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Abstract. Complex multibody system models that contain bodies with small mass or nearly singular inertia
tensor may suffer from high frequency solution components that deteriorate the solver efficiency in time inte-
gration. Singular perturbation theory suggests to neglect these small mass and inertia terms to allow a more
efficient computation of the smooth solution components. In the present paper, a recursive multibody formal-
ism is developed to evaluate the equations of motion for a tree structuredN body system withO(N) complexity
even if isolated bodies have a rank-deficient body mass matrix. The approach is illustrated by some academic
test problems in 2-D.

1 Introduction

Classical time integration methods in technical simulation
are tailored to problems with smooth solution. Small sys-
tem parameters in a mathematical model may introduce
rapidly oscillating or strongly damped solution components
that cause problems in time integration. Singular perturbation
theory gives much insight in the analytical background of
these phenomena and allows furthermore an efficient approx-
imation ofsmoothsolutions neglecting all terms that contain
small parameters, see, e.g.,Hairer and Wanner(1996).

The application of these classical results to multibody dy-
namics is non-trivial since the numerical algorithms for eval-
uating the equations of motion efficiently (multibody for-
malisms) are based on regularity assumptions that may be vi-
olated if small mass and inertia terms are neglected. A modi-
fied multibody formalism for chain structured multibody sys-
tems with an isolated “zero mass” body was developed in
Arnold et al.(2010).

The present paper is a revised and extended version of the
author’s contribution to this conference paper. A recursive
multibody formalism is developed for tree structured systems
with bodies that suffer from a rank-deficient body mass ma-
trix and may be considered as limit case of systems with bod-
ies of (very) small mass or nearly singular inertia tensor. This
research is guided by well known results from general singu-

lar perturbation theory, seeHairer and Wanner(1996), and its
extensions to singularly perturbed problems in the context of
multibody dynamics byLubich (1993) andStumpp(2008).

Related problems are, e.g., the modelling of serial spring-
damper elements using an auxiliary zero mass body be-
tween spring and damper (Eich-Soellner and F̈uhrer, 1998,
Section 1.3.4), the modification of inertia forces for high-
frequency eigenmodes of flexible bodies in multibody sys-
tem models for the analysis of elastohydrodynamic bearing
coupling inScḧonen(2003) and recently proposed methods
from FE contact mechanics inHager and Wohlmuth(2009).

For real-time applications in multibody dynamics, the ne-
glection of inertia forces for small mass bodies was studied
by Eichberger and Rulka(2004). A more detailed analysis
shows, that this neglection of inertia forces is straightfor-
ward if all small mass bodies of the multibody system are
leaf bodies in the kinematic tree. In numerical experiments
for the model of a walking mobile robot (mobot) with stiff
contact forces between lightweight legs and ground floor, the
numerical effort was reduced by a factor of 4, seeWeber et al.
(2012).

The singular perturbation analysis is technically more
complicated for multibody system models with small mass
bodies having in the kinematic tree a successor of substan-
tially larger mass since classical multibody formalisms and
topological solvers are not applicable to the limit case of zero
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mass bodies in a kinematic chain. InBurgermeister et al.
(2011), a smoothed velocity approximation for small mass
bodies was proposed as a work-around.

In the present paper, we discuss an alternative approach
that extends the recursive multibody formalism directly to
kinematic trees containing bodies of vanishing mass or rank-
deficient inertia tensor. The classical set of second order
equations of motion in the joint coordinatesq(t) is substi-
tuted by a suitable combination of second and first order
ODEs describing the system dynamics in the limit case of
a zero mass body. These results extend the previous analy-
sis for chain structured systems inArnold et al.(2010) and
may be considered as a next step to extend advanced multi-
body formalisms for flexible multibody systems to models
with bodies of (very) small mass.

The remaining part of the paper is organized as follows:
Basic results of singular perturbation theory and its applica-
tion to multibody system dynamics are recalled in Sect.2. A
recursive multibody formalism and the resulting mixed set of
first and second order equations of motion for a body of rank-
deficient body mass matrix are derived in Sect.3. Finally, two
simple test problems are discussed in Sect.4. Some basic in-
formation on Moore-Penrose pseudo-inverses is provided in
AppendixA.

2 Singular perturbations in multibody system
models

After a short introduction to singularly perturbed ODEs
we consider in the present section singular perturbations in
multibody system models that are caused by stiff potential
forces, see Sect.2.1. Furthermore, some typical problems in
the dynamical simulation of multibody system models with
small mass bodies are illustrated by the analysis of two cou-
pled oscillators in Sect.2.2.

2.1 Time integration of singularly perturbed problems in
multibody dynamics

The generic form of singularly perturbed ODEs are parti-
tioned systems

ẏε = ϕ(yε, zε) , (1a)

εżε = γ(yε, zε) (1b)

with a small perturbation parameterε > 0 that are considered
at a finite time interval [0, te], seeHairer and Wanner(1996,
Chapter VI) and the references therein.

For any given initial valuey0, the singularly perturbed sys-
tem (1) has a smooth solution

(
y0
ε(t), z

0
ε(t)

)
with y0

ε(0)= y0 if
the right hand side of the singularly perturbed subsystem (1b)
has a Jacobian with eigenvalues satisfying along each solu-
tion trajectory

(
yε(t), zε(t)

)
the condition

Reλi
[
(∂γ/∂zε)(yε, zε)

]
≤ −β < 0

for some positive constantβ > 0. This smooth solution re-
mains in anO(ε)-neighbourhood of the solution

(
y0(t), z0(t)

)
of the reduced problem that results from setting formally the
perturbation parameter in (1) to ε := 0. We get

ẏ0 = ϕ(y0, z0) , (2a)

0 = γ(y0, z0) (2b)

with y0(0)= y0 and z0(0) being implicitly defined by (2b).
The general solution of the singularly perturbed problem (1)
has the form

yε(t) = y0
ε(t)+ εηε(t/ε) = y0(t)+O(ε) , (3a)

zε(t) = z0
ε(t)+ ζε(t/ε) = z0(t)+O(ε)+ ζε(t/ε) (3b)

with smooth functionsηε(t/ε), ζε(t/ε) that decay like
exp(−βt/ε) for some positive constantβ ∈ (0,β), seeHairer
and Wanner(1996, Theorem VI.3.2).

For many stiff integrators, the numerical solution of (1)
may be decomposed as well in a smooth part and a rapidly
decaying part reflecting the transient behaviour for initial val-
ues

(
yε(0), zε(0)

)
that do not belong to a smooth solution. If

there is no particular interest in this transient phase, an ap-
proximate numerical solution may be obtained much more
efficiently solving for given initial valuesy0(0) := yε(0) the
DAE (2) by appropriate time integration methods (Hairer and
Wanner, 1996, Chapter VI). Note, that the initial valuesz0(0)
in DAE (2) are not free but have to satisfy the consistency
conditionγ(y0(0), z0(0))= 0.

