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Abstract. This paper addresses the motion planning problem in non-holonomic robotic systems. The system’s
kinematics and dynamics are represented as a control affine system with outputs. The problem is defined
in terms of the end-point map of this system, using the endogenous configuration space approach. Special
attention is paid to the multiple-task motion planning problem, i.e. a problem that beyond the proper motion
planning task includes a number of additional tasks. For multiple-task motion planning two strategies have been
proposed, called the egalitarian approach and the prioritarian approach. Also, two computational strategies
have been launched of solving the motion planning problem: the parametric and the non-parametric. The
motion planning and computational strategies have been applied to a motion planning problem of the trident
snake robot. Performance of the motion planning algorithms is illustrated with computer simulations.

1 Introduction

The motion planning problem of a robotic system consists in
determining an action in the configuration space that would
drive the system along a desired trajectory or to a desired
location in the task space. Frequently, reaching the goal is
accompanied with avoiding obstacles and singularities, re-
specting constraints of motion, limitations of energy, etc. If
the planning problem is decomposed into a number of tasks,
it is called a multiple-task problem. Resolving multiple-task
motion planning problems is enabled by the system’s redun-
dancy.

In the area of kinematic control of redundant manipula-
tion robots the multiple-task problems have been addressed
within the prioritized approach, initiated byMaciejewski and
Klein (1985); Nakamura et al.(1987), and then refined in
the works of Chiaverini (1997); Chiacchio et al.(1991);
Choi et al.(2004); Antonelli (2009). An extension of these
ideas towards mobile robotic systems, in particular mobile
robots and mobile manipulators, has been promoted by the
endogenous configuration space approach (Tchón and Jaku-
biak, 2003; Tchón and Zadarnowska, 2003). The endogenous
configuration space approach employs a control system rep-

resentation of the robotic system and focuses on the analy-
sis of its end-point map. The central concept of endogenous
configuration is identified with the system’s control function,
so singular controls become singular endogenous configura-
tions, and controllability defines the dexterity of the robotic
system. The concept of Jacobian of the robotic system relies
on the linear approximation of the control system. Jacobian
algorithms are introduced using the continuation method.
On the kinematics level the endogenous configuration ap-
proach has been developed on the basis of the ideas ofSuss-
mann(1993); Chitour and Sussmann(1998); Divelbiss et al.
(1998). Founded on the end-point map of a control system,
the endogenous configuration space approach extends in a
natural way to robotic systems with dynamics (Zadarnowska
and Tchón, 2007; Ratajczak et al., 2010). Since the endoge-
nous configuration space is infinite-dimensional, the mobile
robotic systems have infinite redundancy, capable of accom-
modating an arbitrary big number of tasks. Using the endoge-
nous configuration space approach, a prioritized approach to
motion planning of underactuated robotic systems has been
proposed inRatajczak et al.(2010); Ratajczak(2012).

This paper addresses the multiple-task motion planning
problem for control affine systems, that include the dynamics
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models of non-holonomic robotic systems. It is assumed that
the proper motion planning task of reaching a desired point
in the task space has been supplemented by a number of ad-
ditional tasks, characterized by their specific task maps. Two
methods of solving the problem have been proposed, called
the egalitarian and the prioritarian approach. A motion plan-
ning algorithm has been derived by means of the endogenous
configuration space approach, in the form of a functional dif-
ferential equation for the control function. Furthermore, a
parametric and a non-parametric strategy of computing nu-
merically the control function have been launched.

Theoretical concepts are applied to the dynamics model
of the trident snake robot (Ishikawa, 2004). The robot can be
regarded as a realization of the undulatory locomotion princi-
ple and a demanding test bed of motion planning algorithms
for non-holonomic systems. The design and kinematics anal-
ysis of the trident snake with passive wheels and active joints
can be found inIshikawa(2004); Ishikawa et al.(2010). Re-
cently, this analysis has been extended to the case of active
wheels inPaszuk et al.(2012) and complemented by a study
of trident snake dynamics (Pietrowska, 2012). In both these
cases the motion single-task planning algorithms have been
derived from the endogenous configuration space approach.

