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Abstract. Modern machine structures are often fabricated by welding. From a fatigue point of view, the struc-
tural details and especially, the welded details are the most prone to fatigue damage and failure. Design against
fatigue requires information on the fatigue resistance of a structure’s critical details and the stress loads that
act on each detail. Even though, dynamic simulation of flexible bodies is already current method for analyz-
ing structures, obtaining the stress history of a structural detail during dynamic simulation is a challenging
task; especially when the detail has a complex geometry. In particular, analyzing the stress history of every
structural detail within a single finite element model can be overwhelming since the amount of nodal degrees
of freedom needed in the model may require an impractical amount of computational effort. The purpose of
computer simulation is to reduce amount of prototypes and speed up the product development process. Also,
to take operator influence into account, real time models, i.e. simplified and computationally efficient models
are required. This in turn, requires stress computation to be efficient if it will be performed during dynamic
simulation. The research looks back at the theoretical background of multibody simulation and finite element
method to find suitable parts to form a new approach for efficient stress calculation. This study proposes that,
the problem of stress calculation during dynamic simulation can be greatly simplified by using a combination
of Floating Frame of Reference Formulation with modal superposition and a sub-modeling approach. In prac-
tice, the proposed approach can be used to efficiently generate the relevant fatigue assessment stress history
for a structural detail during or after dynamic simulation. Proposed approach is demonstrated in practice using
one numerical example. Even though, examples are simplified the results show that approach is applicable and
can be used as proposed.

1 Introduction

Multibody dynamic simulation represents a remarkable im-
provement in predicting machine performance compared
to previous methods, which are often based on very sim-
plified analytical models in combination with large safety
margins for model uncertainties or empirical testing. With
the development of more computationally powerful comput-
ers over recent decades, dynamic simulation has increas-
ingly become a standard tool for comprehensive machine
design. Furthermore, this continuously increasing computa-
tional power, combined with the availability of increasingly
advanced codes, offers more possibilities for the dynamic
analysis of complex structures.

Using dynamic simulation to determine stresses for flexi-
ble bodies also provides an opportunity to predict the fatigue
life of a structure in practical applications. Currently in engi-
neering applications, the prediction of fatigue life for a struc-
ture is thought to be a separate stage of design due its com-
plexity and computational burden. If fatigue life prediction is
implemented efficiently in multibody codes, it could be used
throughout all stages of design without dedicating discrete
designing stages to it. These two scenarios of the use of the
fatigue analysis are depicted in Fig.1.

Instead of being an explicit design step, fatigue analysis
can be integrated into the design process (Fig.1 right). This
makes fatigue analysis an integrated part of the design pro-
cess, and from a design point of view, fatigue analysis is
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Figure 1. Workflow of a design process with integrated fatigue
analysis.

taken into account automatically. To perform mutual inte-
gration, efficient methods for performing fatigue analysis are
required.

Dynamically loaded structures such as booms are typically
manufactured by welding. By definition, fluctuating loads re-
sult in fatigue damage to a structure. Without post-weld treat-
ment, welds are prone to fatigue (Maddox, 1991; Haagensen
and Maddox, 2011). In dynamic analysis, structural details
that do not affect the dynamic behavior of a structure are usu-
ally neglected. Typically, this means that stress raisers are not
analyzed in dynamic simulation even though they might be a
possible location for fatigue. If treated separately, more work
is required in fatigue analysis (Fig.1 left). In Fig. 2, an ex-
cavator crane is depicted to illustrate the possible locations
that might be vulnerable to fatigue and should be taken into
consideration when predicting the fatigue life of a crane.

For stress history prediction, a welded structure requires
particular attention. In addition, as computational power in-
creases, there is increasing interest in predicting fatigue life
for dynamically loaded structures. Even though computa-
tional capabilities have been greatly increased, the need re-
mains for using coordinate reduction methods, especially in
the case of large and complicated structures. Multibody dy-
namic simulation can be used to analyze the dynamics of
complex mechanical systems. It can also be used to deter-
mine dynamic loads or even stresses for further fatigue analy-
sis. Obtaining stress data for fatigue analysis from multibody
system simulation is a main component of this work.

A new strategy developed in the proposed method com-
bines three commonly used engineering approaches: the fi-
nite element method, the floating frame of reference formu-
lation, and the sub-modeling approach. This strategy can be
used when carrying out dynamic simulation to obtain, effi-
ciently, the stress history of an arbitrary notch. In literature
it is shown that computer simulations can be used for fault

Figure 2. A crane with numerous discontinuities, which can be
prone to fatigue.

diagnosis (Korkealaakso et al., 2006). Moreover, this stress
history can further be used as initial data for the fatigue anal-
ysis. In addition to efficient stress history calculation, the pro-
posed combined methods strategy offers other beneficial fea-
tures, such as the possibility of attaching structural details to
a simulation model without modifying the simulation model.
Furthermore, since structural detail does not affect the over-
all behavior of a simulation, the number of details can be
changed arbitrary and separately.

