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This paper addresses the motion planning problem in non-holonomic robotic systems. The system’s
kinematics and dynamics are represented as a cortinkasystem with outputs. The problem is defined
in terms of the end-point map of this system, using the endogenous configuration space approach. Special
attention is paid to the multiple-task motion planning problem, i.e. a problem that beyond the proper motion
planning task includes a number of additional tasks. For multiple-task motion planning two strategies have been
proposed, called the egalitarian approach and the prioritarian approach. Also, two computational strategies
have been launched of solving the motion planning problem: the parametric and the non-parametric. The
motion planning and computational strategies have been applied to a motion planning problem of the trident
snake robot. Performance of the motion planning algorithms is illustrated with computer simulations.

resentation of the robotic system and focuses on the analy-

sis of its end-point map. The central concept of endogenous

configuration is identified with the system’s control function,
The motion planning problem of a robotic system consists insg singular controls become singular endogenous configura-
determining an action in the configuration space that wouldtjons, and controllability defines the dexterity of the robotic
drive the system along a desired trajectory or to a desiredystem. The concept of Jacobian of the robotic system relies
location in the task space. Frequently, reaching the goal ign the linear approximation of the control system. Jacobian
accompanied with avoiding obstacles and singularities, reglgorithms are introduced using the continuation method.
specting constraints of motion, limitations of energy, etc. If On the kinematics level the endogenous configuration ap-
the planning problem is decomposed into a number of tasksproach has been developed on the basis of the ideBsss:-
it is called a multiple-task problem. Resolving multiple-task mann(1993; Chitour and Sussmar(1998; Divelbiss et al.
motion planning problems is enabled by the system’s redun{199g. Founded on the end-point map of a control system,
dancy. the endogenous configuration space approach extends in a

In the area of kinematic control of redundant manipula- natural way to robotic Systems with dynami@darnowska

tion robots the multiple-task problems have been addressegind Tcha@, 2007 Ratajczak et a].2010. Since the endoge-
within the prioritized approach, initiated Baciejewski and  nous configuration space is infinite-dimensional, the mobile
Klein (1983; Nakamura et al(1987, and then refined in  rohotic systems have infinite redundancy, capable of accom-
the works of Chiaverini (1997); Chiacchio et al.(199);  modating an arbitrary big number of tasks. Using the endoge-
Choi et al.(2009; Antonelli (2009. An extension of these nous configuration space approach, a prioritized approach to
ideas towards mobile robotic systems, in particular mobilemotion planning of underactuated robotic systems has been
robots and mobile manipulators, has been promoted by thgroposed irRatajczak et a2010); Ratajczak2012).
endogenous configuration space approdath¢ and Jaku- This paper addresses the multiple-task motion planning

biak 2003 Tchah and Zadarnowsk&003. The endogenous  problem for control fine systems, that include the dynamics
configuration space approach employs a control system rep-



models of non-holonomic robotic systems. It is assumed thabf the paper, a derivation of the subtask Jacobian and its in-

the proper motion planning task of reaching a desired pointverse as well as the dynamics model of the trident snake are

in the task space has been supplemented by a number of agtaced in the Appendix.

ditional tasks, characterized by their specific task maps. Two

methods of solving the problem have been proposed, called

the egalitarian and the prioritarian approach. A motion plan-

ning algorithm has been derived by means of the endogenousince the dynamics of a non-holonomic robotic system can

configuration space approach, in the form of a functional dif-be represented as affine control system with outputs, this

ferential equation for the control function. Furthermore, a system will define outniverse of discours&Ve begin with

parametric and a non-parametric strategy of computing nuintroducing basic concepts of the endogenous configuration

merically the control function have been launched. space approach, and derive the Jacobian motion planning al-
Theoretical concepts are applied to the dynamics modegorithm. This algorithm relies on the solution of a functional

of the trident snake robotshikawa 2004. The robot can be  differential equation involving a Jacobian inverse operator.

regarded as a realization of the undulatory locomotion princi-Depending on the method of solution of this equation, para-

ple and a demanding test bed of motion planning algorithmsmetric or non-parametric motion planning algorithms are dis-

for non-holonomic systems. The design and kinematics analtinguished.

ysis of the trident snake with passive wheels and active joints

can be found inshikawa(2004); Ishikawa et al(2010. Re-

cently, this analysis has been extended to the case of active

wheels inPaszuk et a2012 and complemented by a study The basic concepts of the endogenous configuration space

of trident snake dynamic®{etrowska2012. In both these approach will be adopted to a general contitine system,

cases the motion single-task planning algorithms have beeaf the form

denyed from the eqdogenous conflguratloq space approacz{ %= f(X)+g(u = F(X) + XM gGi(Xu;,
Differently than in the references mentioned above, thi

paper concentrates on the multiple-task motion planning y=k(x),

strategy for the trident snake robot. The robot's kinemat-whereue R™ xeR", yeR'. All the functions and vector