Lubich(1993) extended these classical results to a class of
singular singularly perturbed problems

M (q)q̈= ψ(q, q̇)−
1
ε2
∇U(q) (4)

with q(t) denoting the position coordinates of a multibody
system. MatrixM (q) is the symmetric positive definite mass
matrix andψ(q, q̇) denotes a vector of forces and momenta.
The crucial term in (4) are the (very) stiff potential forces
−ε−2∇U(q) that depend on the perturbation parameterεwith
0< ε� 1. If the potentialU(q) attains a local minimum on
a manifoldU and is strongly convex along all directions
that are non-tangential toU, then the smooth solution of (4)
may be approximated up toO(ε2) by the solutionq0(t) of
a constrained (differential-algebraic) system withq0(t) ∈ U,
( t ≥ 0). In general, this constrained system may be solved
much more efficiently than the original singularly perturbed
problem (4), seeHairer and Wanner(1996).

In Stumpp(2008), these results were extended to mechan-
ical systems with strong damping forces−ε−1D(q)q̇ in the
right hand side of (4). In the limit caseε→ 0, the solution
of the singularly perturbed problem is again approximated
by the solution of a DAE problem that can be obtained in a
robust and efficient way by standard DAE time integration
methods, seeHairer and Wanner(1996).
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Figure 1. Example problem: two coupled oscillators with a fast
oscillating small massm1, seeBurgermeister et al.(2011).

2.2 The small mass oscillator as singularly perturbed
problem

The eigenfrequency of a harmonic oscillator is given by
ω =
√

c/m with massm and spring constantc. High fre-
quency oscillations in a mechanical system may not only be
introduced by (very) stiff potential forces but also by poten-
tial forces of moderate size that act on a body with (very)
small mass.

In Burgermeister et al.(2011), this phenomenon was stud-
ied for the simple model problem in Fig.1. In two cou-
pled oscillators, a small massm1 is connected to a large
massm2 and the reference system by stiff springs with con-
stantsc1, c2 and damping with damping parametersd1, d2.
Both bodies can only move along the x-axis. Additional
forcesF(t) are only acting onm1. In absolute coordinates
p(t) = (p1(t), p2(t))>, the equations of motion are given by

m1 p̈1 = F(t)−d1 ṗ1− c1p1 (5a)

+d2(ṗ2− ṗ1)+ c2(p2− p1) ,

m2 p̈2 = −d2(ṗ2− ṗ1)− c2(p2− p1) . (5b)

The small mass can oscillate very fast depending on the
ratio of the masses and spring parameters. If the perturbation
parameterε :=m1 gets smaller, the frequency of the oscilla-
tions increases and a time integration method with stepsize
control would choose very small stepsizes to resolve these
oscillations and meet the integration tolerances. The number
of time steps and the computing time increase significantly,
see Fig.2. In the limit caseε =m1 = 0, the inertia forces of
the first mass point are neglected and (5a) results in an im-
plicit first order differential equation

0= F(t)−d1 ṗ1− c1p1+d2(ṗ2− ṗ1)+ c2(p2− p1) . (6)

The fast oscillations of the small mass disappear and the in-
tegrator can use large stepsizes, see Fig.2.

In a system description by relative coordinates
q(t) = (q1(t),q2(t))> with p1(t) =: q1(t) and p2(t)− p1(t)
=: q2(t), the limit processε→ 0 causes substantial prob-
lems since the equations of motion (5b) of the large mass
depend on ¨p2 = q̈1+ q̈2 but q̈1 = p̈1 does not appear in (6).
Furthermore, the differentiation of (6) w.r.t. timet shows that
q̈1(t) depends on the time derivative ofF(t) in the limit case
ε =m1 = 0.

p1 :

ṗ1 :

m1 : 10−3 ·m2 10−4 ·m2 0
steps: 496 1489 13

Figure 2. Oscillations and number of time steps for decreasing
mass ratiosm1/m2 (BDF solver DASSL with tolerances 10−6 for
absolute and relative errors), seeBurgermeister et al.(2011).

3 Mixed coordinate formulation of the equations of
motion

(Very) small masses or (nearly) singular inertia tensors in a
multibody system model may be interpreted as small pertur-
bations. The analysis of Sect.2.1suggests to study a reduced
system that neglects these perturbations. Therefore, we con-
sider now the limit case of multibody systems that have one
or more bodies with zero mass or singular inertia tensor, i.e.,
with a rank-deficient body mass matrix.

In that case, classical recursive multibody formalisms
(“O(N)-formalisms”) like the ones byBrandl et al.(1988),
Lubich et al.(1992) and Eichberger(1994) fail since they
use the inverse of projected body mass matrices.Udwadia
and Phohomsiri(2006) consider multibody systems with sin-
gular mass matrix but do not exploit the system’s topology to
evaluate the equations of motion efficiently by a sequence of
forward and backward recursions in the kinematic tree.

In this section, we describe the multibody system by the
absolute position and orientation of allN bodies relative to
the inertial frame and use joint coordinates as generalized co-
ordinates for a tree structured system ( “mixed coordinates”),
see alsoSchiehlen(1997). As in Lubich et al.(1992) and
Eich-Soellner and F̈uhrer (1998), the recursive multibody
formalism is interpreted as a block Gaussian elimination for
a sparse, (very) large block-structured system of linear equa-
tions with the block structure being determined by the topol-
ogy of the multibody system.

Using generalized inverses, the recursive formalism of
Lubich et al.(1992) is modified to skip bodies with rank-
deficient body mass matrix in the second forward recursion,
see Sects.3.2and3.3. The resulting equations of motion are
not longer explicit but form a (linearly) implicit set of first
and second order differential equations (Sect.3.4). Finally,
we show in Sect.3.5by some analytical transformations that
the equations of motion form a first order index-1 DAE if a
certain regularity assumption is satisfied.
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3.1 Tree structured multibody systems: kinematics

Recursive multibody formalisms are tailored to tree struc-
tured systems. Here, the termtree structurecorresponds to
the structure of the labelled graph being associated to the
multibody system model. In this graph, each (rigid or flex-
ible) body of the system is represented by a vertex. Two ver-
tices of the graph are connected by an edge if and only if
the corresponding bodies in the multibody system model are
connected by a joint restricting their relative motion.

The graph of a tree structured multibody system is acyclic,
i.e., it is free of loops. Then, the multibody system has a
root body (•)(0) that corresponds to the root vertex of the
tree structured graph and is supposed to be inertially fixed.
All other bodies (•)(i) have a uniquely defined predecessor
(•)(πi ) in the kinematic tree. Each body (•)(i) may have suc-
cessors (•)( j) being characterized byπ j = i or, equivalently,
by j ∈ I i := {k : πk = i } with an index setI i that represents
the set of all successors of a given body (•)(i) in the multi-
body system model. Bodies without successors (I i = ∅) cor-
respond to leafs of the kinematic tree and are therefore called
“leaf bodies”.

