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Abstract. The article describes the dynamic modelling of I.Ca.Ro., a novel Cartesian parallel robot recently
designed and prototyped by the robotics research group of the Polytechnic University of Marche. By means of
screw theory and virtual work principle, a computationally efficient model has been built, with the final aim of
realising advanced model based controllers. Then a dynamic analysis has been performed in order to point out
possible model simplifications that could lead to a more efficient run time implementation.

1 Introduction

Many approaches are available for the dynamic modelling
of multi-body mechanical systems (Kovecses et al., 2003;
Moon, 2008; Papastavridis, 2012) and in the last years, many
most of them have been investigated by robotics researchers
to achieve efficient models of robots dynamics. Indeed, the
efficiency in computation of inverse dynamics of robotic ma-
nipulators has a fundamental importance if such tools are in-
volved in the implementation of model based control algo-
rithms whose effectiveness is strongly affected by the compu-
tational efficiency of the mathematical model (Lin and Song,
1990; Wang et al., 2007). Thus, it is interesting to investi-
gate the possibility to build simplified dynamics models, es-
pecially for parallel kinematic machines that are character-
ized by an inherent toughness due to the closed kinematic
structure. Such peculiarity often complicates the computa-
tion of the dynamic model and sometimes prevents the use of
model based controls. This inherent complexity is the main
reason why only few dynamic models of parallel robots are
presently available in scientific literature in symbolic form
(Dasgupta and Mruthyunjaya, 1998; Tsai, 2000; Caccavale
et al., 2003).

The traditional Newton-Euler formulation, which has been
widely used in the past (Do and Yang, 1988; Dasgupta
and Mruthyunjaya, 1998) and is still used for specific tasks
by some researchers (Kunquan and Rui, 2011; Khalil and
Ibrahim, 2007), hardly adapts to the particular case of par-
allel kinematics machines.

As a matter of fact, all mechanical principles have been
used to carry on dynamic analysis of robotic systems, such
as the generalized momentum approach (Lopes, 2009), the
Hamilton’s principle (Miller , 2004), the Lagrange formula-
tion (Wronka and Dunnigan, 2011; Di Gregorio and Parenti-
Castelli, 2004) and the virtual work principle (Zhang and
Song, 1993).

This last method was proposed in1993 by Zhang and
Song, who used it for the inverse dynamic modelling of
open-loop manipulators; laterWang and Gosselinin 1998
expanded the approach to the study of closed kinematics me-
chanical chains and it is still much used for the modelling
of PKMs (Daun et al., 2010). Due to its computational effi-
ciency, such approach is often used when the dynamic mod-
elling aims at the realization of model-based control algo-
rithms. In fact, even if all methods lead to equivalent dynamic
equations, these equations present different levels of com-
plexity and associated computational loads; minimizing the
number of operations involved in the computation of the ma-
nipulator dynamics model has been the main goal of recently
proposed techniques (Abdellatif and Heimann, 2009; Yang
et al., 2012): since by the use of the virtual work principle
constraint forces and moments do not need to be computed,
this approach leads to faster computational algorithms, which
is a very important advantage for the purpose of robot con-
trol. Furthermore, the vector approach specific of the virtual
work principle is particularly feasible for computer imple-
mentation.

Published by Copernicus Publications.



186 L. Carbonari et al.: Dynamic modelling of a 3-CPU PKM

In order to formulate the dynamic model of a mechanical
system, the knowledge of its position kinematics is strictly
necessary. As a matter of fact, the solution of the forward
kinematics problem (FKP) of a parallel platform represents a
challenging issue that not necessarily yields to a closed form
solution, especially when the robot end-effector is allowed to
perform motions of rotation.

As argued by authors in past works (Carbonari, 2012; Car-
bonari and Callegari, 2012) the 3-CPU parallel architecture
can provide the end-effector with different kinds of mobility,
depending on the mutual configuration of the joints that com-
pose the leg’s kinematic chain. Carbonari et al. (2013) also
demonstrated that a reconfiguration of the universal joint al-
lows to modify the kinematic behaviour of a 3-CPU parallel
robot, switching from a pure rotational to a pure translational
kinematic behaviour.

This paper focuses on the dynamic modelling of a pure
translational 3-CPU architecture, called I.Ca.Ro. byCalle-
gari and Palpacelli(2008), aimed at the realization of a non-
linear model based control scheme. The main object of the
present work is to produce a numerically efficient dynamic
model of the machine, suitable to be used for the realization
of a control algorithm. To this aim, the differential kinemat-
ics of the manipulator has been tackled taking advantage of a
screw based approach (Gallardo et al., 2003). For the seek of
completeness, the position kinematics is also presented here
in order to improve the reader’s understanding of the prob-
lem.