ics and dynamics are represented as a confifdeasys-  fields appearing in1) will be assumed smooth. L&t > 0
tem with outputs. The problem is defined in terms of the genote a control time horizon. The admissible control func-
end-point map of this system. The control strategy of thetions entering systemi) will be assumed to belong to the
system involves a preliminary state feedback. The motionspaceL%[o’T] of Lebesgue square integrable functions de-

planning problem includes two subtasks: the proper mo-ined on the interval [Or]. The space.2[0,T] is a Hilbert
tion planning task of transferring the system to a desiredspace with inner product

task space location, and the singularity avoidance task guar-
anteeing well definiteness of the feedback transformation.
Two motion planning strategies have been developed, reéui(:),U())r = f ug (HREux(t)dt, (2
ferred to as the egalitarian and the prioritarian approach. The 0

former strategy regards the component tasks as equivalent, . ,
the latter assigns the highest priority to the proper motionWhere R() =R (t2/2> 0, and the corresponding norm
planning task. Simultaneously, two computational strategieéw(')IIR =(u(-),u())r". For a control functionu(), let
have been proposed in order to solve the motion planning(t) = ¥x.(u()) denote the state trajectory d)( initialized
problem: the parametric and the non-parametric, dependin?tx‘)' It will be assumed that this trajectory exists for every
on whether the computation of the control function utilizes t € [0-T1- The outputy is identified with the vector of task
a specific base in the endogenous configuration space ofariables. , _

is base-independent. Computer simulations demonstrate the GVen an initial state of system ¢) and the time horizon

performance of the egalitarian non-parametric and the prior- + & 9éneral motion planning problem consists in defining

itarian parametric motion planning algorithms. a cpntrolu(t) that drives the system’s output &tto a pre-
The paper is organized in the following way. Sectipn ~SCribed poinyg, so thay(T) =ya. _

introduces a control system representation of the non- Ouranalysis of the motion planning problem will be based

holonomic system, defines a Jacobian motion planning al©" the concept of the end-point map of systei) defined

gorithm, and describes two computational strategies. ThéS the value al’ of the output function resulting from the

strategies of multiple-task motion planning are presented irPPlication of a control function(:),

Sect.3. In Sect4 the motion planning strategies are specified 3 _ .

to the trident snake robot. Results of humeric computationsKm’T(u( ) = KX(T)) = Kprar (ULD)- 3)

are included in Secb. Section6 concludes the paper. In or- For bounded measurable control functiarfg € X the end-

der to not distract the reader’s attention from the main threagpoint mapK : X — R’ is continuously dferentiable ¢?)

@)

T



(Sontag1990. In the context of mobile robots or mobile ma-

nipulators the spac& has been called the endogenous con-U ina th d-point th | moti lanni b
figurations spacelichah and Jakubiak2003. The derivative sing the end-point map, the general motion pianning prob-
lem in system 1) is tantamount to computing a control

of the end-point map is computed by means of the linear ap; . N
proximation to systermj function ugy(-), such thatKy, v (ug(-)) = ya. The problem can

be solved by means of a Jacobian motion planning algo-

E(t) = ADER) + BOVEY), n(t) = CHEEL), £0)=0, (4) rithmwhose derivation relies on the continuation (homotopy)
method Gussmanyil993. Given the motion planning prob-

along the (control,trajectory) paiu(t), x(t)), where lem, we begin with any initial contralip(-) € X. If the ini-

tial choice does not solve the problem, ik, 1 (Uo(-)) # Ya,
£(t) = Dy t(U()V(), (5)  we choose inX a differentiable curvey(-), 6 € R, passing at

6 = 0 throughug(-), and compute the task space error along
and this curve

A(f(x()) + g(x())u(t))
A(t) X . B(t) = g(x(1), €(6) = Ky, 7(Us()) — Vg (10)
C(t) M (6) Next, we request that the error decrease exponentially along
X with 6, with a prescribed decay raje> 0, i.e.
Given the linear system), the derivative of the end-point
map atu(-) € X is equal to @ = —ye(h). (11)
0

DKo (UO)IV() = 1(T) = CT)E(T). (7) By differentiating the formulal() with respect t@, we ar-
In compliance with the robotic terminology, the derivative "V€ at the Waewski-Davidenko equation
(7) will be called the system’s Jacobian, dug (")

Jxo.1(Ua())

55 = e (12)
DKy (UCIV() = T 1 (UC)VE).

It follows that the computation of the Jacobian involves the
integration of the dterential equatiord) from 0 toT at zero
initial condition. If ®(t, s) denotes the transition matrix af)

duy (")
aq)a(i’ ) _AQOLY. D(s9=ln g = 7 Yo (WDE) (13)

involving the Jacobiang). If JfO’T(u()) :R" — X denotes
a right Jacobian inverse, such thbg,T(u(J)Jz’T(u(-)) =,
then (L2) can be converted into a dynamic system

evolving in X. Finally, a solution of the motion planning

. . ) - r _
this means that the Jacobidg 1 (u(:)) : X — R can be ex problem is obtained as the limit

pressed as
T Ug(t) = lim_ug(t).