We suppose that position and orientation of body (•)(i) may
be characterized by (absolute) position coordinatespi(t) ∈ R

d

with d = 6 for 3-D models andd = 3 for 2-D models (the po-
sition of point masses may be characterized byd = 3 abso-
lute coordinates in 3-D and byd = 2 absolute coordinates in
2-D, see Sect.4 below). Therelative position and orienta-
tion of body (•)(i) w.r.t. its predecessor (•)(πi ) is characterized
by joint coordinatesqi(t) ∈ R

ni representing theni degrees of
freedom of the joint connecting (•)(i) with (•)(πi ):

0= ki(pi , pπi
,qi , t) . (7)

Here and in the following we suppose that (7) is locally
uniquely solvable w.r.t.pi and that the JacobianK i = ∂ki/∂pi

is non-singular along the solution. In its most simple form,
Eq. (7) definespi explicitly by pi(t) = r i(pπi

(t),qi(t), t) result-
ing in K i = Id.

The kinematic relations (7) at the level of position coordi-
nates imply relations at the level of velocity and acceleration
coordinates that may formally be obtained by (total) differ-
entiation of (7) w.r.t. timet:

0 =
d
dt

ki(pi(t), pπi
(t),qi(t), t)

= K i ṗi +H i ṗπi
+ Ji q̇i + k(I)

i (p0, p,q, t) , (8)

0 = K i p̈i +H i p̈πi
+ Ji q̈i + k(II)

i (p0, ṗ0, p, ṗ,q, q̇, t) (9)

with

K i :=
∂ki

∂pi
∈ Rd×d , H i :=

∂ki

∂pπi

∈ Rd×d , Ji :=
∂ki

∂qi
∈ Rd×ni .

It is supposed that the joint coordinatesqi(t) are defined such
that all JacobiansJi have full column rank: rankJi = ni ≤ d.

Functionsk(I)
i := ∂ki/∂t and k(II)

i summarize partial time
derivatives and all lower order terms in the first and sec-
ond time derivative of (7), respectively. They may depend
on the (absolute) coordinatesp0 of the root body, on the ab-
solute coordinatesp := (p1, . . . , pN) of the remainingN bod-
ies in the system, on the corresponding joint coordinates
q := (q1, . . . ,qN) and onṗ0, ṗ andq̇.

Note, that (9) is simplified substantially for all bodies (•)(i)

that follow directly the root body (πi = 0) since the root body
is inertially fixed (p̈πi

= 0):

0= K i p̈i + Ji q̈i + k(II)
i (p0, ṗ0, p, ṗ,q, q̇, t) if πi = 0. (10)

In recursive multibody formalisms, it is supposed that po-
sition and velocity of the root body (p0(t), ṗ0(t)) and all joint
coordinatesqi(t), q̇i(t), ( i = 1, . . . ,N ), at a current timet are
known. Starting from the root body, the absolute position
and velocity coordinatespi(t), ṗi(t) of all N bodies (•)(i),
( i = 1, . . . ,N ), may then be computed recursively using (7)
and (8), respectively, (forward recursion).

3.2 Tree structured multibody systems: equilibrium
conditions

The equations of motion of a multibody system withN bod-
ies may be obtained from the equilibrium conditions for
forces and momenta for each individual body that are for-
mulated in absolute coordinatespi :

M i p̈i +K>i µi +
∑
j∈I i

H>j µ j = f i , ( i = 1, . . . ,N ) . (11)

The body mass matrixM i ∈ R
d×d contains mass and iner-

tia tensor of body (•)(i) and is supposed to be symmetric,
positive semi-definite. The equilibrium conditions contain
the reaction forces of the joints connecting body (•)(i) with
its predecessor (K>i µi) and with its successors in the kine-
matic tree (H>j µ j , j ∈ I i). All remaining forces and momenta
acting on body (•)(i) are summarized in the force vector
f i = f i(p, ṗ,q, q̇, t) ∈ Rd.

The specific structure of the joint reaction forces with La-
grange multipliersµi(t) ∈ R

d that satisfy

J>i µi = 0, ( i = 1, . . . ,N ) , (12)

results from the joint equations (7) and from d’Alembert’s
principle since the virtual work of constraint forces vanishes
for all (virtual) displacements being compatible with (7).
In (12), matrixJi denotes the Jacobian of the constraint func-
tion ki w.r.t. joint coordinatesqi ∈ R

ni , see Sect.3.1above.
For leaf bodies (•)(i), the equilibrium conditions (11) get a

simpler form sinceI i = { j : π j = i } = ∅. We obtain

M̄ iK i p̈i +µi = f̄ i (13)

with f̄ i := K−>i f i , K−>i := (K>i )−1 and the symmetric, posi-
tive semi-definite mass matrix̄M i := K−>i M iK−1

i .
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One of the basic components of recursive multibody for-
malisms are algorithms to transform the equilibrium condi-
tions (11) recursively forall bodies (•)(i) to the simpler form
(13) with suitableM̄ i and f̄ i . With the common assumption
that all body mass matricesM i are non-singular,µi may be
expressed in terms of̈pπi

, M̄ i , f̄ i andk(II)
i by block Gaussian

elimination applied to (9), (12) and (13), see, e.g.,Lubich
et al.(1992).

It is an important observation that thisbackward recur-
sion may be generalized to multibody systems with rank-
deficient body mass matricesM i as long as all body mass ma-
tricesM i are symmetric, positive semi-definite. In the follow-
ing, this will be shown by mathematical induction: let us sup-
pose that the equilibrium conditions of all successors (•)( j) of
body (•)(i) are given in form (13), i.e.,

M̄ jK j p̈j +µ j = f̄ j , ( j ∈ I i ) . (14)

Sinceµ j belongs to the null space ofJ>j , see (12), we get

µ j =
(
Id − M̄ jJ j(J>j M̄ jJ j)

+J>j
)
µ j

=
(
Id − M̄ jJ j(J>j M̄ jJ j)

+J>j
)(

f̄ j − M̄ jK j p̈j
)

with the Moore-Penrose pseudo-inverse (J>j M̄ jJ j)+ of the
projected body mass matrixJ>j M̄ jJ j ∈ R

n j×n j , see Remark1
in AppendixA. Because ofπ j = i, the termK j p̈j is given by

K j p̈j = −H j p̈i − J j q̈ j − k(II)
j , (15)

see (9), and we obtain finally

µ j =
(
M̄ j − M̄ jJ j(J>j M̄ jJ j)

+J>j M̄ j
)
H j p̈i (16)

+
(
Id − M̄ jJ j(J>j M̄ jJ j)

+J>j
)
( f̄ j + M̄ j k

(II)
j )

since(
M̄ j − M̄ jJ j(J>j M̄ jJ j)

+J>j M̄ j
)
J j q̈ j

= M̄1/2
j C

(
In j − (C>C)+(C>C)

)
q̈ j = M̄1/2

j 0d×n j q̈ j = 0

with C := M̄1/2
j J j , see Lemma2a in AppendixA.