To approximate, efficiently, the fatigue life of a structure
or structural detail, some simplifying assumptions must be
made. These assumptions decrease the quality of fatigue life
estimation, especially in high frequency loading. For this
work, a linear strain-stress relationship is assumed. In ad-
dition, presumptions have been made related to cumulative
damage counting. For example, since fatigue damage can be
linearly accumulated, structural failure is predicted when the
entire available fatigue life is consumed. The focus here is
on linear deformation. The strategy considers plastic defor-
mation only local to the tip of a crack. Material nonlinearities
fall outside the scope of this work. However, fatigue life esti-
mation gives useful information when comparing alternative
structures.

2 The floating frame of reference formulation

The floating frame of reference formulation is typically ap-
plicable to systems with large displacements and rotations
and small deformations, even though the method can be used
for large deformation problems (Wallrapp and Wiedemann,
2003). The method is based on describing the deformations
of a flexible body with respect to a frame of reference. With
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Figure 3. Position of particlePi in a flexible body.

the frame of reference, large displacements and rotations can
be described. The deformations of a flexible body in rela-
tion to its frame of reference can be described with a number
of methods, but in the present study, deformation can be de-
picted with orthonormalized Craig-Bampton modes (Craig
Jr. and Bampton, 1968). In it, eigenmodes are used together
with static modes to describe structural deformation. The
modes can be obtained using a finite element method.

The formulation separates the deformation of the body
from the reference motion. The dynamics of the body can
be generated using reference motion that is superposed by
the deformation of the body. The interaction between the ref-
erence motion and deformation is accounted for with a mass
matrix and quadratic velocity vector. This permits even mass
distribution and inertia modeling (Shabana, 1998).

Figure3 illustrates the position of particlePi within a flex-
ible bodyi. In the undeformed state, the position of the parti-
cle in the local reference frame of the body can be determined
by vectoruiP

0 .
As body i is deformed (Fig.3), the position of particle

Pi changes according to the vectoruiP
f . The global reference

frame is represented (Fig.3) using Cartesian coordinates X,
Y, and Z. Respectively, the local reference frame of bodyi
consists of coordinates xi , yi , and zi . Therefore, the location
of the particle in a global reference frame can be defined with
the vectorr iP as follows:

r iP = Ri +A i
(
uiP

0 +uiP
f

)
, (1)

whereRi is translation of the local reference coordinate
system of bodyi in the global coordinate system, and matrix
A i is the rotation matrix, which is expressed here in terms of
four Euler parameters.

In Eq. (1), uiP
0 is the position vector of particlePi in the

local reference coordinate system for the undeformed con-
figuration, anduiP

f is the position vector in the local refer-
ence coordinate system for the deformed configuration. The
behavior of the vectoruiP

f can be described with a series of
parallel differential equations. By separating the variables,

if possible, the equation results in an infinite series that de-
scribes the deformations. For computational reasons, the infi-
nite series cannot be applied to the analysis of flexible bodies.
In practical application, the vectoruiP

f is described using the
finite element method.

The rotation matrixA i using Euler parameters can be for-
mulated as follows.
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whereθi0, θi1, θi2, andθi3 are Euler parameters. In this study,
Euler parameters are used to avoid singular conditions, which
can occur when Euler or Bryant angles are used (Nikravesh
and Chung, 1982). The following mathematical constraint
must be taken into consideration when Euler parameters are
applied.(
θi0
)2
+
(
θi1
)2
+
(
θi2
)2
+
(
θi3
)2
= 1 (3)

The first time-derivative of the Euler parametersθ̇ and the
angular velocity vectorωi has the following linear connec-
tion.

ωi
=G

iT
θ̇i (4)

MatricesA i , andG
i
depend on the selected generalized co-

ordinates. Using Euler parameters, the matrixG
i
can be ex-

pressed as.

G
i
=

 −θ
i
1 θi0 θi3 −θi2

−θi2 −θi3 θi0 θi1
−θi3 θi2 −θi1 θi0

 , (5)

whereG
i
is the transformation matrix that relates the angular

velocityωi of a body and the first time derivative of the Euler
parameter. Using the model reduction method, the position of
an arbitrary particlePi in the global coordinate system can be
expressed as.

r iP = Ri +A i
(
uiP

0 +Φ
iP
R pi
)

(6)

Equation (6) is determined using a collection of modes. The
vectoruiP

0 and the modal matrixΦiP
R are constant with time.

Consequently, they only need to be calculated once, at the
beginning of the simulation.