JXO,T(u(-))v(~)=C(T)f (T, )B(s(s)ds ® A frequently used right Jacobian inverse is the Moore—
0

Penrose inverse derived from minimizing the square norm
The Jacobian allows to distinguish regular and singular conlIV()lIz under the equality constraint (a Jacobian equation)
trols (endogenous configurations) of systeth @ control
u(-) € X will be called regular, if the Jacobian is surjective Jo.1(UO)VC) = 7. (14)
ontoR', otherwise the contral(') is referred to as singular.
It can be shown that at regular controls the contffiha sys-
tem () is locally controllable.

Using the inner product] in the endogenous configura- (JZT(U(_)),]) (O)=R ()BT () (T, t)CT(T)Q;OlT(U('))n, (15)
tion space and the Euclidean structure of the output space, '
the dual Jacobian maf (u(-)) : R" — X can be defined where
in the following way

.
(3,7 UO)) () = RGBT (T.HCT (T @)  Gror(U()=C(T) f O(T,5)B(9R (9B (50" (T, 5)dsC' (T).
0

n € R". The resulting formula isTchah and Jakubiak2003,

denotes the Gram matrix associated with the linear system
(4), that in robotics context is referred to as the dexterity



or mobility matrix of system1) (Tchah and Zadarnowska whered € RS, s= m(k+1), and matriX¥'(t) of dimensiormxs
2003. At regular control functions the Gram matrix is full contains the suitably arranged basic functions. By orthogo-
rank, making the inverselp) well defined. The Gram matrix nality of the baseﬂ PT(1)¥(t)dt = |s. Under assumption that

can be conveniently computed by integrating the Lyapunowy(t) = ¥(t)y, the Jacobiang) takes the matrix form
differential equation

T
M(t) = BEOR ()BT (t) + A(t)M(t) + M()AT (1), (16)  Jy,1(2) =Cu(T) f (T, 9)B(9¥(9)ds,
at zero initial conditionM(0)=0, and then substituting °

Gx.7(U()) = C(T)M(T)CT(T). By invoking the definition of ~ where the matrices5f need to be computed fai(t) = u,(t)
dual Jacobian9), it is easily checked that the Gram matrix andx(t) = ¢y, +(u()). It follows that this Jacobian can be ob-

equals the composition tained by the integration of the matrixttérential equation

Gro(U()) = I 7(UC) Ty £ (UC)).- NA(t) = By () (1) + AN (1)

Moreover, it follows that the Jacobian inverstsf can be ~ With initial condition N,(0)=0, followed by the substitu-

written as tion Jy, 7(4) = Ca(T)Na(T). For the matrix Jacobian, the Ja-
cobian equation(4) assumes the fornly, t () = 7. It can

(JZ ,T(U('))U) (t) = (J;O,T(U('))Q%%T(U('))fi) ), be shown that the Moore—Penrose Jacobian inverse assumes

the matrix form
what justifies the identity

A ~ ~ -1
F 1 () =557 (Jor (VST 1 (1) (19)
T (U() = I 1 (UG 7 (UC)). a7 .
where S = fo PT(H)R(t)¥P(t)dt. Consequently, the updating
scheme of the control functiod®) converts to
The Jacobian motion planning algorithm derived in the previ-e+1 = Ao — ¥ 35, 1(16)e(6). (20)

ous subsection exploits a solution of a functiondetential ) )
equation 13) in the endogenous configuration spateln The representation of the_ cont_rol functions by means of a
order to make this equation tractable, we need to discretiz&'uncated orthogonal series will be called parametric. By

thed variable, and pass to a discrete control updating schem&°ntrast, the representation that does not use any base will
be referred to as non-parametric. This terminology extends

U1 (t) = to the corresponding motion planning algorithms.

Uy(t) — YR (1) B (P (T.)CJ (T) Gy (Ua(-))e8). (18)

whereBy(t), ®@4(t, s), Co(t) are computed alonguf(t), Xy(t))

in agreement with &), and e(d) = Ky, 7(Ug()) —Ya, for 6= If the motion planning problem consists only of the motion

01,... planning task, it will be called single-task. When the motion
Given uy(t), a basic step of the updating8) consists in  planning task is augmented with additional tasks, the motion

solving simultaneously a system ofidirential equations planning problem will be referred to as a multiple-task prob-

lem. We shall assume that the additional tasks are defined by
task mapK,,7: X — Ri=1,2,...,p, operating in the en-

Xo(t) = T(%(1)) + 9% () U (1), dogenous configuration space @j.(Most frequently, these
20T — —y(T, 1) Au(1), task maps have the form
M (1) = Bo(DR™(1)BF (1) + Ag(t)Ma(t) + My (1) A7 (1) T
with respective boundary conditiong(0) = xo, Do(T,T) = Kw1(U()) = f Fi(x(t), u(t))dt, (21)
I, andMg(0) = 0. 0

Alternatively, we can expand the control functions into a

truncated orthogonal series that leads to a finite parametriza{-0 ra r_wogl—negr?tlve fundCt:Pﬁiéx’é).Z 0 tgz.t 'S aslsumke d dh'f'
tion of controls. More specifically, we select a finite base of erentiable wherever defined. Givenadditional tasks, the