2 Robot kinematics

The I.Ca.Ro. parallel robot is a pure translational Carte-
sian tripod whose limbs are built of a C-P-U (cylindrical-
prismatic-universal) joints chain. The first body of each leg
is connected to the robot chassis by means of a cylindrical
joint, realized through a prismatic actuated pair and a rev-
olute passive joint coaxial to the first one (refer to Fig.1).
The second body is linked to the first one through a pris-
matic joint, perpendicular to the axis of the cylindrical joint.
At last, the second body is connected to the moving platform
through a universal joint composed of two revolutes: the first
revolute joint is parallel to the second link and the second is
perpendicular to the first one. The last revolute of each leg
connects the manipulator with the respective limb; the axes
of such joints are coplanar.

Due to the robot kinematic architecture, the I.Ca.Ro. par-
allel manipulator is only able to provide the end-effector with
pure translations. In fact, by means of screw theory it can be
observed that each leg exerts a constraint wrench made of a
pure torque along the direction of its passive prismatic pair.
The connection of the three legs to the mobile platform pro-
duces a wrench system of three orthogonal torques, whose
dual space is spanned by a basis of three linearly independent
pure translations. Thus, the orientation of a reference frame

Figure 1. Kinematics of the 3-CPU pure translational parallel
robot.

that solidly moves with it remains constant notwithstanding
the displacement that the actuated joints perform.

With respect to the notation introduced in Fig.1, the ho-
mogeneous transformation matrix that describes the configu-
ration of reference frame{1} with respect to reference frame
{0} can be expressed as:

0T1 =


1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1

 (1)

where px, py and pz denote the position of the centre of
the moving frame{1} and the 3 by 3 identity rotation ma-
trix suggests that the orientation of the manipulator remains
constant.

The forward and inverse kinematics problems of the robot
can be easily solved taking advantage of three loop clo-
sure equations. The positions of the three attachment points
Di between the end-effector and the three limbs can be
simply reached through the transformation matrix0T1, be-
ing their position fixed with respect to reference frame{1}:

Di =
0T1

[
eT

i 1
]T

, wheree1 = −e
[
0 1/

√
2 1/

√
2
]T

, e2 =

−e
[
1/
√

2 0 1/
√

2
]T

, e3 = −e
[
1/
√

2 1/
√

2 0
]T

.
As it is shown in the following, the coordinates of such points
can be also reached through the use of legs’ joints displace-
ments. The comparison between the different expressions of
these three points provides the solution of the problem. The
reference frames shown in Fig.2 are used to define legs kine-
matics.

Starting with frame{0}, which is the frame attached to ma-
nipulator chassis, a displacement along its x-axis and a rota-
tion about the same axis are needed to describe the position
of the second frame{A}. Transformation matrix will look
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Figure 2. Reference frames along leg structure.

like:

0TA =


1 0 0 q1,1

0 cq2,1 −sq2,1 0
0 sq2,1 cq2,1 0
0 0 0 1

 (2)

whereq2,1 denotes the rotation of the cylindrical pair of the
leg 1 and shorthand notation is used for trigonometric func-
tions. To reach the configuration of the third reference frame
{B}, thus the position of attachment pointD1, a translational
transformation matrix is sufficient:

ATB =


1 0 0 −c
0 1 0 0
0 0 1 q3,1

0 0 0 1

 (3)

with q3,1 denoting the displacement performed by prismatic
pair of the first leg. Coordinates of pointD1 can now be
achieved as:

D1 =
0TA

ATB

[
0 0 0 1

]T
(4)

Since the kinematic chain is identical for each leg, it is not
necessary to explicit their homogeneous transformations as
specific cases. Indeed, Eq. (4) can be exploited if pre multi-
plied by a transformation that rotates the starting reference
frame. In particular, it is possible to define the matrices:

0T leg2=


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 0T leg3=


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 (5)

such that the coordinates of the remaining attachment points
can be expressed as:

D2 =
0T leg2

leg2TA
ATB

[
0 0 0 1

]T
D3 =

0T leg3
leg3TA

ATB

[
0 0 0 1

]T (6)

Even if it is not specified, it should be evident that transfor-
mationsleg2TA, leg3TA andATB of the 2nd and 3rd equations

in (6) are expressed in terms of the respective joints variables
q1,i , q2,i andq3,i .

In order to give a general expression of legs kinematics, it
is also introduced the matrix0T leg1, an identity 4 by 4 matrix
that allows to write the Eq. (4) as:

D1 =
0T leg1

leg1TA
ATB

[
0 0 0 1

]T
(7)

whereleg1TA =
0TA.