Multiplying (11) from the left byK−>i and insertingµ j
from (16) for all j ∈ I i , the equilibrium conditions for body
(•)(i) get the more compact form (13) with

M̄ i := K−>i M iK−1
i (17a)

+
∑
j∈I i

K−>i H>j
(
M̄ j − M̄ jJ j(J>j M̄ jJ j)

+J>j M̄ j
)
H jK−1

i ,

f̄ i := K−>i f i (17b)

−
∑
j∈I i

K−>i H>j
(
Id − M̄ jJ j(J>j M̄ jJ j)

+J>j
)
( f̄ j + M̄ j k

(II)
j ) .

Lemma1 in AppendixA shows that matrixM̄ i in (17a) is
symmetric, positive semi-definite since it is a finite sum of
symmetric, positive semi-definite matrices. Starting from the

leaf bodies and following all branches of the kinematic tree
to the root, the compact form (13) of the equilibrium condi-
tions may be obtained recursively for allN bodies (•)(i) of the
multibody system. The condensed mass matricesM̄ i ∈ R

d×d.
are symmetric, positive semi-definite.

The backward recursion with̄M i , f̄ i being defined by
(17) is well-defined whenever all body mass matricesM i ,
( i = 1, . . . ,N ), are symmetric, positive semi-definite and ma-
trices K i are non-singular. Assuming additionally that the
body mass matricesM i ∈ R

d×d are positive definite, matrices
M̄ i ∈ R

d×d andJ>j M̄ jJ j ∈ R
ni×ni in (17) are non-singular and

(J>j M̄ jJ j)+ may be substituted by (J>j M̄ jJ j)−1. In that special
case, the recursive definitions (17) are well known from clas-
sical multibody formalisms, see, e.g.,Lubich et al.(1992).

3.3 Forward recursion: Absolute coordinates

The second time derivative (9) of the kinematic relations (7)
defines the acceleration̈pi of body (•)(i) in terms of the ac-
celeration p̈πi

of its predecessor (•)(πi ) and in terms of the
corresponding joint coordinates̈qi . Eliminating the joint co-
ordinates, all (absolute) accelerationsp̈i , ( i = 1, . . . ,N ), may
be computed recursively starting at the root body sincep̈0 ≡ 0
(forward recursion).

Left multiplication of (9) by (J>i M̄ iJi)+J>i M̄ i results in

(J>i M̄ iJi)
+(J>i M̄ iJi)q̈i (18)

= −(J>i M̄ iJi)
+J>i M̄ i(H i p̈πi

+ k(II)
i )− (J>i M̄ iJi)

+J>i f̄ i

since

J>i M̄ iK i p̈i = J>i f̄ i − J>i µi = J>i f̄ i ,

see (12) and (13). If M̄ i ∈ R
d×d is symmetric, positive def-

inite thenJ>i M̄ iJi ∈ R
ni×ni is symmetric, positive definite as

well and (18) defines an explicit expression forq̈i because
of (J>i M̄ iJi)+(J>i M̄ iJi) = Ini in that case. In general, how-
ever, Eq. (18) determines onlyr i := rank(J>i M̄ iJi) ≤ ni com-
ponents ofq̈i ∈ R

ni , see also Remark1b in AppendixA.
Substituting (18) in (9), we get the expression

p̈i = −H̄ i p̈πi
− k̄

(II)
i (19)

−K−1
i Ji

(
Ini − (J>i M̄ iJi)

+(J>i M̄ iJi)
)
q̈i

with

H̄ i := K−1
i

(
Id − Ji(J>i M̄ iJi)

+J>i M̄ i
)
H i , (20a)

k̄
(II)
i := K−1

i
(
Id − Ji(J>i M̄ iJi)

+J>i M̄ i
)
k(II)

i (20b)

−K−1
i Ji(J>i M̄ iJi)

+J>i f̄ i

that proves to be useful in the forward recursion ifJ>i M̄ iJi

is rank-deficient. The main difference between the full rank
and the rank-deficient case is the additional non-zero term(
Ini − (J>i M̄ iJi)+(J>i M̄ iJi)

)
q̈i in the right hand side of (19) if

r i = rank(J>i M̄ iJi) < ni .
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It is an important (and non-trivial) observation that this
additional term does not affect the successors of body (•)(i)

in the kinematic tree (if there are any). SupposeI i , ∅ and
consider a (direct) successor (•)( j) of body (•)(i), π j = i. In
the condensed equilibrium conditions (14), the reaction force
between bodies (•)( j) and (•)(i) is represented byµ j ∈ R

d that

depends on̈pi , f̄ j andk(II)
j , see (16):

µ j = f̄ j + M̄ jK j(H̄ j p̈i + k̄
(II)
j ) . (21a)

From (19), we see that the right hand side of (21a) contains
the product of matrices

J̄ j := M̄ jK jH̄ jK−1
i Ji

(
Ini − (J>i M̄ iJi)

+(J>i M̄ iJi)
)

that is rewritten as

J̄ j =
(
M̄ j − M̄ jJ j(J>j M̄ jJ j)

+J>j M̄ j
)1/2
·

·B jJi
(
Ini − (C>C)+(C>C)

)
with

Bl :=
(
M̄ l − M̄ lJl(J>l M̄ lJl)

+J>l M̄ l
)1/2H lK−1

i , ( l ∈ I i ) ,

B0 := M1/2
i K−1

i ,

C :=
(
B>0 B0+

∑
l∈I i

B>l Bl

)1/2
Ji = M̄1/2

i Ji ,

see (17a). Lemma3 from AppendixA provesJ̄ j = 0d×ni re-
sulting in

µ j = f̄ j + M̄ jK j(−H̄ jH̄ i p̈πi
− H̄ j k̄

(II)
i + k̄

(II)
j ) , (21b)

see (21a) and (19).
The two alternative representations ofµ j in (21a,b) pro-

vide two different ways to evaluatëpj by forward recursion,
see (14):

0 = M̄ jK j( p̈j + H̄ j p̈i + k̄
(II)
j ) , (22a)

0 = M̄ jK j( p̈j − H̄ jH̄ i p̈πi
− H̄ j k̄

(II)
i + k̄

(II)
j ) . (22b)

To keep the presentation compact, we assume in the follow-
ing that the bodies with rank-deficient body mass matrixM i

are isolated in the kinematic tree, i.e., the predecessor of
a body (•)(i) with rank-deficientM i is either the root body
(πi = 0) or a body with non-singular body mass matrix:

rankM i < d ⇒ ( πi = 0 or rankM πi = d ) . (23)

For πi , 0, this assumption implies that̄M πi is non-singular
as well since a symmetric, positive semi-definite matrixM πi

with rankM πi = d is positive definite and̄M πi is defined by a
sum ofK−>πi

M πi K
−1
πi

and a finite number of symmetric, posi-
tive semi-definite matrices, see (17a).