: [tiple-task motion planning problem consists in determin-
orthogonal functiongeo(t), ¢1(t), ..., ek(t)}, and assume that MY : P .
g #o(0).1(0) ) ing a control functionu(-) € X minimizing the collective error

k
w(t) =¥M4,  uul)= O, 1=12,...,m,
A ” % o &(6) = (%(0). e(6)...... "(6)). (22)



where %(6) = Ky, 7(Us()) —Ya and 'e(6) = 'Ky, 1(Us()) i =
1,2,...,p are errors corresponding to subsequent subtasks. .
We associate with the task maps the Jacobians: the Jacob%‘l
for the task number 0 is given bg) while for thei-th sub-
task the Jacobian

fterently to the egalitarian algorithm, now the subtasks will
e ordered with decreasing priorities. The essential assump-
tion of the prioritarian approach is that the solution of a lower
priority task is sought in a space rendered accessible by the

I\]xo T(UC)V() = higher priority tasks, so it should noffact the solution of
any task with higher priority. Given thieth error £2) and
f (GF {(X(0), u(®)) £+ IFi(X(1), u®) v(t) |, (23)  thei-th Jacobian7), we start the derivation from a state-
ax ou ment of the Jacobian equation for tihth subtask,

where£(t) denotes the solution o#l), see Appendix for a 'e(g) N
derivation. The Moore—Penrose inversetgg r(u()) is de- g5 = YT (Ue()
fined by expressionl§). In Appendix we have shown that _

the Moore—Penrose inverse of fitle Jacobiani,= 1,2,...,p, with'y >0 andi =0,1,..., p. A general solution of this equa-

dUe( )

-y 'e(6), (30)

takes the following form tion involves the Jacobian inverse with projectidiciach and
Jakubiak 2003,
() 0 = S oy
X0, T h (. 2 . o ) ) )
||bl( ) + C|( )“R dL:j(-JH( ) _ UZ,T(UH(')) |e(9) + IPXO,T(UO(')) Igg('), (31)
n €R, where
T FA(X(9.U(9) - where
b-t:R’ltBthde t(&)d 25) | o -
O=REOB0 J O™ S B b W) =ide- 0 ) Do (W)
1, [ OFi (X(1), u(t) T denotes the projection onto Kag 1(us(-)), and'¢,(-) € X is
G)=R (t)( ou : (26) any element of the endogenous configuration space. For the

The task Jacobians can be arranged into a collective Jacoble%h ;ghhjztlgrtlﬁgtslv;ﬁlg é%r:;;ga ;hciﬁggjrlgg r:ssz)egclgred

Jxo. 1 (Us()V() =

0 1 dug() o o 0 b 0

(DT (UEVE), Do T (UONVE), . P T (UOIVE)). @7 g = Tt W0)) E6) + Pror(Us()) Le()- (32)
These subtasks can either be treated as equivalent and solved . . .
simultaneously or ordered according to their importance anc?or the lower priority task (number 1) this equality needs to
solved sequentially. These two approaches will be further reP€ satisfied only within the kernel 815, 1 (us(), i.e.
ferred to as egalitarian and prioritarian. In the following two duw()

subsections we shall derive an egalitarian and a prioritarianPx.T(Us(-) —-— T
Jacobian motion planning algorithm.

= P () Ui 1 (U() 8(0)

+ P 7 (Us()) Pr. (Ua (1)) Z4(). (33)
Having projected32) onto ke, 1 (Us(-)), we get
In accordance with the egalitarian approach all subtasks ne dUg() o
to be solved simultaneously. Imposing the exponential de (%Xo T(U()) = = Pror(Ue()) %o ). (34)
crease of the error2@) with a decay ratey >0, and us- . .
ing the collective Jacobiar2(), we arrive at the Weewski-  where we have used the identiBg, 1 (us(-)) UZ’T(U(;(-)) =0,
Davidenko equation and the idempotency of the projection. Now, a combination
9() of (33) and (34) results in

I (Us()) = —v€(0). (28)

Finally, S|m|IarIy to (L3), the equationZ8) can be solved by
means of the Moore—Penrose Jacobian inverse of the collec

(PXO (W) %) = = Pro 1 (Un()) Ty 7 (o) ()
ProT (U () Pro T (Ua()) ().

tive Jacobian, Finally, a substitution of the above identity int82) yields
dU(.)() the following prioritarian Jacobian motion planning algo-
0 = 3, 7 (Us())e(6). (29)  rithm for two subtasks

The egalitarian solution of the multiple-task motion planning du9(~):_0 9 _ () %) =% P (N Y (un(- f
problem is obtained as the limig = limg .., Us(t) of the tra- 08 * 107 (W) B~y Pror (W) T 7 (W) *e(6)

jectory of dynamic systen®0). +%Py, 7 (Us()) Pro.T (U6 () *¢4(") (35)



If there are only two subtasks, the last teky() is zero, v 4
otherwise it could be used to define the prioritarian algorithm
for the remaining lower priority tasks.