Expansion of (6) and (7) yields to the expression of such
points coordinates in terms of joints variables, that are:

D1=


q1,1− c
q3,1sq2,1

−q3,1cq2,1

1

 D2=


−q3,2cq2,2

q1,2− c
q3,2sq2,2

1

 D3=


q3,3sq2,3

−q3,3cq2,3

q1,3− c
1

 (8)

Equations (8) can be inverted to achieve the expression of
legs joints variables as functions of coordinates of the three
attachment pointsDi :

q1,1 = D1,x+ c
q1,2 = D2,y+ c
q1,3 = D3,z+ c

q2,1 = tan−1 D1,y

−D1,z

q2,2 = tan−1 D2,z

−D2,x

q2,3 = tan−1 D3,x

−D3,y

q3,1 =
D1,y

sinq2,1

q3,2 =
D2,z

sinq2,2

q3,3 =
D3,x

sinq2,3

(9)

It is worth to remark that such coordinates are uniquely de-
termined if the pose of the manipulator is known.

3 Velocity kinematics

In order to build the Jacobian matrices of a PKM, both po-
sition and orientation of the joints axes are needed. Firstly
it is necessary to define an appropriate number of reference
frames preferably attached in convenient points of the kine-
matic chain. It is worth to remember that the screws must be
expressed with respect to a reference frame attached to robot
manipulator and whose orientation is constant and coincident
to that of robot absolute reference frame{0}. Furthermore, in
order to define the dynamical model of the machine, the mov-
ing frame should be centred at the c.o.m. of the body object
of the velocity analysis.

In the case of the pure translational robot I.Ca.Ro. the
moving platform reference frame{1} represents a feasible
choice for expressing the screw coordinates. In fact, it is solid
with the end-effector and it does not rotate; moreover, due to
the pure translational mobility of the end-effector, the origin
of frame{1} moves with the same velocity and acceleration
of the end-effector c.o.m. even if it is not centred on it.

The screw coordinates of every kinematic pair involved in
leg kinematic chain must be expressed: to this aim, conve-
nient local frames must be arranged along the legs as shown
in Fig. 3.

Two new frames{C} and{D} must be attached to the rev-
olute joints that compose the universal joints. The homoge-
neous transformations denoting configuration of such frames
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are defined as:

BTC =


1 0 0 0
0 cq4,1 −sq4,1 0
0 sq4,1 cq4,1 0
0 0 0 1


CTD =


cq5,1 0 sq5,1 0

0 1 0 0
−sq5,1 0 cq5,1 0

0 0 0 1


(10)

The pose of frames{A}, {B}, {C} and{D} is described by the
following homogeneous transformations:

1TA,1 =
1T0

0T leg1
leg1TA

1TB,1 =
1T0

0T leg1
leg1TA

ATB
1TC,1 =

1T0
0T leg1

leg1TA
ATB

BTC
1TD,1 =

1T0
0T leg1

leg1TA
ATB

BTC
CTD

(11)

The unit vectors of joints’ axes can be easily expressed in the
global frame by means of the proper mapping between the
local frames and the global one:

– Joint 1, prismatic:

[
s1,i

1

]
= 1TA,i


1
0
0
1

 → S1,i =

[
0

s1,i

]
(12)

– Joint 2, revolute:

[
s2,i

1

]
=1TA,i


1
0
0
1


[
r2,i

1

]
=1TA,i


0
0
0
1

→ S2,i=

[
s2,i

r2,i × s2,i

]
(13)

– Joint 3, prismatic:

[
s3,i

1

]
= 1TA,i


0
0
1
1

 → S3,i

[
0

s3,i

]
(14)

– Joint 4, first revolute of the universal joint:

[
s4,i

1

]
=1TB,i


1
0
0
1


[
r4,i

1

]
=1TB,i


0
0
0
1

→ S4,i=

[
s4,i

r4,i × s4,i

]
(15)

– Joint 5, second revolute of the universal joint:

[
s5,i

1

]
=1TC,i


0
1
0
1


[
r5,i

1

]
=1TC,i


0
0
0
1

→ S5,i=

[
s5,i

r5,i × s5,i

]
(16)

Figure 3. Local frames used for definition of joints unit screws.

In order to simplify expressions of manipulator Jacobian ma-
trices it is possible to use three screws which have the main
characteristic of being reciprocal to all unit screws of the leg,
with the exception of the actuated joints screws. Such screws
are here calledSr,i .

To this aim, it is possible to make use of the unit screwS4,i

shown in Fig.4, which turns reciprocal to each non-actuated
screw present in the leg kinematic chain due to the fact that
it is coplanar to bothS2,i andS5,i , it intersects the axis of the
prismatic joint described byS3,i and, by definition, it is recip-
rocal to itself. Furthermore, it is not reciprocal toS1,i being
parallel but not aligned to the axis of the actuated prismatic
joint.

At this point vector expressions have been given for joints
screws and for legs reciprocal screws. The Jacobian ma-
trices can be formulated in order to achieve an expres-
sion for the velocity problem which has the well known
form JX ẋ = JQq̇, where ẋ is the velocity vector of the
platform that, in a general way, can be expressed asẋ =[
ωx ωy ωz q̇x q̇y q̇z

]T
.