The technical assumption (23) allows to evaluate recur-
sively p̈j for all bodies with non-singularM̄ j starting at
the root body (•)(0) that was supposed to be inertially fixed

( p̈0 = 0). Let a body (•)( j) be given with rank̄M j = d and de-
note its predecessor byi := π j . If π j = 0 or i = π j , 0 and the
condensed mass matrix̄M i of the predecessor is non-singular
then p̈i has been computed before andp̈j may be obtained
from (22a) sinceK j was supposed to be non-singular:

p̈j = −H̄ j p̈i − k̄
(II)
j . (24a)

Otherwise,i = π j , 0 andM̄ i is rank-deficient and the cor-
responding body mass matrixM i has to be rank-deficient as
well. Then, body (•)(i) may be skipped in the forward re-
cursion since assumption (23) guarantees thaẗpπi

has been
computed before and̈pj may be obtained from (22b):

p̈j = H̄ jH̄ i p̈πi
+ H̄ j k̄

(II)
i − k̄

(II)
j . (24b)

The proposed forward recursion algorithm evaluatesp̈j for
all bodies (•)( j) with non-singularM̄ j provided that the tech-
nical assumption (23) is satisfied and the body mass matrices
M i are symmetric, positive semi-definite for allN bodies of
the multibody system model, (i = 1, . . . ,N ). It provides fur-
thermore the algorithmic basis to evaluate the equations of
motion as mixed second and first order system for the joint
coordinatesq= (q1, . . . ,qN).

3.4 Equations of motion: mixed second and first order
system of differential equations

Let us consider again a body (•)( j) with non-singularM̄ j and
denotei = π j . Multiplying (15) from the left byJ>j M̄ j , we get

(J>j M̄ jJ j)q̈ j = −J>j M̄ j(H j p̈i + k(II)
j )− J>j f̄ j (25a)

sinceJ>j M̄ jK j p̈j = J>j f̄ j − J>j µ j = J>j f̄ j , see (14) and (12).
As before, we get an alternative expression from substitut-

ing in the right hand side of (25a) the term p̈i according to
(19):

(J>j M̄ jJ j)q̈ j − J>j M̄ jH jK−1
i Ji

(
Ini − (J>i M̄ iJi)

+(J>i M̄ iJi)
)
q̈i

= J>j M̄ j(H jH̄ i p̈πi
+H j k̄

(II)
i − k(II)

j )− J>j f̄ j . (25b)

The simpler expression (25a) can be used wheneverπ j = 0
or i = π j , 0 andM̄ i is non-singular sincëpi has been evalu-
ated by forward recursion in that case. Eq. (25b) shows that
the situation is substantially more complicated ifi = π j , 0
andM̄ i is rank-deficient since in that case body (•)(i) and the
corresponding acceleration term̈pi have been skipped in the
forward recursion and̈pπi

has to be used instead.
In the latter case, the technical assumption (23) guarantees

that p̈πi
is really available from the forward recursion since

eitherπi = 0 orπi , 0 andM̄ πi is non-singular. Therefore, the
right hand side of (25a) with ( j, i) being substituted by (i,πi)
may be evaluated straightforwardly:

(J>i M̄ iJi)q̈i = −J>i M̄ i(H i p̈πi
+ k(II)

i )− J>i f̄ i . (26)
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In (26), the coefficient J>i M̄ iJi of q̈i is symmetric, positive
semi-definite and may therefore be diagonalized, see Re-
mark1 in AppendixA:

J>i M̄ iJi =: A i = X iΛiX>i = X i

(
Λ̄i 0
0 0

)
X>i ∈ R

ni×ni .

Here, Λ̄i ∈ R
r i×r i with r i = rank(J>i M̄ iJi) ≤ ni is a positive

diagonal matrix containing the non-zero eigenvalues of
J>i M̄ iJi . Matrix X i ∈ R

ni×ni is orthogonal. The projector
Ini − (J>i M̄ iJi)+(J>i M̄ iJi) in (25b) may be expressed as

Ini − (J>i M̄ iJi)
+(J>i M̄ iJi) = X i

(
Ini −Λ

+
i X>i X i︸︷︷︸
= Ini

Λi
)
X>i

= X i
(

Ini −

(
I r i 0
0 0

) )
X>i = X i

(
0 0
0 Ini−r i

)
X>i . (27)

Multiplying (26) from the left byX>i , we end up with a de-
coupled system ofr i linearly implicit second order differen-
tial equations

Λ̄i( I r i 0r i×(ni−r i ) )X>i q̈i (28a)

= − ( I r i 0r i×(ni−r i ) )X>i J>i
(
M̄ i(H i p̈πi

+ k(II)
i )+ f̄ i

)
and ni − r i additional equations that do not containq̈i and
may further be simplified to

0ni−r i = ( 0(ni−r i )×r i Ini−r i )X>i J>i f̄ i (28b)

since (0(ni−r i )×r i Ini−r i )X>i J>i M̄ i(H i p̈πi
+ k(II)

i ) vanishes be-

cause (27) and Lemma2b with C := M̄1/2
i Ji ∈ R

d×ni imply

( 0(ni−r i )×r i Ini−r i )X>i J>i M̄ i =

= ( 0(ni−r i )×r i Ini−r i )X>i X i︸︷︷︸
= Ini

(
0 0
0 Ini−r i

)
X>i J>i M̄ i

= ( 0(ni−r i )×r i Ini−r i )X>i
(
Ini − (J>i M̄ iJi)(J>i M̄ iJi)

+
)
J>i M̄ i

= ( 0(ni−r i )×r i Ini−r i )X>i
(
Ini − (C>C)(C>C)+

)
C>M̄1/2

i

= 0ni×d .

The equations of motion for the multibody system model
are given by (25b) for all bodies (•)( j) with i := π j , 0
and rankM̄ i < d and by (25a) for the remaining bod-
ies, (j = 1, . . . ,N ). They are composed of

∑
i r i lin-

early implicit second order differential equations (25b),
(28a) and

∑
i(ni − r i) additional equations (28b) to define

( 0(ni−r i )×r i Ini−r i )X>i q̇i , ( i = 1, . . . ,N ), see also the detailed
discussion in Sect.3.5 below. Similar to a classical resid-
ual formalism, seeEichberger(1994), the residuals in (25)
may be used to integrate the equations of motion by general
purpose DAE solvers like D, seeBrenan et al.(1996).