In this way the presented derivation extendptel sub-
tasks, resulting in the following motion planning algorithm
(Ratajczak et 2010 Ratajczak2012),

dUg(t) _ D i ! j_1P iJ# i 0 36
F = —Z Y 1—[ XO,T(UG(')) xO,T(UH(')) e( )5 ( ) Yy

i=0 j=0

where “1P, 1(Uy(-)) = idy. In the terminology ofAntonelli
(2009 this algorithm belongs to the successive inverse-based
projection methods. Again, the solution of the multiple-task
motion planning problem is obtained as the limif(t) =
limy_ 10 Ug(t) Of the trajectory of systenBg). )
Let us take a closer examination of the control formula :
(35). By a substitution of this formula inta3p), it is easily
seen that the first error x X

d%(6)
do

v

Trident snake robot: conceptual model.
% %)

decreases exponentially, as requested.l). (However, be-  constraints. The control inputs of the robot are the driving
cause of the task-priority assumption, the second error  torques exerted at the joints between the body and the links.

de(0) . The anglesy; = —2r, a, =0, a3 = 4x are constant geomet-
ek —by %6(60) — %Iy, 7 (U () Ty 7 (U()) %(6) ric parameters of the robdtdenotes the length of each link,

1 ort 0 " andr stands for the distance between the center of the robot
+1y 95,7 (Us () D 7(Ua()) Vo7 (Ua(4)) Tigy 7 (Ua () "(6), body and the joints.

behaves dferently. The errote(d) will converge toward zero
exponentially, provided that it does ndtect convergence of

. #
the error%(6). This happens wheli, 1(uy(1)) T r(W()) = According to Fig.1, the vector of generalized coordinates is
0. Taking into account the form o17), the last equality will  defined asy= (x,Y,6, 1,2, ¢3) = (X,V,6, ) € R®. For every
be satisfied whenever wheel the non-holonomic constraints arise from the assump-
. tion of non-slipping laterally. The corresponding constraints

.7 (Ua (")) Ty 7 (Us()) = O i i

xo.TAM0 0, TAM0 ’ matrix takes the formlghikawa et al.201Q Paszuk et al.

2012

what may be interpreted as a sort of orthogonality of Jaco-
biansy,r (u()) andJy, 7 (u(-))- A@ =| Ai(@Rot (Z6) -lls |,

where RotZ,6) is the rotation matrix around Z-axis lsyan-
gle, andA,(q) is defined as
The presented algorithms will be utilized in order to solve

a motion planning problem for the trident snake mobile sinfi+¢1) —cos@i+¢1) —l-rcosp
robot (shikawa 2004 Ishikawa et al.201Q Paszuk et a).  A1(Q)=| Sin(@z2+¢2) —coS@a+¢2) —I-rcosp,
2012. In the following subsections we are going to present sin(@s +¢3) —COS@3+¢s) —I—rcosps

a control-theoretic model, state a multiple-task motion plan-
ning problem, and introduce the egalitarian and the prioritar-
ian motion planning algorithm for the trident snake robot. G(g) =

Using the relatiorA(g)G(q) = 0, we find

cosd —sing 0

sing coy 0
The trident snake is a non-holonomic mobile robot. It con- | 0 0 1 [ Gi(h) (37)
sists of a triangular-shape body and three links able to rotate| Shitéu) _gostaré) —_p _ reosh _[ G2(¢) }
around the attachment points (see Hig.Each link is ended shizzige)  _cosbordd) _ _ Le0e
with a passive wheel which is subjected to non-holonomic | Sin@estés) _cosbs+és) 4 _ Looshs




so the trident snake kinematics can be represented by thérives the system from an initial state to a desired termi-

driftless control system nal output, over a prescribed time horizén- 0. In order to
_ make the feedbackg) well defined, the contral(t) should
q=G(gv, also prevent matriG,(¢) from getting singular. Clearly, the

motion planning problem includes two subtasks, of which the
former will be called the proper motion planning task (index
0), whereas the latter will be named the singularity avoidance
task (index 1). The task ma&, r(u(-)) is just the end-point
map of system41). The singularity avoidance task will be
assigned the task mai§, +(u(-)) of the form @1) with func-

tion F1(x, u) = det2(G,(¢)). The collective erroe(d) and the
collective Jacobiardy,t(u(-)) can be derived directly from

(22) and @7).

v e R® denoting the control variable.