The finite element model often consists of a large number
of nodal degrees of freedom, and the use of large finite ele-
ment models to describe flexibility may be computationally
inefficient. For this reason, the floating frame of reference
formulation is often used together with a modal reduction
method in which the deformation is described with structural
modes. Modes may be the presumed forms of deformation,
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but most often, they are eigenmodes of structural vibrations.
The eigenmodes can be obtained from a finite element model
of the structure. By employing a modal reduction method,
the deformation vectoruiP

f can be expressed in modal coor-
dinates with a shape matrix.

uiP
f =Φ

iP
R pi (7)

ΦiP
R is the modal matrix whose columns describe the trans-

lation of particlePi within the assumed deformation modes
of the flexible bodyi (Shabana, 2005), and pi is a vector of
elastic coordinates. In general, the complete modal matrix
ΦiP for body i obtained from the finite element method con-
tains the location translation and orientation of particlePi .
In multibody dynamics, the modal matrix should separate
translation and orientation descriptions into their own com-
ponents.

The orthogonal shape matrix can be formulated from the
eigenmodes of the body. Typically, the shape superposition
technique yields acceptably accurate results even though
only a few differential equations are applied. By approxi-
mating Eq. (7) with annp number of modal coordinates, the
deformation vectoruiP

f for a particlePi can be written as fol-
lows.

uiP
f ≈

np∑
j=1

ϕi
R, j p

i
j =Φ

iP
R pi (8)

pi
j is one modal coordinate in the modal coordinate vector

that corresponds to the modal shapej. Rotations due to body
deformation do not have any direct use in the floating frame
of reference formulation, and therefore they are usually ig-
nored. However, rotation modes can be used in the descrip-
tion of constraint equations applied to rotational degrees of
freedom (Korkealaakso et al., 2009). Rotational modes are
used here to connect sub-models to large-scale models. With
the rotational modal matrixΦiP

θ , the rotation changeεiP
f re-

sulting from deformation can be approximated as follows.

εiP
f ≈

np∑
j=1

ϕi
θ, j p

i
j (9)

A rotation matrixA iP
f that describes orientation due to de-

formation at the location of particlePi with respect to the
reference frame can be composed like this.

A iP
f = I + ε̃iP

f (10)

I is (3×3) identity matrix. The ˜ symbol above a variable
indicates the skew-symmetric form. The orientation at the
location of particlePi within the frame of reference can be
expressed as follows.

viP
f = A iP

f viP
0 (11)

viP
0 is the orientation of the location of particlePi in the un-

deformed state. The description of the rotation of the node

has no direct use in formulating equations of motion, but the
rotation may be needed to describe the constraint equations
that are applied to rotational degrees of freedom. Taking into
account the relation between first time derivative of Euler an-
gels and angular velocity of the bodyi, Eq. (4), the general-
ized velocity vector of the flexible bodyi can be written as
follows.

q̇i =
[

Ṙ
iT
ωiT ṗiT

]
(12)

The velocity of particlePi can be determined by differen-
tiating Eq. (1) with respect to time as follows.

ṙ iP =
[

I −A iG
i
ũiP

f A iΦiP
R
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ṗi

 (13)

Note the vector, in the right hand of Eq. (13), describes the
velocity of the generalized coordinates of a flexible bodyi.
Differentiating the velocity of a particle Eq. (13) with respect
to time, the acceleration of a particle can be written in this
manner.
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(14)

whereR̈
i
, θ̈

iE
, and p̈i are accelerations of translational coor-

dinates, Euler parameters, and modal coordinates of bodyi.
According to the D’Alembert principle, inertial forces can

be treated as external forces, thus forces of the bodyi can be
written as follows.

F i =

∫
Vi

ρi r̈ iPdVi , (15)

whereρi is density andVi is the volume of a bodyi, respec-
tively. The virtual work done by the inertial forces can be
represented as.

δWi =

∫
Vi

ρiδr iPT r̈ iPdVi (16)

The virtual displacement of the position vectorδr iP can be
expressed as.

δr iP =
δr iP

δqi
δqi =

[
I −A i ũ

iP
G

i
A i ΦiP

R

]
δqi , (17)

By substituting the virtual displacement Eq. (17) into the
equation for virtual work (Eq.16) and separating terms, the
following equation can be obtained.

δWi = δqi
[
M i q̈i+Qiv

]
, (18)
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whereδqi is virtual change of the generalized coordinates,
Qiv is quadratic velocity vector of bodyi, andM i is the mass
matrix.

The virtual work of externally applied forces can be de-
fined as.

δWie =

∫
Vi

δr iPT
F iPdVi= δqiTQie, (19)

whereF iP is externally applied force per unit volume, andQie

is the vector of generalized forces, which can be expressed as
follows.

Qie =

 Qie
R

Qie
θ

Qie
p

, (20)

whereQie
R is translational components,Qie

θ is rotational com-
ponents, andQie

p is elastic components of the generalized
force vector, respectively.