3.5 Equations of motion: formal analysis

For a formal analysis of equations of motion (25), we intro-
duce velocity coordinatesv0 := ṗ0,

v j :=

 X>j q̇ j −T j q̇i if i := π j , 0 and rankM̄ i < d ,

X>j q̇ j otherwise,

(29)

( j = 1, . . . ,N ), with

T j := Λ−1
j X>j J>j M̄ jH jK−1

i Ji

(
Ini − (J>i M̄ iJi)

+(J>i M̄ iJi)
)
.

Because of (29), the joint coordinateṡq j may also be ex-
pressed in terms ofv := (v1, . . . ,vN):

q̇ j = ϕ
[1]
j (q,v, t) , ( j = 1, . . . ,N ) ,

with

ϕ[1]
j =

 X j(v j +T jX ivi) if i := π j , 0 and rankM̄ i < d ,

X jv j otherwise

(30)

since rankM̄ i < d and the technical assumption (23) imply
q̇i = X ivi . For all bodies (•)(i) with rankM̄ i < d, vectorvi is
split according to

vi = X>i q̇i =

(
ηi

ζ i

)
(31)

with

ηi :=
(

I r i 0r i×(ni−r i )

)
X>i q̇i ∈ R

r i ,

ζ i :=
(

0(ni−r i )×r i Ini−r i

)
X>i q̇i ∈ R

ni−r i .

In the full rank case (rank̄M i = d), we set ηi := vi ∈ R
ni

and leaveζ i “empty” since r i = rank(J>i M̄ iJi) = ni , i.e.,
ni − r i = 0. In the rank-deficient case (rank̄M i < d⇒ r i < ni),
the technical assumption (23) guarantees that̄M j is non-
singular resulting inη j = v j . With (29) and the diagonalized
projector in (27), we see thaṫq j may be written as a linear
combination ofη j andζ i that is independent ofηi :

q̇ j = X j(v j+T j q̇i) = X jη j+X jΛ
−1
j X>j J>j M̄ jH jK−1

i JiX i

(
0r i

ζ i

)
.

The time derivative ofv j in (29) depends on time derivatives
of

X>j = X>j (p0(t), p(t),q(t), t) , T j = T j(p0(t), p(t),q(t), t)

with p= p(p0,q, t), see (7). Let Ẋ
>

j = Ẋ
>

j (p0,v0,q, q̇, t) and
Ṫ j = Ṫ j(p0,v0,q, q̇, t) be defined such that

Ẋ
>

j w=
d
dt

(X>j w) , (w ∈ Rn j ) , Ṫ jw=
d
dt

(T jw) , (w ∈ Rnπ j ) .
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For bodies (•)( j) with i := π j , 0 and rankM̄ i < d, we get
from (29), (30) and from the product rule

v̇ j = X>j q̈ j −T j q̈i + Ẋ
>

j q̇ j − Ṫ j q̇i

= X>j q̈ j −T j q̈i + Ẋ
>

j X j(v j +T jX ivi)− Ṫ jX ivi .

Multiplying the equations of motion (25b) from the left by
Λ−1

j X>j , we observe

Λ−1
j X>j (J>j M̄ jJ j) = Λ

−1
j X>j X jΛ jX>j = X>j

and end up with

η̇ j = v̇ j = Ẋ
>

j X j(v j +T jX ivi)− Ṫ jX ivi (32)

+Λ−1
j X>j J>j

(
M̄ j(H jH̄ i p̈πi

+H j k̄
(II)
i − k(II)

j )− f̄ j
)
.

Since p̈πi
has been evaluated by forward recursion and the

joint coordinateṡq are given in terms ofq, v, p0(t), v0(t) and
t, see (30), the system ofn j first order differential equations
(32) may be written as

η̇ j = ϕ
[2]
j (q,v, t) if i := π j , 0 and rankM̄ i < d .

In the same way, (28a) is seen to imply a system ofr i ≤ ni

first order differential equations

η̇i = ϕ
[2]
i (q,v, t) :=

− Λ̄
−1
i ( I r i 0r i×(ni−r i ) )X>i J>i

(
M̄ i(H i p̈πi

+ k(II)
i )+ f̄ i

)
+ ( I r i 0r i×(ni−r i ) )Ẋ

>

i vi .

Finally the ni − r i equations (28b) are written as algebraic
equations

0ni−r i = γi(q,v, t) .

With these transformations, the equations of motion are
re-formulated as differential-algebraic system (2) with∑

i(ni + r i) differential variablesy0 = (q1, . . . ,qN,η1, . . . ,ηN)
satisfying (2a) with right hand sidesϕ[1]

i of dimensionni

and right hand sidesϕ[2]
i of dimensionr i , ( i = 1, . . . ,N ), and∑

i(ni − r i) algebraic variablesz0 = ζ := (ζ1, . . . ,ζN) satisfy-
ing (2b) with functionsγi , ( i = 1, . . . ,N ).

The algebraic equations (2b) define implicitly the “alge-
braic” velocity componentsz0 = ζ, if the Jacobian∂γ/∂ζ is
non-singular along the solution. In practical applications, this
regularity assumption will typically be satisfied if∂γi/∂ζ i
is non-singular for all bodies (•)(i) with r i = rankM̄ i < ni ,
( i = 1, . . . ,N ), which may be achieved by appropriate damp-
ing terms in the force vector̄f i that should depend on the
velocity coordinatesζ i =

(
0(ni−r i )×r i Ini−r i

)
X>i q̇i , see (28b).

A more detailed analysis of the regularity of Jacobian∂γ/∂ζ
is subject of further research.

4 Neglecting inertia forces in multibody systems:
two examples

The theoretical analysis of Sect.3 generalizes the results of
Arnold et al. (2010) from chain structured systems to gen-
eral tree structured systems. In this section, we recall two

Figure 3. Two planar configurations illustrating the analysis of
Sect.3, seeArnold et al.(2010).

academic test problems fromArnold et al. (2010) to illus-
trate the basic steps of these investigations. We consider a
chain of two mass points (•)(i), (•)( j) in 2-D with i = π j and
πi = 0. I.e., body (•)(i) follows in the kinematic chain directly
the inertial system (“root”) and is the predecessor of body
(•)( j). In Sect.3, there are no specific physical assumptions
on the joints between bodies (•)(0) and (•)(i) and between
bodies (•)(i) and (•)( j), respectively. Therefore, the result-
ing set ofr i explicit second order differential equations (28a)
andni − r i implicit first order differential equations (28b) for
body (•)(i) describes arbitrary joint configurations and has a
substantially more complex mathematical structure than the
corresponding equations of motion in a classical multibody
formalism.