Firstly it is introduced the Jacobian matrixJX, whose ex-
pression can be formulated as a function of reciprocal screws:

JX =


ST

r,1

ST
r,2

ST
r,3

 =

ST

4,1

ST
4,2

ST
4,3


=

 0 q3,1cq2,1−pz q3,1sq2,1+py 1 0 0
q3,2sq2,2+pz 0 q3,2cq2,2−px 0 1 0
q3,3cq2,3−py q3,3sq2,3+px 0 0 0 1


(17)

The moving platform of I.Ca.Ro. PKM is only allowed to
perform pure translations; this implies that the first three
components of the vectoṙx, i.e. ωx, ωy andωz, are iden-
tically null. As a consequence, such components and the
first three columns of matrixJX can be eliminated due to
the fact that the do not give any contribution to equation
JX ẋ = JQq̇. Thus, the JacobianJX is a three by three iden-
tity matrix which multiplies the end-effector velocity vector

ẋ =
[
q̇x q̇y q̇z

]T
.
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Figure 4. Unit screws of each kinematic joints.

Finally matrixJQ is introduced:

JQ =


ST

r,1S1,1 0 0
0 ST

r,2S1,2 0
0 0 ST

r,3S1,3

 =
1 0 0
0 1 0
0 0 1

 (18)

Due to pure translational robot kinematic behaviour, the end-
effector velocity problem can be simply expressed as:1 0 0
0 1 0
0 0 1


ṗx
ṗy

ṗz

 =
1 0 0
0 1 0
0 0 1


ḋ1

ḋ2

ḋ3

 (19)

Thanks to the screw based approach, the velocities of pas-
sive joints have been eliminated from the formulation of end-
effector velocity kinematics. Nevertheless this information is
needed to perform other types of analysis such as the study
of robot dynamics.

Thus, the knowledge of the velocity vectors of each mem-
ber composing the legs is necessary and it can be achieved
through the computation of passive joints velocity as func-
tions of active joints rates. To this aim, robot architecture
constraint equations are exploited to build a matrixA relating
prismatic actuated joints velocities to all other rates:

q̇p = A q̇a (20)

whereq̇p is a vector collecting velocities of passive joints and
q̇a is the vector of actuated joints rates.

The main aim of this computation is to provide the needed
tools for the dynamic modelling of the robotic system. There-
fore, a simplification based on influence of each body is
introduced yielding a relevant computational simplification.
The mass of the elements that compose the revolute joints
is negligible if compared with masses of legs linkages and
translating parts of prismatic actuators. Hence, it is supposed
here that they only marginally affect the whole dynamic be-
haviour of the robot: thus, their contribution is not consid-
ered. This simplification is reasonably acceptable and enor-
mously simplifies robot model because of the complexity in-
troduced by the velocity expressions of these elements.

Such simplification allows us to reduce the dimension of
matrix A. If the actual number of active and passive joints is
considered, Eq. (20) can be expanded to:

q̇2,1

q̇2,2

q̇2,3

q̇3,1

q̇3,2

q̇3,3


= A

q̇1,1

q̇1,2

q̇1,3

 (21)

where q̇1,i is the translation rate of cylindrical pair ofi-th
leg, q̇2,i is the rotation rate of the same pair and ˙q3,i is the
translation rate of the passive prismatic joint.

The constraint matrixA can be built considering the mo-
bility of each attachment point between legs and manipula-
tor; indeed, the velocity of such points is known and equal to
the velocity of the moving platform due to the fact that they
solidly move with the end-effector which only performs pure
translational motions. The velocities of passive joints can be
related to the components of the velocity vectors as visible in
Fig. 5 for a general mobility.

The component ofvD,i along the direction perpendicular to
leg plane is expressed by:

v⊥D,i = vT
D,i
(
s2,i × s3,i

)
(22)

The velocity along this direction is fully due to the rotation
of the cylindrical joint, so that:

q̇2,i =
vT

D,i

(
s2,i × s3,i

)
q3,i

(23)

The component of velocity that lies on the leg plane is due to
both the actuated and non actuated prismatic joints:

q̇1,i = vT
D,i s1,i

q̇3,i = vT
D,i s3,i

(24)

The first equation in (24) simply relates the velocity along
the axis of the cylindrical joint to the actuation rate; thus, it
is not useful for the construction of the constraint matrix. On
the other hand, the second equation can be used for the scope.

Equation (23) and the second equation in (24) can be ex-
panded and written in the matrix form (20). In the case of
a pure translational robot the velocities of legs attachment
points correspond to the velocity of the origin of end effector
reference frame. Exploiting Eqs. (22) and the second of (24),
expressions of non actuated joints rates are achievable. In this
case, the simplification introduced by end-effector mobility
allows to show which is the actual shape of such expressions.

