, e.gGblub and
van Loan(1996.

Remark 1 Any symmetric, positive semi-definite matrix
A e R™™M with r:=rankA <m has an orthonormal basis
of eigenvectors X1, Xa,...,Xr, Xr+1,...,Xm corresponding
to its eigenvaluesi; > > ... >4 > A1 =...=An=0.

A:=CTC=(PEQT)"(PZQ) = Qx"ZQ",

we getm=n, X=Q andA =X"X =X[X,, e, A= ):_Or)fo.
The assertion of the Lemma follows from
KTHT(M =MJ(J™MJ)*ITM)HK 2

(MYZHK 1T (14— C(CTC)*CT)(MY2HK 1)

Summarizing the eigenvectors in the orthogonal matrix ;.4

X :=[Xg,...,Xm] € R™M we getAX = XA with the diagonal
matrix A := diag, .<m Ak

(@ With AY2:=diag ., VA matrix AY?:= XAY2XT

is well defined and independent of the specific choice of

orthogonal eigenvectory, ..., Xm. Matrix AY2 is sym-
metric, positive semi-definite and satisfies'/?Al/2 =
(XAY2XT)(XAY2XT) = XAY2AY2XT = XAXT = A.

(b) With A :=diag., & €R™", the Moore-Penrose
pseudo-inversef A is given by

-1

A Orx(m—r)

A*=XA*XT with A" := (A1)

O(rTH)xr O(rTH)x(nH)

It defines orthogonal projectoSA* andl,,— A*A project-
ing on the range oA and on the null space &, respectively:

AA+A=A, (Im_AA+)A:Om><m, A(l m_A+A)=Om><m. (AZ)

If A is not only positive semi-definite, but even positive
definite, the Moore-Penrose pseudo-invesse coincides
with the classical invers&! sinceA is non-singular and

r =rankA = min that caseA* = A™L.

Lemma 1 Consider a symmetric, positive semi-definite ma-

trix M e R4, (square) matriced, K e R™? of the same
format and a (rectangular) matrid € R®" with 0 <n<d.
If K is non-singular then matrix

KTHT(M =MJ(J™MJ)*ITM)HK 1
with K= = (K™1)T is symmetric and positive semi-definite.

Proof The argumentJ™MJ e R™" of the Moore-Pen-

rose pseudo-inverse may be written HdMJ = C"C with

C:=MY2J e R™", The singular value decomposition 6f

has the fornC = PLQT with orthogonal matrice® € R%,

Q € R™™ and the @ x n)-matrix

Y= ( %o
0(n—r)><r

X
Od-nyxn

Orx(n
) with 20:( fatal ]eR“X“,

O(n—r)><(n—r)

lg—C(CTC)*CT
P(1a-( 3| @ Qesza Qg )P

—— ——
)"

Lemma 2 For any matrix CeR™" with O0<n<d the
Moore-Penrose pseudo-inverse(G6f' C) e R™" satisfies

(@) C(In—(C"C)*(C"C)) = Ogxn

In =In

0
lgr

see Al).

(b) (In—(CTC)(C"C)*)C" = Onxa -
Proof (a) Eq. @2) with A := CTC e R™" yields

(CTO)(In-(CTC)*(CTC))
C'C-(CTC)CTO)*(C'C)=C"C-C"C =0pxn,

.e., C'Czx=0, for the column vectors z eR",
(k=1,...,n), of matrix 1,—(C"C)*(C"C). Since
C'Cz=0, implies zZC'Cz=0 and ||[Cz|5=0, we
getCz =0y, (k=1,...,n), and see that all column vectors
of I, — (CT"C)*(C"C) belong to the null space @.

(b) Assertion (b) follows in the same way from

(In—(CTC)(CTC)*)(C"C)=C"C~C"C = Opn.

Lemma 3 Consider a finite index setd N, and matri-
cesBo e R™M, B; eR™4, (jel), JeR™" with 0<n<d.
Thgn., matrixBg Bo + Xj« B{ Bj is symmetric, positive semi-
definite and

C:=(BFBo+ > BJB;) IR
jel

is well-defined and satisfies

BjJ(In—(CTC)*(CTC)) = Ouxn, (j €1).



Proof For any vectorze R", we get

Z'(ByBo+ » B]Bj)z=IBozl}+ » IIBji2 >0,

jel jel

i.e., the symmetric matriB; Bo + 3; B] B; is positive semi-
definite and matrixC € R¥" is well-defined.

From the proof of Lemma& we know thatCz = 04 for all
column vectorsg of matrix |, — (C"C)*(C"C). Therefore,

0 = (Cz)"(Cz)=%(CC)x
- z;JT(BgBO+ZijTB,-)Jzk
- z;JTBgBonk+ij;JTBjTBszk
= IBoJzdi5+ ) I1BjIzd.
This sum of non-negative numbers may vanish only, if

IBodzll =0 and||B;Jzdl> =0, (jel, k=1,...,n). There-
fore, BjJz =0q for all jel and all column vectors,
(k=1,...,n), of matrixl, — (C"C)*(C"C).
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