In the test problems, bodies (•)(i) and (•)( j) are repre-
sented by point masses withd = 2 degrees of freedom, see
Fig. 3. The root body (•)(0) is inertially fixed resulting in
pπi

(t) ≡ 0. The absolute coordinates of bodies (•)(i) and (•)( j)

are denoted bypi = (pi,x, pi,y)>, pj = (p j,x, p j,y)> ∈ R2. In this
simplified setting, the diagonal mass matricesM i , M j have
format 2×2 and the joint Jacobians satisfyJi ∈ R

2×ni and
J j ∈ R

2×n j .
Bodies (•)(0) and (•)(i) are connected by two linear spring-

damper elements acting parallel to the x-axis and y-axis,
see Fig.3. The ni = 2 degrees of freedom in this joint are
represented by joint coordinatesqi(t) = pi(t) ∈ R2 such that
the functionsk(I)

i , k(II)
i in (8), (9) and (10) vanish iden-

tically, K i = I2, H i = Ji = −I2. The free motion of body
(•)( j) in y-direction is represented by the joint coordinate
q j,y(t) := p j,y(t)− pi,y(t).

For the configuration in the upper plot of Fig.3,
bodies (•)(i) and (•)( j) are connected by another lin-
ear spring-damper element acting parallel to the x-axis.
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The joint hasn j = 2 degrees of freedom with joint co-
ordinatesq j = (q j,x,q j,y)> ∈ R2 and q j,x(t) := p j,x(t)− pi,x(t).

Functionsk(I)
j , k(II)

j in (8) and (9) vanish identically,K j = I2,
H j = J j = −I2.

In absolute coordinates, the equations of motion are given
by

mi p̈i,x = −di,x ṗi,x− ci,xpi,x , (33a)

= +d j,x(ṗ j,x− ṗi,x)+ c j,x(p j,x− pi,x) ,

mi p̈i,y = −di,y ṗi,y− ci,ypi,y , (33b)

mj p̈ j,x = −d j,x(ṗ j,x− ṗi,x)− c j,x(p j,x− pi,x) , (33c)

mj p̈ j,y = 0 (33d)

because (12) with Ji = J j = −I2 impliesµi = µ j = 0.
With J j = −I2, Eqs. (17a) and (17b) simplify to M̄ i =M i

and f̄ i = f i . If the massmi of body (•)(i) vanishes, we get
M̄ i =M i =mi I2 = 02×2 and r i = rank(J>i M̄ iJi) = 0, X i = I2.
The equations of motion for coordinatesqi(t) are composed
of r i = 0 second order differential equations (28a) and the
ni − r i = 2 implicit first order differential equations

0= f i =

(
−di,xq̇i,x− ci,xqi,x+d j,xq̇ j,x+ c j,xq j,x

−di,yq̇i,y− ci,yqi,y

)
(34)

see (28b). This result is in perfect agreement with (33a,b) in
the limit casemi = 0.

The joint coordinatesq j = pj − qi are not defined explicitly
if M̄ i = 0. The equations of motion (25b) yield

mj(q̈ j,x+ q̈i,x) = −d j,xq̇ j,x− c j,xq j,x , (35a)

mj(q̈ j,y+ q̈i,y) = 0. (35b)

In the lower plot of Fig.3, the relative motion of body (•)( j)

w.r.t. body (•)(i) is restricted in x-direction by the scalar con-
straintp j,x(t) = pi,x(t)+ l i . The joint has onlyn j = 1 degree of
freedomq j(t) = q j,y(t) with a joint JacobianJ j = −(0, 1)>,
K j = I2, H j = −I2. The update formula (17a) with M i =mi I2,
M j =mj I2 results in

M̄ i = M i +
(
M̄ j − M̄ j

(
0
1

) (
( 0 1)M̄ j

(
0
1

) )+( 0 1)M̄ j
)

=

(
mi +mj 0

0 mi

)
.

In (17b), we havef̄ i = f i sincek(I)
j = k(II)

j = 0 and f j = 0. The
equations of motion in absolute coordinates are

mi p̈i,x− µ j,x = −di,x ṗi,x− ci,xpi,x , (36a)

mi p̈i,y = −di,y ṗi,y− ci,ypi,y , (36b)

mj p̈ j,x+ µ j,x = 0, (36c)

mj p̈ j,y = 0. (36d)

Because of ¨p j,x(t) = p̈i,x(t), we obtainµ j,x(t) = −mj p̈ j,x(t) =
−mj p̈i,x(t) and the equations of motion (36a,b) get the form

(mi +mj)p̈i,x = −di,x ṗi,x− ci,xpi,x ,

mi p̈i,y = −di,y ṗi,y− ci,ypi,y .

In the limit casemi = 0, a combined set ofr i = 1 second or-
der differential equation forqi,x(t) andni − r i = 1 first order
differential equation forqi,y(t) is obtained, see also (28a) and
(28b) with Ji = −I2, X i = I2 andΛ̄i =mj :

mj q̈i,x = −di,xq̇i,x− ci,xqi,x ,

0 = −di,yq̇i,y− ci,yqi,y .

For this second test problem, we have a scalar joint coordi-
nateq j = q j,y ∈ R that is again not explicitly defined but has
to satisfy the linearly implicit second order differential equa-
tion

mj(q̈ j,y+ q̈i,y) = 0,

see (25b) and (35b).

5 Conclusions

Motivated by results from singular perturbation theory,
multibody system models with bodies of small mass or
nearly singular inertia terms are analysed considering the
limit case of systems with rank-deficient body mass matri-
ces. Replacing in a classical recursive multibody formalism
the inverse of condensed body mass matrices by their Moore-
Penrose pseudo-inverse, the backward recursion phase may
be adapted to the rank-deficient case.

The crucial point in the analysis is the evaluation of ac-
celerations for successors of bodies with rank-deficient body
mass matrix in the forward recursion phase. It was shown that
bodies with rank-deficient body mass matrix may simply be
skipped in forward recursion. The acceleration coordinates
of joints leaving such bodies to one of its successors are not
given in explicit form but satisfy a linearly implicit equation
that may be handled conveniently by common general pur-
pose DAE solvers.

For each body with rank-deficient body mass matrix, a
mixed system of first and second order differential equations
is obtained resulting in a first order DAE that has index 1 for
multibody system models with appropriate damping terms in
the force elements acting at the “zero mass” body. Further
investigations will be necessary to analyse practical aspects
of this index-1 assumption in more detail.

In future research, the basic framework that has been de-
veloped in the present paper for tree structured rigid multi-
body system models will be extended to flexible systems and
to multibody system models with (holonomic) constraints.
These additional results will provide the algorithmic basis
for a reference implementation in industrial multibody sys-
tem simulation software.
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Appendix A

Useful results from numerical linear algebra

To make the paper self-contained, we summarize in this ap-
pendix some basics of numerical linear algebra. A compre-
hensive discussion of these topics is given, e.g., byGolub and
van Loan(1996).