For the revolute joints it is:

q̇2,1 =
−q̇1,2cq2,1−q̇1,3sq2,1

q3,1

q̇2,2 =
−q̇1,1sq2,2−q̇1,3cq2,2

q3,2

q̇2,3 =
−q̇1,1cq2,3−q̇1,2sq2,3

q3,3

(25)

www.mech-sci.net/4/185/2013/ Mech. Sci., 4, 185–197, 2013



190 L. Carbonari et al.: Dynamic modelling of a 3-CPU PKM

Figure 5. Velocity of attachment points between legs and moving
platform.

while prismatic joints rates are:

q̇3,1 = −q̇1,2sq2,1+ q̇1,3cq2,1

q̇3,2 = q̇1,1cq2,2− q̇1,3sq2,2

q̇3,3 = −q̇1,1sq2,3+ q̇1,2cq2,3

(26)

Hence, the matrix formulation of the 6 passive velocities is:

q̇2,1

q̇2,2

q̇2,3

q̇3,1

q̇3,2

q̇3,3


=



0 −cq2,1

q3,1

−sq2,1

q3,1
−sq2,2

q3,2
0 −cq2,2

q3,2
−cq2,3

q3,3

−sq2,3

q3,3
0

0 −sq2,1 cq2,1

cq2,2 0 −sq2,2

−sq2,3 cq2,3 0


q̇1,1

q̇1,2

q̇1,3

 (27)

In the remainder of this work, the constraint matrix is used
to express the velocity of the reference frames attached to
the robot bodies. To do that, further Jacobian matrices are
introduced. In particular, the velocity of the c.o.m. of each
body is written according to the general formulation:

ẋ = Jq̇a (28)

whereq̇a is the vector of actuated joints rates.
It is important to remark that the target of this section is

the definition of legs bodies velocities, whose serial kinemat-
ics chain does not allow the simplification of passive joints

rates. Thus, the Jacobian formulationẋ = J̃
[
q̇T

a q̇T
p

]T
in-

volves also the velocity of non actuated joints. Nevertheless,
the influence of such joints can be explicited by means of the
constraint matrix (27). Equation (28) becomes:

ẋ = J̃
[
I
A

]
q̇a (29)

whereI is a 3×3 identity matrix; the matrices̃J can be very
quickly expressed taking advance of joints screws; thus the

formulation of legs velocities turns out to be an immediate
iterative process based on collection of already introduced
vectors.

Firstly, the velocities of the three sliders are achieved: for
the sake of conciseness, these bodies are denoted assl1, sl2
andsl3 with reference to the leg which they are part of. The
serial chain that allows reaching their screw is composed
only by the actuated prismatic pair. In this case the body is
not allowed to rotate, so that the position of the screw axis
does not influence the screw expression:

ẋsl,i = S1,i q̇i,1 =

[
0

s1,i

]
q̇i,1 (30)

Equations (30) can be written according to the generic for-
mulation (29):

ẋsl,1 =
[
S1,1 0 0 0 0 0 0 0 0

] [ I
A

]
q̇a = Jsl1q̇a

ẋsl,2 =
[
0 S1,2 0 0 0 0 0 0 0

] [ I
A

]
q̇a = Jsl2q̇a

ẋsl,3 =
[
0 0 S1,3 0 0 0 0 0 0

] [ I
A

]
q̇a = Jsl3q̇a

(31)

In a very similar way, velocities of the first links (called here
l1i) can be achieved. The serial kinematic chain characteristic
of such bodies is composed by the actuated prismatic pair and
the non actuated revolute joint:

ẋl1,i = S1,i q̇i,1+S2,i q̇i,2 =

[
0

s1,i

]
q̇i,1+

[
s2,i

r2,i × s2,i

]
q̇i,2 (32)

The position of the screw axis is relevant for the computation
of the revolute joint unit screw. Even though its expression
does not coincide with the previously found value, axis posi-
tion is quickly computable using homogeneous transforma-
tion matrix and the position vectorpl1,i of the center of mass
of bodyl1, i with respect to reference frame{A}. The position
of the screw axis is computable as the difference between
absolute positionOA,i of frame{A} and absolute position of
center of mass:

Pl1,i =
0TA pl1,i

OA,i =
0TA

[
0 0 0 1

]T → r2,i =OA,i − Pl1,i (33)

Expansion of (32) for all robot legs yields:

ẋl1,1=
[
S1,1 0 0 S2,1 0 0 0 0 0

] [ I
A

]
q̇a = Jl1,1q̇a

ẋl1,2=
[
0 S1,2 0 0 S2,2 0 0 0 0

] [ I
A

]
q̇a = Jl1,2q̇a

ẋl1,3=
[
0 0 S1,3 0 0 S2,3 0 0 0

] [ I
A

]
q̇a = Jl1,3q̇a

(34)

Finally, the velocity of the last link that composes the leg
(here called bodyl2i) is a linear combination of the elemen-
tary screws of the actuated prismatic joint, the first passive
revolute joint and the non actuated prismatic joint of each
leg:

ẋl2,i = S1,i q̇i,1+S2,i q̇i,2+S3,i q̇i,3

=

[
0

s1,i

]
q̇i,1+

[
s2,i

r2,i × s2,i

]
q̇i,2+

[
0

s3,i

]
q̇i,3

(35)
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The positionr2,i of the screw axis is once again different from
the previously exposed case. Nevertheless, its expression is
achievable by the definition of a position vectorpl2,i of the
center of mass of bodiesl2i with respect to their attached
frame {B}. The distance from this point to the axis of the
revolute joint is given by:

pl2,i =
0TBpl2,i

OB,i =
0TB

[
0 0 0 1

]T → r2,i =OB,i − pl2,i (36)

As done in previous case, the Jacobian formulation can be
plainly reached also for velocities of bodiesl2i :

ẋl2,1 =
[
S1,1 0 0 S2,1 0 0 S3,1 0 0

] [ I
A

]
q̇a = Jl2,1q̇a

ẋl2,2 =
[
0 S1,2 0 0 S2,2 0 0 S3,2 0

] [ I
A

]
q̇a = Jl2,2q̇a

ẋl2,3 =
[
0 0 S1,3 0 0 S2,3 0 0 S3,3

] [ I
A

]
q̇a = Jl2,3q̇a

(37)

4 Acceleration kinematics

The dynamic modelling of a mechanical system requires a
complete knowledge of machine kinematics. Therefore, ac-
celeration of each body must be studied.

Manipulator velocity kinematics has been formulated
through the well known Jacobian formulationq̇a = Jẋ, where
J = J−1

Q JX is in this case a 3 by 3 identity matrix. Direct dif-
ferentiation of such expression yields:

q̈a = J̇ẋ+ Jẍ (38)

whereJ̇X is the derivative of the jacobian matrix, which is
a constant matrix. Thus, in the case of a pure translational
machine, the derivation oḟJX yields J̇X = 0.

The acceleration kinematics of other robot members is eas-
ily achievable by direct differentiation of the velocity kine-
matics previously defined:

Ẍ j,i = J̇ j,i q̇a+ J j,i q̈a (39)

wereJ̇ j,i is the time derivative of the respective Jacobian ma-
trix. Expansion of (39) yields to very a long formulation that,
for sake of conciseness, is not shown here.

5 Virtual work principle

The virtual work principle approach for dynamic modelling
requires the definition of the 6 dimensional vectorF j,i , whose
components collect resultants of both active and inertial
forces and torques acting on thej-th body of i-th leg, com-
puted with respect to the center of mass of the member:

F j,i =

[
n j,i

F j,i

]
=

−0I j,iω̇ j,i −ω j,i ×
(
0I j,iω j,i

)
mj,i

(
g− v̇ j,i

)  (40)

In a similar way, it is introduced the vectorFEE that collects
forces and torques acting on robot’s end-effector and com-
puted with respect to manipulator centre of mass:

FEE =

[
nEE

FEE

]
=

[
−0IEEω̇EE−ωEE×

(
0IEEωEE

)
mEE(g− v̇EE)

]
(41)

Virtual works principle allows writing:

δqT
aτ+ δx

T FEE+
∑
i, j

δxT
j,i F j,i = 0 (42)

where vectorδqa represents the virtual displacements of ac-
tuated joints,τ is the vector of actuation torques andδx is
the virtual displacement of rotation/displacement of respec-
tive body.

The differential kinematics of the manipulator, whose for-
mulation has been introduced in previous sections, is use-
fully exploited to relate actuated joints displacements to other
bodies twists. Indeed, end-effector differential kinematics ex-
pression allows writing:

δqa = JXδx (43)

In a similar way, the twist of other robot members can be
expressed through the respective Jacobian matrices:

δx j,i = J j,iδqa (44)

When Eq. (43) is invertible, i.e. when determinant of the Ja-
cobian matrix is not null, the differential of end effector twist
can be expressed in terms of actuated joints translations, be-
ing δx = J−1

X δqa. Dynamics Eq. (42) becomes:

δqT
aτA+ δqT

a J−T
X FEE+ δqT

a

∑
i, j

JT
j,i F j,i = 0 (45)

For non null virtual displacementsδqa, such term can be col-
lected and eliminated, yielding:

τ+ J−T
X FEE+

∑
i, j

JT
j,i F j,i = 0 (46)

Equation (46) can be collected in the canonical form:

τ+M (qa) q̈a+V (qa, q̇a)+G(qa) = 0 (47)

As known, each component of this equation includes dif-
ferent contributions to the dynamics of the manipulator:
M (qa) q̈a called laterτM is a contribution due to inertial ef-
fects of bodies masses,V (qa, q̇a), hereby calledτV, is due to
Coriolis and centripetal accelerations and, at last,G(qa) are
the forces deriving from gravitational action on robot mem-
bers, called hereτG.
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Figure 6. Multibody model of I.Ca.Ro. parallel manipulator.