The dynamics equations of the trident snake can be obtaine
from the Lagrange formalism together with the d’Alembert
principle. A detailed derivation can be found Rietrowska
(2012. After the elimination of the traction forces, the re-
sulting equations of motion take the form

q=G(av

V=N V) +Pw, (38) The motion planning problem for the trident snake robot will
y=k(@,v). be solved by means of the multiple-task motion planning al-
gorithms introduced in Sec8. For the egalitarian motion

The matrixG(q) is given by @7), the terms\(q,v) andP(q) planning the collective error is defined as

can be reconstructed from the data provided in the 2ett.
Itfollows that the trident snake has dim=dimw =3, soitis  gg) = (%(6), 5'(6)),
fully controlled. Therefore, it is possible to apply a partially

linearizing feedback transformation where the second component has been multiplied by a scal-
L ing factoré in order to maintain a dynamic balance of the two
w=P7(q) (u-N(q,v)), (39)  subtasks. The egalitarian motion planning algorithm takes

i ) o the form @9). The solution is the limitly = liMg_, ;. Ug(t) Of
u denoting a new control variable, that simplifies the control o trajectory of 29).

system representation substantially,

: : and produces a kinemat- | the prioritarian approach, the proper motion planning
ically reduced systeniéwis, 1999,

subtask will be assigned a higher priority, while the singu-

larity avoidance subtask will get a lower priority. Having

defined two errors%(6), 'e(d) and two Jacobian inverses:

9% +(u()) and 1} 1(u()) given, respectively, by1E) and
y=k@.v). (24), we can provide the following formula for the priori-

In Paszuk et al(2012), it has been shown that the feedback tarian motion planning algorithn86)

(39) is well defined provided that the lower submatrix 87) dug(-)

is non-singular, i.e. deb,(¢) # 0. a0

To obtain a control fline system), we need to introduce g o4# 0 14%#
=0 %7 —(us(-) %) — Yy Py, 1 (Us()) W 1 (Us(-)) (6
a state vectox = (q,v) € R?. Then, the kinematics and dy- 2o (Uo()) %0) =y P (U () Ty r (W) "el6),

q=G(q)v
v=u, (40)

namics of the trident snake may be rewritten as where®P,, 1 (u(-)) denotes the projection into k&, 1(u(-)).
_ In the next section the performance of both these algorithms
{ x=f(x) +9(x)u, (41  Willbe illustrated by means of numerical computations.
y=k(x),

whereu € R and

motion planning algorithm, both the parametric and non-
parametric computational approaches introduced in et.
Assuming that all state variablesire subject to motion plan- are applicable. In order to demonstrate this possibility, two
ning, we get the output function= k(X) = x. numerical solutions of the same motion planning problem
for the trident snake will be presented. The problem in-
volves the proper motion planning task and the singularity
avoidance task. In the first case, the solution will be delive-
The motion planning problem for the trident snake will con- red by the non-parametric egalitarian algorithm. In the sec-
sist in defining a control functiom(t) in system 41) that ond case, the parametric prioritarian algorithm is used. The

Potentially, in the egalitarian as well as in the prioritarian
G(g)Vv 0

O3><1
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Trident snake robot: physical model. Motion path inXY plane: egalitarian solution (left) and

prioritarian solution (right).

proper motion planning task consists in driving the system
(42) from the initial statexy = (0,0,0,0,0,0,0,0,0) to the de-
siredyqy = Xg =(0.1,0,0,0,0,0,0,0,0), over the time horizon

T = 1. Taking into account geometric parameters of the tri-
dent snake =1 =0.12, this task could be interpreted as an
elementary a rest-to-rest move forward. For both these sim-
ulations, the motion planning problem is regarded as solved,
when the norm|%(6)|| drops below 16*, and the determi-
nant detG,(¢)) # 0 during the whole motion time. The ini-
tial control functions for both cases are chosen constant,
Up = (2,1,-1). In the egalitarian algorithm the error decay
ratey = 0.1, and the scaling factat = 10, The prioritar-

ian algorithm uses decay dfieients® = 0.5 andy = 10°2.

In the parametric representation a truncated Fourier series of
lengthk = 20 has been chosen, so the vector of control pa-
rametersi € R%. The dynamics model of the trident snake
robot has been borrowed froietrowskg2012. The model
corresponds to the trident snake robot designed at our labo-
ratory, GospodareK2011), displayed in Fig2. Its dynamic
parameters are the following:

z, Y, V1, V2

Z, Y, V1, V2

body massn, = 0.52kg,

— wheel massn,, = 0.03kg,
Position and linear velocity: egalitarian solution (top) and
— wheel radius,, = 0.02m, prioritarian solution (bottom).

— wheel thicknessl = 0.001m,
The results of computations are depicted in Figsll. Si
— moment of inertia of the body around its center of massunits of measure have been employed. The motion paths cor-
lo = ”b%z, responding to the solutiam(t) of the motion planning prob-
lem provided by the algorithms are presented in Bighat
— moment of inertia of the wheel around the center of also displays the robot body every2G. As it can be seen,

mass of the robot bodl,, = mN(% + g_zz), these paths areftierent for the two algorithms. Figurds6
show the state space trajectories. One can observe that the
— link massm = 0.07kg, proper motion planning task has been solved correctly. The
robot position and orientatiorx(y, 8) as well as the joint vari-
— motor massny, = 0.055kg, ables¢ have reached the desired valuesTatAlso, all ve-

locitiesv have become equal to zero. Figut@resents the
— total massm, = mg + 3(My + My, + M). control u(t) in the linearized model. Comparing the control
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Orientation and angular velocity: egalitarian solution Linearized control(t), egalitarian solution (top) and pri-
(top) and prioritarian solution (bottom). oritarian solution (bottom).
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Joint angles: egalitarian solution (top) and prioritarian Original controlw(t): egalitarian solution (top) and prio-
solution (bottom). ritarian solution (bottom).
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Figure 9. Determinant de;(¢)): egalitarian solution (top) and
prioritarian solution (bottom).