The elastic forces can be described using modal coordi-
nates and the stiffness matrix in modal coordinatesK i . The
stiffness matrix in modal coordinates can be obtained using
component mode synthesis. The virtual work of the elastic
forces can be expressed as.

δWi f = δpTK i pi (21)

The vector of elastic forces can be represented as follows.

Qi f =

 0
0

K i pi

 (22)

In multibody dynamics, different types of joints between
bodies are accounted for with kinematic constraints applied
on generalized coordinates. Algebraic equations are used for
the description of constraints between bodies. By examining
only holonomic constraints, constraint equations can be ex-
pressed as follows.

C(q) = 0 (23)

where,C is the constraint vector for the system. Equations of
motion may be formulated using the widely known Lagrange
method, in which kinematic constraints are accounted for as
supplementary algebraic equations with the help of Lagrange
multipliers. The method is called global formulation since
it does not differentiate between open and closed kinematic
chains, as topological methods do. After employing the con-
cept of virtual work to externally applied forces and then in-
troducing constraints with help of Lagrange multipliers, the
equation of motion can be written in the form of a differential
algebraic equation (DAE).

M q̈+K q+CT
qλ =Qe+Qv−Qf (24)

Equations (23) and (24) form a set of differential algebraic
equations, which can be converted to ordinary differential
equations (ODE) to solve for the dynamic response of the
multibody system in the time domain. To be able to apply
traditional ODE solvers to the system of equations, the con-
straint equations must be differentiated twice with respect to
time.

C̈(q, q̇, q̈) = Cqq̈+
(
Cqq̇
)

q
q̇= 0, (25)

whereQc = −
(
Cqq̇
)

q
q̇ is the constraint force vector for the

system. As a result, the final matrix form of equations of mo-
tion describing the system dynamics looks as following.[

M CT
q

Cq 0

] [
q̈
λ

]
=

[
Qe+Qv−Qf

Qc

]
(26)

2.1 Fatigue

Fatigue is a failure that occurs after cyclic loading, and it is a
common cause of structural fracture. Fatigue damage is one
of the most common faults in dynamically loaded structures.
In principle, the entire development of fatigue damage can be
described as follows: one or more cracks form in the material,
and the cracks grow until fatigue failure takes place.

A fundamental design objective for any dynamically
loaded structure exposed to cyclic loading or vibration is to
avoid fatigue failure throughout its service life. Welding is
one of the most efficient methods used to manufacture struc-
tures. Cranes, vehicle frames, and machines are just some
examples of welded structures that are dynamically loaded.
As a structural detail, a weld is initially very prone to fa-
tigue due to the notch effect, high tensile residual stresses,
and welding flaws. High-strength steels, which are seeing in-
creasing use, are even more sensitive to this phenomenon.
In general, high strength steels are chosen to achieve larger
payloads with more slender structural elements. As a trade
off, the slender structures are subject to increased nominal
stresses and welds become more prone to fatigue due to the
higher stresses. Typically, structural welds are at or near areas
of structural discontinuity. The weld itself is a local discon-
tinuity. Furthermore, welding processes typically introduce
flaws in the weld or weld toe such as undercuts, the inclu-
sion of impurities, and cold laps. These flaws are sources of
incipient cracking.

Empirical testing with actual parts or complete systems is
time consuming and laborious. Traditionally, the approach
to avoiding fatigue failures in a new system is to fatigue
test specific structural details before integrating them into
the system design. In fact, many kinds of typical welded de-
tails can be found commonly in the literature including fil-
let welds, corner joints, and butt joints. This approach has
several weaknesses. For example, all pertinent structural de-
tails to be used should be tested under various loading condi-
tions if the fatigue evaluation is to be comprehensive, and the
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approach ignores other parameters that may relate to a par-
ticular joint, such as the number of weld beads or other geo-
metrical and technical details. Obviously, for a complex sys-
tem with an arbitrary number of structural details subjected
to various multi-axial loading scenarios, it is practically im-
possible to use this traditional approach.

More recently, numerical methods have been developed
to estimate fatigue life making empirical testing unneces-
sary and allowing the designer to more effectively consider
the effects of fatigue (Haagensen and Maddox, 2011). To-
day, the finite element method has become a standard ap-
proach for estimating the fatigue life of a structure. Nonethe-
less, even though computational capacity is increasing all
the time, applying the finite element approach to a complex
structure subject to dynamic multi-axial loading presents an
overwhelming computational burden.

Fatigue design approaches can be differentiated according
to how cracks initiate. In some applications, such as rotating
axles, fatigue life is equivalent to the duration of the crack
initialization stage. Because of the notch effect, the crack in
these applications quickly results in failure. For larger struc-
tures, such as machine frames or many welded structures,
cracks are present from the beginning, so fatigue life is the
determined by the length of time it takes the initial cracks to
propagate.