Table 1. Phisical characteristics of the I.Ca.Ro. robot members.

body c.o.m.[m] mass
[
kg
]

inertia matrix
[
kgm2

]
slider not relevant 5.19 not relevant

link 1 1×10−3
[
−0.04 −43.69 0

]T
2.62

0.003 ∼ 0 ∼ 0
∼ 0 0.004 ∼ 0
∼ 0 ∼ 0 0.003


link 2 1×10−3

[
32.25 13.16 −552.57

]T
11.12

 1.405 −4.388×10−4 −0.018
−4.388×10−4 1.405 −0.008
−0.018 −0.008 0.008


moving platform not relevant 1.60 not relevant

6 Model verification

In this section a verification of the inverse dynamics model
is proposed. With this aim, a multibody model of the 3-CPU
pure translational parallel platform has been settled up. Un-
der hypothesis of coherence between the two models in terms
of geometrical and mass parameters, a perfect correspon-
dence on actuation forces should be noticed when an iden-
tical motion law is used.

The multibody model (see Fig.6) of the parallel plat-
form is based on a graphical CAD representation of robot
members. Definition of joints between the bodies allows the
software to reproduce machine kinematic and dynamic be-
haviour. Each member composing the robot has been mea-
sured through mass geometry instruments provided by the
CAD environment. In order to improve readers’ understand-
ing on the correspondence between multibody model and
mathematical model of the platform, Fig.6 also shows the
members of each leg with different colors. A characterization
of interesting physical properties of each member is given in
Table1; it is worth to remark that the multibody model has

been built with the maximum respect of the actual I.Ca.Ro.
prototype, in order to give a description as much as possible
reliable of the mechanical system. For the sake of concise-
ness, magnitudes that are not useful for dynamic modelling
of the manipulator are not reported.

It should be remarked that the inertia matrices expressed
for each body refer to a reference frame centred in the cen-
tre of mass of and attached to the respective body. Since the
model needs these matrices to be expressed with respect to
the fixed reference frame{0}, a coordinates change must be
made. Then, for those bodies that are allowed to roatate it is
0I i =

0Ri
i I i

0RT
i where0Ri denote the orientation of thei-th

body with respect to reference frame{0}.
The physical properties described in Table1 have been

used also for the mathematical model in order to perform
a direct comparison with results provided by the multibody
environment. As an example, results are reported deriving
from a particular set of actuation displacements profiles: a
harmonic time history has been chosen for each prismatic
joint displacement; each slider is moved with a different fre-
quency. Details on the used functions are shown in Fig.7.
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Figure 7. Harmonic displacement profiles used for model verification.

Such motion has been chosen in order to investigate a signif-
icant part of the robot workspace, pushing the machine to the
physical limits given by the maximum velocity that the three
motors are able to perform, which is 0.6 m s−1.

Results of both virtual and mathematical models are used
for computation of the relative difference subsisting between
the two sets of forces. In particular, named the maximum ab-
solute value of force recorded for motori during multibody
simulations, for thei-th axis it is defined the errorεi as:

εi =
|τv,i − τm,i |

|τv,i |max
(48)

where τv,i and τm,i are the instantaneous forces computed
by multibody environment and mathematical model respec-
tively. Equation (48) gives an idea of the deviation between
the two methods and therefore it represents a sort of mea-
sure of the error introduced by the mathematical model. As
visible in Fig.8, this error never overcomes the 1.0 % of the
maximum force during simulation, while the average error is
always lower than 1 %.

According to Eq. (47), the actuation forces evaluated dur-
ing the previous inverse dynamics simulation can be split in
order to analyse the contribution of each part of the robot
dynamics. Figure9 shows the different contributions of the
model on the total effort provided by each motor: as well
visible, the most part of the force is due to the gravity ac-
celeration acting on robot bodies while a negligible contribu-
tion is given by Coriolis and centripetal accelerations. This
important information can be used during the realization of
simplified mathematical models in which, the contribution of
force vectorτV can be ignored.

7 Simulations results

In this section, simulations are shown in order to test the reli-
ability of the introduced model in actually reproducible con-
ditions.

The first simulation approached is a linear trajectory in-
side the workspace. The robot, starting from its home posi-

tion, moves to a given point in the space. The trajectory has
been planned in order to obtain continuity on platform accel-
erations. The maximum velocity reached by the manipulator
is 0.6 m s−1 (which corresponds to the maximum linear ve-
locity available for the actuated joints), while the maximum
acceleration is 1.40 m s−2. The starting and the ending points
of the motions are 0.5 m apart; it should be remarked that the
robot workspace is a cube with a 0.6 m edge. Thus, the trajec-
tory spans a relevant distance with respect to the maximum
displacements that the manipulator is able to perform.