functions obtained from the non-parametric egalitarian and
the parametric prioritarian approaches, one can see that the
non-parametric controls are smoother. The original control
w(t) representing the torques in the joints is depicted in
Fig. 8. Again, as in the case aft) control, the functiorw(t)
produced by the non-parametric algorithm is smoother. Fig-
ure 9 refers to the singularity avoidance subtask. The plots
present the value of the determinant @(g)) during the
L = e 1 10 oo it spcs st st () o
LY e . . prioritarian solution (bottom).
prioritarian algorithms have solved the second task in a satis-
factory way. This conclusion is confirmed by Fip show-
ing three-dimensional plots in the joint spage The sur-
face detG,(¢)) =0 represents singularities. Joint trajecto- 6 Conclusions
ries¢(t) (starting with the black color and going towards the
light green) remain safely inside the regular set. Finally, theWe have designed two multiple-task motion planning algo-
last Fig. 11 illustrates the convergence of the algorithms. It fithms for non-holonomic systems with dynamics. Concep-
follows that the non-parametric egalitarian algorithm needstually, their derivation is rooted in the endogenous configu-
more steps in order to fulfill the stop conditiffie(d)|| < 104.  ration space approach, so the solution of the problem is a
In the egalitarian algorithm the total erre(®) decreases ex- control function in the control system representation of the
ponentially. In the case of the prioritarian algorithm the error dynamics. The egalitarian algorithm treats all the compo-

of the second taske(6)| has been forced to increase by the nent tasks as equivalent. The prioritarian algorithm arranges
higher priority task. the tasks according to decreasing priorities. Computations of

the control function resulting from these algorithms can ei-
ther use a finite-dimensional expansion of control functions
at a prescribed base in the endogenous configuration space
or be base-independent. This gives rise to either the para-
metric or the non-parametric computational technique. The

Mech. Sci., 4, 153-166, 2013 www.mech-sci.net/4/153/2013/



10" in this paper (63 control parameters), the parametric compu-
tations have been aboubltimes more time consuming than
the non-parametric. This being so, the choice of the motion
planning strategy should depend on the complexity of the
non-holonomic system subject to motion planning as well as
on the type of the tasks defining the problem.

= le@l N
["e(0)]]

10"

0O 20 40 60 80 100 120 In this section we shall make a derivation of the Jacoki2&h (

0 and its Moore—Penrose invers®), and present the dynam-
ics model of the trident snake robot used in Séct.

Thei-th subtask Jacobian is equal to
Uy T(UCVE) = DK 1 (UOIVC)

.
do f Fi(@x2(UC) + @v()), u(t) + av(t))dt,

0

30 40 where X(t) = ¢x,+(u(-)) denotes the state trajectory of)(
driven by the control function(-). The diferentiation gives

a=0

Convergence: egalitarian solution (top) and prioritarian iJXOJ (u()v()
solution (bottom)top. T
_ f (6Fi(X(t),U(t))
- ox

IFi(X(t), u(t))

VO ot

D @y, (U()V() +
0

algorithms have been applied to solve a multiple-task motion_. - _

planning problem for the trident snake robot, that consists of _lnl?jlly, 3? substitution for(t) = Ds(U())V() from (5)

the proper motion planning task and the singularity a\/Oid'yleln ir(se)r.to find a formula for the Moore—Penrose Jacobian

ance task. Numerical computations have shown that both th?nverse we b(legin with auJacobian equati;n !

algorithms provide correct, althoughfi@irent, solutions to '

the problem. Also, the algorithms behavéfeliently. In the UXO,T(U('))V(') =7,

case of egalitarian algorithm, when all the tasks are solved ) ) ) )

simultaneously, there are only two possibilities: either bothWheren € R. A solution of this equation will be sought by

tasks are solved correctly or none of the tasks is solved whatMinimizing the squared norm of the control function,

soever. Contrary to that, in the prioritarian algorithm there T

is a risk that only the highest priority tasks will be solved. ... a2 — [T

This observation has been confirmed by the plots of errorq/](!)n[uv()”R_ fv (t)R\'(t)dt]’

convergence. In the egalitarian algorithm the total error de- 0

creases. It follows from the derivation of the prioritarian al- with the equality constraint. After the substitution

gorithm that the error of a lower priority task can even in- ¢

crease to enable the decrease of a higher priority task error,

The parametric computations of solutign of ?he mztion plan-g(t) - f O(t, 9)B(V(s)ds,

ning problem are base-dependent, what usually appears to be 0

quite restrictive. The non-parametric representation of conthe corresponding Lagrange function becomes

trol functiqn; dqes not depend on thg base choice, and is free T T

from the limitations of the parametric approach. The com- (1 AFi(X(t), u(t))

putational &ort in the parametric approach depends on thelL(V(-),4) = fV (t)R"(t)d”/lf(T

dimension of the parameter space. If the number of parame-

ters is small, the parametric computations are much more ef- !