The fatigue life of a structure under dynamic load can be
estimated by assuming it to have some initial amount of fa-
tigue endurance and then assuming that one load cycle will
result in fatigue damage of some amount. This is commonly
known as Palmgren-Miner’s rule (Miner, 1945). It was sug-
gested that fatigue damage could be accumulated linearly for
a certain amplitude value. Finally, when all fatigue endurance
has been depleted, failure is expected. A large amount of fa-
tigue test data can be found in the literature, and stress histo-
ries can be obtained through experimentation of by simula-
tion.

3 Sub-modeling

A common cause of structural damage is local stress con-
centration due to structural geometry. Practically all struc-
tural damage occurs where one or more stress raisers are
present. Problematic details are often combinations of sev-
eral geometries that concentrate hazardous stresses. Stress
raisers result from local discontinuities in real structural fea-
tures; such as welds, attachments grooves or holes. Typically,
small discontinuities are neglected in multibody simulation,
since their effect on overall behavior is relatively small com-
pared to their contribution to computational burden. Tradi-
tionally, the problem of stress raisers is solved by calculating
nominal stress levels and then taking into account the effect
of stress raisers by applying predefined stress concentration
factors. The stress concentration factor concept cannot be a
general approach, since it is obvious that all possible geomet-

Figure 4. The sub-modeling approach for attaching dissimilar
meshes.

rical shapes and their combinations combined with complex
loading cases cannot be predefined, especially if a specific
but arbitrary level of accuracy is needed. Obviously, the gen-
eral approach covering all kinds of geometrical combinations
in the finite element method is to model them as they appear
in the structure. Since stress values change drastically in the
neighborhood of a structural discontinuity, a refined element
mesh is required, which will lead to a large number of de-
grees of freedom. This approach is impractical due to the
computational burden, especially in the case of multibody
simulation.

The sub-modeling approach is commonly used, and it can
overcome the previously mentioned problems. With the ap-
proach some new problems arise, but they will be discussed
later. In principal, a sub-model is a model inside of or on
top of a large scale model that describes a certain portion of
the large scale model. It can be used to attach a locally re-
fined element mesh to the larger scale model, which does not
need to be changed. In sub-modeling, the simplified struc-
tural model is complemented by a more refined sub-model of
structural details. The sub-models do not influence the opera-
tion of the system but get their boundary conditions and load-
ing data from the larger simplified model. The sub-modeling
approach is also referred to in the literature as the global/local
approach (Knight et al., 1991). The sub-modeling approach
can be used to connect dissimilar meshes together as shown
schematically in Fig.4.

Sub-modeling is an approach that is used together with
the finite element method to combine two different finite el-
ement meshes. There are several reasons the sub-modeling
approach is powerful. It can be used to connect finite models
into a larger assembly. The approach does not require meshes
to be similar and even element types can differ. Currently
available methods do not require any coincident nodes. These
beneficial features can be utilized to combine separately con-
structed models or refine the element mesh in a certain area
without taking care of refining the mesh smoothly. In addi-
tion, a sub-model can be changed easily without modifying
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other parts of the model. Problems arise if the level of re-
finement differs significantly between two different models.
A coarse mesh tends to be too stiff and displacements are un-
derestimated, and if those underestimated displacements are
used as boundary conditions for the refined model, calculated
stress levels will be non-conservative.

Coupling between the sub-model and the large-scale
model is assumed to be one directional, i.e., it is assumed that
the behavior of the reduced model in dynamic simulation is
not affected by the sub-model. That means, the large scale
model is complemented with a sub-model of the desired de-
tail and it does not affect the system’s overall stiffness. This
crucial simplification makes dynamic simulation and stress
calculation independent from each other. Therefore, the com-
putation can be straight forwardly parallelized. Displacement
boundary conditions of the sub-model, however, are acquired
from the large-scale model. In the proposed approach, during
dynamic analysis the general behavior of the structure is cal-
culated with a simplified model and details are examined as a
separate problem. For assessing fatigue loads on a structure,
this assumption is sufficient since any significant change in
structural flexibility due to crack growth occurs only very late
in the total life of a structure.

A sub-model can make the overall structure stiffer, or it can
only carry boundary conditions without affecting the stiffness
of a large-scale structure. Sub-models describe structural de-
tails, and only those that are interesting from a design point
of view can be attached to a flexible multibody model. Con-
nections between a multibody model and its sub-models are
one-directional, guaranteeing that the multibody simulation
is not affected by the sub-model. For instance, if a flexible
multibody model is a part of a real-time simulation, it will be
a real-time simulation even if sub-models are active. In this
paper, one way of attaching sub-models to the larger multi-
body model is introduced, but the concept is general.