For this motion, the forces computed thanks to Eq. (47) are
shown in Fig.10. Also in this case, the most important con-
tribution to motors total effort is given by the gravity acceler-
ation, while the part of force due to Coriolis and centripetal
acceleration is negligible.

A second simulation has been performed with a different
trajectory in the space. In this case, the end-effector has been
moved from its home configuration to a point in the space.
From that point, a horizontal circular trajectory (with diam-
eter equal to 0.3 m) centred on robot vertical axis has been
performed. Also in this case, the trajectory planning has been
performed in order to obtain triangular profiles of accelera-
tion. In this case the maximum velocity reached by the mov-
ing platform is 0.6 m s−1, with a maximum acceleration of
0.75 m s−2.

Also for this motion, forces profiles are shown (see
Fig. 11). Again, the gravity contribute to the total effort is
prevailing with respect toτM andτV. The influence ofτV, in
particular, represents a negligible contribution to total actua-
tion effort. Nevertheless, Fig.11shows thatτM considerably
contributes to the total effort being|τM,i |max' 20%|τi |max.

Given the results of the last simulation, it is interesting
to investigate how much the termτM affects the dynamic
behaviour of the manipulator when the motors are used at
their maximum thrust. The robot I.Ca.Ro. is provided with
brushless motors, which are able to feed the actuated joints
with a maximum force of 420 N. To this aim a simulation
has been performed with a circular trajectory, similar to the
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Figure 8. Difference between multibody model and mathematical model.

Figure 9. Different contributions to the total actuation efforts.

Figure 10. Different contributions to the total actuation efforts during a motion along a line.
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Figure 11. Different contributions to the total actuation efforts during a horizontal circular motion.

Figure 12. Different contributions to the total actuation efforts during a horizontal circular motion at maximum allowed thrust.

previous one. In this case the circle owns a diameter of 0.1 m
and the manipulator is moved with a constant linear speed
of 0.6 m s−1. Also the initial velocity has been taken equal
to 0.6 m s−1 in order to overlook effects due to acceleration
ramps. Figure12 shows that forcesτM are in this simulation
comparable withτG demonstrating that a control based on
the dynamic model can actually improve the performances
of the 3-CPU robot. Moreover, Fig.12also confirms that the
Coriolis terms are negligible and so they may be omitted in a
simplified model (from Eq.47, τ ' −M (qa) q̈a−G(qa)).

Even though the elimination of the Coriolis terms signifi-
cantly lightens the dynamics formulation, further simplifica-
tions can be carried on the matrixM itself. As an example,
it is presented here the results obtained by the elimination of
the terms out of the diagonal of such matrix. In particular,
Fig. 13 shows the behaviour ofτM andτM′ for the circular
motion just presented in Fig.12; τM andτM′ are computed
as:

τM =M (qa) q̈a τM′ =M ′ (qa) q̈a (49)

where the matrixM ′ is the simplifiedM matrix:

M ′ =

M1,1 0 0
0 M2,2 0
0 0 M3,3

 (50)

Figure 13 shows that the use of matrixM ′ overestimates
the effect of the mass matrix on the robot dynamics of a
maximum value of 30 N (see curve∆τM,i). The error between
τM andτM′ is here estimated as:

εM,i =
|τM,i − τM′,i |

max|τM,i |
(51)

Figure 14 shows the errorεM for each motor: the graphic
shows that the error does not overcome the value of 18 %.

8 Conclusions

The dynamic modelling of a pure translational PKM has been
tackled in this work. Authors proposed a screw based ap-
proach for modelling the robot’s kinematics, allowing a fast
writing of the Jacobian matrices.
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Figure 13. Mass matrix contribution to the dynamics in case of plain and simplified model.

Figure 14. Difference between contributions of full mass matrixM and diagonalized mass matrixM ′.

The dynamics of the I.Ca.Ro. manipulator was worked out
by means of a virtual work principle approach. The resulting
model has been verified through simple simulations, taking
advance of a multibody model of the robot. Such verification
pointed out that the error subsisting between the two virtual
models never overcomes the 1.0 % of the maximum value of
torque involved into the motion.

At last, two simulations have been performed on two tra-
jectories with main aim of investigating the different contri-
butions to the dynamics model. Observation of the results of
such simulations yielded a further investigation on the con-
tribution to the whole motors efforts. Such study pointed out
that the robot is poorly affected by Coriolis and centrifugal
forces while the influence of the mass matrix is not negligi-
ble. It is author thought that the compensation of this effect
by means of a model based control may improve the perfor-
mances of robot I.Ca.Ro.

The implementation of the mass matrix on a control
algorithm may represent a low efficiency step of a control
algorithm because of the heavy mathematical formulation.
Due to this, authors also presented a simple simplification
of the model based on a simplification of the mass matrix.

Simulations demonstrated that such assumption yield an
error that never overcomes the 18 % in a situation of high
motors stress.

Edited by: A. Tasora
Reviewed by: L. Bruzzone and one anonymous referee
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