ficient than the non-parametric. This, however, reverts, when | &(t, s)B(s)v(s)ds +

the number of parameters grows up. In the example presente

IFi(X(1), u(t))

U v(t)dt] ,



A € R. Now, the diferentiation of the Lagrange function with From the last identity we compute and conclude that
respect tos(-)

bi(t) +ci(t
d M= ||b»l(('))+ R I((-)TF ’
DLOO). W) = | LV +aw(). ), etk
=0 what is just p4).
use of the identity
T t
fff(t s)dsdt = fff(t s)dtds, A standard derivation based on the Lagrangian mechanics
and d’Alembert principle leads to the following definition of
0 0 . . . . .
terms appearing in the equations of moti&8)(of the trident
and then equating the derivative to 0 yield snake robot
J P(@) = M(a)G" (a)B(a),
I SPREEN O PN ¢ ORTONN
vt =-3R (0[5 © )@ <S~0( ox ds M() = GT(DQAG(.
t

N(@.V) = -M ()G (o) ( QA)G(a) + C(a. G(PV)G(A))V).

whereG(q) is given by 87),

. (6Fi(x(gt3,u(t)) )T)

where the subscrigtrefers to the-th subtask. To simplify B(q) = [ Osxs ]
the notations, let us define a pair of functions I3

T - denotes a control matriXQ(q) is the inertia matrix defined
bi(t) = R-{(0BT () q)T(S’t)(aFi(X(S)’ U(S))) ds below, andC(q, ) is the matrix of Coriolis and centripetal

/ Ox forces whose entries

d 6
an Cij(@.6) = D &5 (A
60 = R [ PROu©)) -

T ou ’ are determined by the Chrigtel’'s symbols of the first kind
associated witl®Q(q)
so that
dQik(q) 6ij(CI) aQij(a)) . .
1 - =

Vi(t)=—§/1(bi(t)+0i(t))~ |](q) ( aq; G aa | i,j,k=1,...,6.

The Lagrange multiplier can be eliminated by inserting the The following form of the inertia matrix for the trident snake
controlv(t) into the Jacobian equation, that implies robot can be found iRietrowskg(2012)

1 T mgyp O Mz Mg Mys Mg
-54 f (o] (OR() + ¢ (HR()) (bi (1) + ci(t))dt 0 My My Ny Mps M
o Q(q) = M3 Mgz Mgz Mg Mgs  Mge
1 ) My Mg Mgy Mgy O o p
= _E/l”bi(') + Ci(')”R =n. Mis Mg NMegs O Mg O
Mg Mg Mg O O Mg



where

M1 =M =M,

Maz = lo + 3low + 3My(r? +1%) + 2myrl cosg,
+2myrl cosg, + 2myrl cosgs + m (12 + 3r2 + Ir cospy
+Ir cosg, + Ir cosps) + 6Myr2,

2 1 2
Myg = Mss = Meg = low + Myl +§ml ,
My = —Myl sin(ay + ¢1 + 6) — myr sin(ay + 6)
—myl sin(az + ¢z + ) — myr sin(a; + 6)
—myl sin(as + ¢3 + 6) — myr sin(as + 6)

1 : . .
—ém(Zr sin(ay + 6) + I sin(@y + ¢1 + 6) + 2r sin(az + 6)

+Isin(@, + ¢, + 0) + 2r sin(as + ) + | sin(az + ¢3 + 6))
—Mmr SINE + @1) — Myt Sin@ + a2) — Myr sin@ + az),

. 1 .

My = —Myl sin(y + ¢1 + 6) — Eml sin(ay + ¢1 + 0),
. 1 .

Mys = —Myl sin(az + ¢ + 0) — Eml sin(az + ¢2 + 6),

Mg = —Myl sin(as + ¢3 + 0) — %ml sin(as + ¢3 + 0),
Mp3 = Myl COSE1 + @1 + 0) + Myr COSE + 6)

+Myl cos@ + ¢ + 0) + myr cosg + 6)

+myl COS@3 + ¢3 + 6) + Myr cosrs + 6)

1
+§m (2r cosry + 6) + 1 cosqy + ¢1 + 6) + 2r cosg, + 6)

+lcosf + ¢ + 6) + 2r cosrs + 0) + 1 cos@rz + ¢3 + 6))
+Myt €OSP + a1) + Myt COSP + az) + Myl COSP + a3),

Mpg = Myl COSQy + @1+ 0) + %ml CoSs(y1 + ¢1 +0),
Mps = Myl COSEo + ¢ + 0) + %ml cosf, + ¢ +0),
Mg = Myl COSE3 + 3 + 0) + %ml cosfs + ¢3 +0),
Maa = low + Mul? + myrl cosp, + %mI(ZI + 3r cospy),
Mes = low + Myl2 + myrl cosg, + éml(ZI + 3r cosgy),

1
Mes = low + M2 + My rl cosps + émI(ZI + 3r cospa).
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