4 Stress in multibody dynamic simulation

Dimensioning components require information about load-
ing and more accurately, stresses. Even though, stresses can
somehow be obtained from rigid body dynamics by using
simulated forces as force boundary conditions in finite ele-
ment method. In general, to obtain structural stresses, struc-
tural flexibility should be taken into account. Concept of
multibody dynamics gives attractive approach to simulate
real operating conditions and thus obtain realistic loading
conditions.

Stress recovery methods for a flexible multibody system
can be divided into two main categories. One is the stress-
mode-based method, which determines the body’s stress
state using a linear combination of stress modes and elastic
coordinates. The other is the finite-element post-processing
method, in which stresses are calculated by a finite-element
code using forces or displacements obtained from multibody

simulation. Both approaches have benefits, but in general, the
method based on finite-element post processing is more ac-
curate (Arczewski and Fra̧czek, 2005).

For lightweight structures loaded by dynamic forces, ac-
curate dynamic simulation is necessary to guarantee long-
term reliability (fatigue life), the accuracy of control, and sys-
tem usability. Deformation, even small deformations, must
be taken into account to achieve the needed simulation pre-
cision. Arriving at an optimized design and understanding
precisely how internal stresses vary over time leads to struc-
tures with improved fatigue life and whole systems that are
safer. In the Floating Frame of Reference Formulation, bod-
ies are loaded by numerous unique loads and moments; ex-
ternal forces, constraint forces, and inertial forces, for ex-
ample. Forces produce deformation, and deformations set up
internal stresses. The prediction of local stresses using dy-
namic simulation reveals structural weaknesses in the early
design stages. In addition, dynamic simulation can analyze
stress peaks in extreme cases, such as random overloading or
component failure.

A stress history from a multibody dynamics simulation
can be used as initial data for component dimensioning. Fur-
thermore, it can provide loading data for the analyst that is
otherwise difficult to obtain. Finally, the stress history can
be used as input for the fatigue analysis of the component.
In such cases, one should make sure that simulated opera-
tions describe the operating conditions of the machine with
sufficient accuracy. With simulation, it is difficult to describe
the impact of statistical issues, such as component wear and
operator usage habits, on component loading. On the other
hand, simulation helps to understand the causes and effects
related to loading. This allows the use of optimization rou-
tines in component dimensioning. Simulation and measure-
ment on a real-life machine can thus be considered to support
each other, and using them together can help to reach an op-
timal solution.

The literature provides a number of alternative approaches
to determining stress histories from multibody simulation.
The first to combine the multibody dynamic approach and
stress calculation wasMelzer (1996). Yim and Lee(1996)
obtained dynamic stress histories by using constraint forces
solved in a multibody system.Dietz et al.(1997) described
an approach for using multibody simulation to obtain all
forces for finite element analysis. They also selected the
most severe time steps for which stresses of the complete
structure were later analyzed in finite element code. Later,
Dietz et al.(1998) combined multibody simulation and fa-
tigue life prediction. They obtained the load history from
multibody simulation and calculated stress histories for se-
lected locations using a stress load matrix. Stress histories
were analyzed in a post-processing stage to predict fatigue
life. Dietz (1999) presented a systematic way of combin-
ing multibody dynamic simulation and fatigue analysis us-
ing stress component modes.Claus(2001) generalizes the
deformation-based stress recovery approach to multipurpose
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finite element codes. More recently,Jun et al.(2008) used
the modal stress recovery approach to obtain stress for fa-
tigue analysis. They also discussed the reliability of fatigue
life calculation.Lee et al.(2009) studied the fatigue life for
various parts of a guideway vehicle by coupling multibody
dynamics and fatigue analysis. They determined stresses us-
ing the modal stress method or quasi-static force method de-
pending on the loading conditions of the part.Braccesi and
Cianetti (2005) used a modal approach to recover stresses.
Arczewski and Fra̧czek(2005) compared and discussed dif-
ferences between force-based and deformation-based stress
recovery methods in MBS. More recently,Tobias and Eber-
hard (2011) obtained stresses using a reduced MBS model
and stress modes. They concluded the stress state in any
particular point of a flexible body could be expressed as
a linear combination of global shape functions for stresses
and nodal coordinates.In experiments, fatigue life predic-
tion is mainly related to uniaxial cyclic loading. This leads
to discussion about damage hypothesis, and the question
arises about which damage hypothesis should be used. This
work focuses on welded structures, which can be studied un-
der the assumption of cumulative damage counting. Welded
structures without any post-weld treatments have large ten-
sile residual stresses, even nominally as large as the yield
strength of the material. In this case, initial compressive load-
ing closes an incipient crack and residual stresses open it
again. This leads to a situation in which even a fully compres-
sive loading cycle will result in full fatigue damage. For the
proposed method, linear hot spot extrapolation (Poutiainen
et al., 2004) is selected, for both simplicity and robustness in
use.