Remark 1 Any symmetric, positive semi-definite matrix
A ∈ Rm×m with r := rankA ≤m has an orthonormal basis
of eigenvectors x1, x2, . . . , xr , xr+1, . . . , xm corresponding
to its eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λr > λr+1 = . . . = λm = 0.
Summarizing the eigenvectors in the orthogonal matrix
X := [x1, . . . , xm] ∈ Rm×m, we getAX = XΛ with the diagonal
matrixΛ := diag1≤k≤mλk.

(a) With Λ1/2 := diag1≤k≤m

√
λk, matrix A1/2 := XΛ1/2X>

is well defined and independent of the specific choice of
orthogonal eigenvectorsx1, . . . , xm. Matrix A1/2 is sym-
metric, positive semi-definite and satisfiesA1/2A1/2 =

(XΛ1/2X>)(XΛ1/2X>) = XΛ1/2Λ1/2X> = XΛX> = A.

(b) With Λ̄ := diag1≤k≤r λk ∈ R
r×r , the Moore-Penrose

pseudo-inverseof A is given by

A+=XΛ+X> with Λ+ :=

 Λ̄
−1

0r×(m−r)

0(m−r)×r 0(m−r)×(m−r)

 . (A1)

It defines orthogonal projectorsAA+ andIm−A+A project-
ing on the range ofA and on the null space ofA, respectively:

AA+A=A, (Im−AA+)A=0m×m, A(Im−A+A)=0m×m. (A2)

If A is not only positive semi-definite, but even positive
definite, the Moore-Penrose pseudo-inverseA+ coincides
with the classical inverseA−1 sinceA is non-singular and
r = rankA =m in that case,Λ+ = Λ−1.

Lemma 1 Consider a symmetric, positive semi-definite ma-
trix M ∈ Rd×d, (square) matricesH, K ∈ Rd×d of the same
format and a (rectangular) matrixJ ∈ Rd×n with 0< n≤ d.
If K is non-singular then matrix

K−>H>
(
M −MJ (J>MJ )+J>M

)
HK −1

with K−> = (K−1)> is symmetric and positive semi-definite.

Proof The argumentJ>MJ ∈ Rn×n of the Moore-Pen-
rose pseudo-inverse may be written asJ>MJ = C>C with
C :=M1/2J ∈ Rd×n. The singular value decomposition ofC
has the formC = PΣQ> with orthogonal matricesP ∈ Rd×d,
Q ∈ Rn×n and the (d×n)-matrix

Σ =

(
Σ0

0(d−n)×n

)
with Σ0 =

 Σ̄0 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

 ∈ Rn×n,

Σ̄0 := diag1≤k≤r σk, that summarizes the positive singular val-
uesσ1 ≥ σ2 ≥ . . . ≥ σr > 0 of matrix C. Here,r ≤ n denotes
the rank ofC and the remaining singular values vanish iden-
tically: σr+1 = . . . = σn = 0.

Applying (A1) to

A := C>C = (PΣQ>)>(PΣQ>) =QΣ>ΣQ> ,

we getm= n, X =Q andΛ = Σ>Σ = Σ>0Σ0, i.e., Λ̄ = Σ̄
>

0 Σ̄0.
The assertion of the Lemma follows from

K−>H>
(
M −MJ (J>MJ )+J>M

)
HK −1

=
(
M1/2HK −1)>(Id −C(C>C)+C>

)(
M1/2HK −1)

and

Id −C(C>C)+C>

= P
(
Id −

(
Σ0

0

)
Q>Q︸︷︷︸
= In

(
Σ>0Σ0

)+Q>Q︸︷︷︸
= In

(
Σ>0 0

) )
P>

= P
(
Id −

(
I r 0
0 0

) )
P> = P

(
0 0
0 Id−r

)
P> ,

see (A1).

Lemma 2 For any matrix C ∈ Rd×n with 0< n≤ d the
Moore-Penrose pseudo-inverse of(C>C) ∈ Rn×n satisfies

(a) C
(
In− (C>C)+(C>C)

)
= 0d×n ,

(b)
(
In− (C>C)(C>C)+

)
C> = 0n×d .

Proof (a) Eq. (A2) with A := C>C ∈ Rn×n yields

(C>C)
(
In− (C>C)+(C>C)

)
= C>C− (C>C)(C>C)+(C>C) = C>C−C>C = 0n×n ,

i.e., C>Czk = 0n for the column vectors zk ∈ R
n,

(k= 1, . . . ,n), of matrix In− (C>C)+(C>C). Since
C>Czk = 0n implies z>k C>Czk = 0 and ‖Czk‖

2
2 = 0, we

get Czk = 0d, (k= 1, . . . ,n), and see that all column vectors
of In− (C>C)+(C>C) belong to the null space ofC.

(b) Assertion (b) follows in the same way from(
In− (C>C)(C>C)+

)
(C>C) = C>C−C>C = 0n×n .

Lemma 3 Consider a finite index set I⊂ N+ and matri-
ces B0 ∈ R

d×d, B j ∈ R
d×d, ( j ∈ I ), J ∈ Rd×n with 0< n≤ d.

Then, matrixB>0 B0+
∑

j∈I B>j B j is symmetric, positive semi-
definite and

C :=
(
B>0 B0+

∑
j∈I

B>j B j

)1/2
J ∈ Rd×n

is well-defined and satisfies

B jJ
(
In− (C>C)+(C>C)

)
= 0d×n , ( j ∈ I ) .
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Proof For any vectorz∈ Rn, we get

z>
(
B>0 B0+

∑
j∈I

B>j B j
)
z= ‖B0z‖22+

∑
j∈I

‖B j z‖22 ≥ 0,

i.e., the symmetric matrixB>0 B0+
∑

j B
>
j B j is positive semi-

definite and matrixC ∈ Rd×n is well-defined.
From the proof of Lemma2 we know thatCzk = 0d for all

column vectorszk of matrix In− (C>C)+(C>C). Therefore,

0 = (Czk)
>(Czk) = z>k (C>C)zk

= z>k J>
(
B>0 B0+

∑
j
B>j B j

)
Jzk

= z>k J>B>0 B0Jzk+
∑

j
z>k J>B>j B jJzk

= ‖B0Jzk‖
2
2+

∑
j
‖B jJzk‖

2
2 .

This sum of non-negative numbers may vanish only, if
‖B0Jzk‖2 = 0 and ‖B jJzk‖2 = 0, ( j ∈ I , k= 1, . . . ,n). There-
fore, B jJzk = 0d for all j ∈ I and all column vectorszk,
( k= 1, . . . ,n), of matrix In− (C>C)+(C>C).
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