5 Empirical example

Fatigue damage typically originates from the points of dis-
continuity of the structure, especially if there is residual
stress affecting the discontinuity. In order for the machine
system to be simulated in real time, it must often be sim-
plified, and details irrelevant in terms of structural stress ne-
glected. The modeling of small details, such as welded clamp
for a hydraulic pipe of a boom, increases the need for compu-
tational efficiency, and such details have only a localized im-
portance. To illustrate the method for obtaining stress history
of a structural detail, a practical example of a simple crane
is studied. The crane and the structural detail are depicted in
Fig.5. In this example the simplified dynamic simulation and
relative accurate model of notch are combined together using
sub-modeling techniques.

The crane in Fig.5 is hydraulically driven crane with one
degree of freedom. Hydraulic system is modeled using the
theory of lumped fluid (Watton, 1989), in which hydraulic
system is divided into separate volumes in where pressure is
equally distributed.

Figure 5. Crane parameters and the placement of strain gauges (D)
– LettersA, B, andC refer to the joint locations andm is the added
mass of 110 kg. Strain gauges are attached close to the welded notch
so the first is 0.4t and the second is 1.0t from the notch. Plate thick-
nesst is 4 mm.

A fundamental motivation of the introduced approach is to
keep the dynamic simulation as numerically efficient as pos-
sible. Therefore, the hosting structural model is simplified
and is then reduced with the Craig-Bampton method (Craig
Jr. and Bampton, 1968). Even though the proposed approach
is general, in this example boom-type structures that can be
efficiently described with beam elements are studied. With
beam models, obtaining boundary conditions for sub-models
is straightforward. In the proposed approach, multibody sim-
ulation is used for producing displacement data for the sub-
model, which is then analyzed and fatigue data is obtained.

Problem about computational burden is tried to overcome
by combining sub-modeling and multibody dynamic ap-
proach in order to join computationally efficiency of multi-
body dynamic approach and accuracy of finite element
method in observing damaging loads. Sub-model of the crane
is shown in Fig.6. Black circle shows the area where hot spot
stress is obtained. Nodes used in hot spot extrapolation are
show in Fig.7.

The beam model represents the center line of a structural
component. The sub-model is attached to the interpolated lo-
cations of the reduced model via rigid and massless beams.
Due to the use of rigid beam webs, the cross-section is as-
sumed to remain planar at the boundary condition points. The
effect of this assumption, with respect to stresses in notch, is
negligible due to Saint-Venant’s principle (von Mises, 1945).
In dynamic simulation, translational and rotational displace-
ments are solved as boundary conditions for the sub-model.
In general, sub-models are attached at arbitrary locations of
the structural component, thus nodal displacement interpola-
tion should be used.
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Figure 6. FE-model of the sub-model – the black circle indicates
the location of the hot-spot nodes.

Node 0.4

Node 1.0

Figure 7. Hot spot extrapolation nodes on a sub-model.

5.1 Crane model composition and work cycle

The crane model contains four bodies, which are the crane,
support and hydraulic cylinder and shaft for a cylinder. The
lenght L of the crane is 4.5 m. depicted in Fig.5. In addi-
tion to those parts model has added massm= 100 kg and a
hydraulic system. Hydraulic circuit can be neglected while
comparing results, since simulation model was driven by pre-
defined movement of the cylinder that is shown in Fig.8.
In Table1, relevant dimensions and distances from revolute
joint A along coordinates x, y, z, are presented.

The crane model consists of a beam model with 20 nodes.
Craig-Bampton method is used to reduce coordinates of
the beam model. Two connection nodes were selected as a
masted nodes for Craig-Bampton. Structural flexibility was
described using 10 lowest deformation modes. Geometri-

Table 1. Dimensions of the crane.

Item x coordinate [m] y coordinate [m]

Revolute jointA 0 0
Revolute jointB 0.32 −0.125
Revolute jointC 0 −0.925
Massm 2.5 0
Welded detailD 0.65 0.075
Gauge 0.4 0.672 0.075
Gauge 1.0 0.674 0.075

Table 2. Geometrical properties of cross section of the crane and
material properties of the crane.

Property Value Unit

Profile height 0.15 m
Profile width 0.10 m
Profile area 1.9×10−3 m2

Plate thickness 4 mm
Area moment of inertia (yy) 6.17×10−6 m4

Area moment of inertia (zz) 3.29×10−6 m4

Elastic modulus 210 GPa
Poisson’s ratio 0.3
Density 7850 kg m−3

cal properties of cross section of the crane are presented in
Table2.

5.2 Stress history

This displacement data is then used as a boundary condition
for the sub-model. The sub-model contains the stress concen-
trations where fatigue damage can possibly occur. Nodal dis-
placement history is applied as boundary conditions on the
sub-model as a sequential set of static boundary conditions.
The finite element mesh of the sub-model has 1800 linear,
brick elements and 250 rigid, massless beams.

The gray lines seen on right side, in Fig.6, represent rigid
and massless beam webs and connect the cross section of
the sub-model to the dynamical model via attachment nodes.
Two attachment nodes are located on the middle line of the
cross section. The use of rigid beam webs keeps the boundary
cross section of the sub-model planar. This clearly simplify-
ing assumption is made because in the beam model the cross
section is assumed to remain planar. Generally, the problems
with beam elements are the higher order deformations of
cross section, such as warping and distortion, which are not
included in low order beam elements.

Since the sub-model and the dynamic model have over-
lapping nodes, boundary conditions for the sub-model can
be fixed based on nodal deformation from the dynamic simu-
lation. In the case of non-overlapping nodes, interpolation of
nodal translational deformation and rotation deformation be-
tween nodes is required. In this case, interpolation could be
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Figure 8. Measured position of the shaft of the hydraulic sylinder.

made linearly between the nodes. Since the sub-model only
uses displacements obtained from the dynamic simulation as
boundary conditions, it does not interfere with the overall be-
havior of the model.

For fatigue assessment the hot spot or structural stress is
often used (Niemi et al., 2006). The crane was loaded using
measured position of a hydraulic cylinder, shown in Fig.8
A linear surface extrapolation for hot spot stress (Poutiainen
et al., 2004) has been performed for obtaining stress histories
shown in Fig.9. The hot spot structural stress at the edge of
the welded discontinuity, is based on a linear extrapolation of
surface stresses at nodes 4 mm and 10 mm from the edge of
the discontinuity. Axial direction (x-direction) is selected for
extrapolating hot spot stress on the edge of the notch. The
selection of the direction of hot spot extrapolation is made
based on the assumption that the majority of stresses are act-
ing in the axial direction.

The stress history obtained for the welded detail can later
be processed using the rainflow counting algorithm, fatigue
assessment or for any other post processing action.

The results of this numerical experiment show that the
developed method can be used to determine the stresses of
a structural detail using a real-time simulation model. This
method enables a wide variety of uses from determining
stresses from positions that cannot be measured from the real
machine to determining the best practices for machine oper-
ation. Measuring bearing housing stresses, for example, in a
real machine during an operation cycle is next to impossible.
This method enables the determination of stresses during the
entire operation cycle instead of just a suspected peak value.
The method could be used to improve estimations on the ma-
chine durability as well as improving the machine durability
already in the machine design phase. A practical example
would be to use virtual prototyping in the machine product
development phase. The model could then be used to run a
series of reference operation cycles while recording displace-
ment data from a structure. The recorded data could then be
used to run analysis on several crucial parts of the structure in
order to determine the life expectancy under operating con-
ditions as well as different operators.
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Figure 9. Stress history of a notch at the crane.

6 Conclusions

In this paper one approach of making fatigue analysis more
usable among multibody simulation based product develop-
ment is presented. In order to combine dynamic simulation
and fatigue design this study introduces a novel approach for
efficiently obtaining stress history from dynamic simulation.

This paper presents an approach in which the stress history
for fatigue life estimation of an arbitrary structural disconti-
nuity in a large-scale structure can be efficiently obtained in
multibody simulation. In the proposed approach the structure
is modeled with structured elements (i.e. planes or beams)
in order to get rid small structural details to minimize nodal
degrees of freedom. After that model is further reduced us-
ing component mode synthesis, in numerical example, Craig-
Bampton method was used, this model is called as reduced
model. Reduced model is used to represent flexible body in
multibody simulation. Small structural details are modeled
separately and are attached to reduced model using suitable
methods. In this paper, in numerical examples sub-models
were attached to reduced model using rigid beam webs. Sub-
models were analyzed quasi-statically within finite element
codes using displacements, obtained from dynamic simu-
lation, as boundary conditions. This analysis can be made
during the dynamic simulation or in post-processing phase.
Computations involving sub-modeling allow the fatigue as-
sessment calculation to be separated from the dynamic sim-
ulation and structural details can be analyzed independently.

In future work the integration of fatigue analysis and pro-
duced stress history could be improved. The way how stress
data is analyzed and compared to real fatigue test results dif-
fers from the stress results that can be straightforwardly ob-
tained from dynamic simulation. In numerical examples, this
aspect is taken into account using linear surface extrapolation
to estimate hot-spot stress. The problem using that approach
is the difficulty of knowing the most probable crack growth
direction. In reality, crack may change the direction of grow-
ing depending on geometry and/or loading conditions. Also,
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in future work methods of attaching sub-model into simu-
lation model should be studied carefully. Possibility to use
coordinate reduction for sub-models and what kinds of limi-
tations it provides to attachment for sub-models.
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