Differently than in the references mentioned above, this
paper concentrates on the multiple-task motion planning
strategy for the trident snake robot. The robot’s kinemat-
ics and dynamics are represented as a control affine sys-
tem with outputs. The problem is defined in terms of the
end-point map of this system. The control strategy of the
system involves a preliminary state feedback. The motion
planning problem includes two subtasks: the proper mo-
tion planning task of transferring the system to a desired
task space location, and the singularity avoidance task guar-
anteeing well definiteness of the feedback transformation.
Two motion planning strategies have been developed, re-
ferred to as the egalitarian and the prioritarian approach. The
former strategy regards the component tasks as equivalent,
the latter assigns the highest priority to the proper motion
planning task. Simultaneously, two computational strategies
have been proposed in order to solve the motion planning
problem: the parametric and the non-parametric, depending
on whether the computation of the control function utilizes
a specific base in the endogenous configuration space or
is base-independent. Computer simulations demonstrate the
performance of the egalitarian non-parametric and the prior-
itarian parametric motion planning algorithms.

The paper is organized in the following way. Section2
introduces a control system representation of the non-
holonomic system, defines a Jacobian motion planning al-
gorithm, and describes two computational strategies. The
strategies of multiple-task motion planning are presented in
Sect.3. In Sect.4 the motion planning strategies are specified
to the trident snake robot. Results of numeric computations
are included in Sect.5. Section6 concludes the paper. In or-
der to not distract the reader’s attention from the main thread

of the paper, a derivation of the subtask Jacobian and its in-
verse as well as the dynamics model of the trident snake are
placed in the Appendix.

2 Basic concepts

Since the dynamics of a non-holonomic robotic system can
be represented as an affine control system with outputs, this
system will define ouruniverse of discourse. We begin with
introducing basic concepts of the endogenous configuration
space approach, and derive the Jacobian motion planning al-
gorithm. This algorithm relies on the solution of a functional
differential equation involving a Jacobian inverse operator.
Depending on the method of solution of this equation, para-
metric or non-parametric motion planning algorithms are dis-
tinguished.

2.1 Endogenous configuration space approach

The basic concepts of the endogenous configuration space
approach will be adopted to a general control affine system,
of the form{

ẋ= f (x)+g(x)u= f (x)+
∑m

i=1 gi(x)ui ,

y= k(x),
(1)

whereu ∈ Rm, x ∈ Rn, y ∈ Rr . All the functions and vector
fields appearing in (1) will be assumed smooth. LetT > 0
denote a control time horizon. The admissible control func-
tions entering system (1) will be assumed to belong to the
spaceL2

m[0,T] of Lebesgue square integrable functions de-
fined on the interval [0,T]. The spaceL2

m[0,T] is a Hilbert
space with inner product

〈u1(·),u2(·)〉R =

T∫
0

uT
1 (t)R(t)u2(t)dt, (2)

where R(t) = RT(t) > 0, and the corresponding norm
||u(·)||R = 〈u(·),u(·)〉1/2R . For a control function u(·), let
x(t) = ϕx0,t(u(·)) denote the state trajectory of (1), initialized
at x0. It will be assumed that this trajectory exists for every
t ∈ [0,T]. The outputy is identified with the vector of task
variables.

Given an initial statex0 of system (1) and the time horizon
T, a general motion planning problem consists in defining
a controlu(t) that drives the system’s output atT to a pre-
scribed pointyd, so thaty(T) = yd.

Our analysis of the motion planning problem will be based
on the concept of the end-point map of system (1), defined
as the value atT of the output function resulting from the
application of a control functionu(·),

Kx0,T(u(·)) = k(x(T)) = k(ϕx0,T(u(·))). (3)

For bounded measurable control functionsu(·) ∈ X the end-
point mapK : X −→ Rr is continuously differentiable (C1)
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(Sontag, 1990). In the context of mobile robots or mobile ma-
nipulators the spaceX has been called the endogenous con-
figurations space (Tchón and Jakubiak, 2003). The derivative
of the end-point map is computed by means of the linear ap-
proximation to system (1)

ξ̇(t) = A(t)ξ(t)+ B(t)v(t), η(t) =C(t)ξ(t), ξ(0)= 0, (4)

along the (control,trajectory) pair (u(t), x(t)), where

ξ(t) = Dϕx0,t(u(·))v(·), (5)

and

A(t) =
∂( f (x(t))+g(x(t))u(t))

∂x
, B(t) = g(x(t)),

C(t) =
∂k(x(t))
∂x

. (6)

Given the linear system (4), the derivative of the end-point
map atu(·) ∈ X is equal to

DKx0,T(u(·))v(·) = η(T) =C(T)ξ(T). (7)

In compliance with the robotic terminology, the derivative
(7) will be called the system’s Jacobian,

DKx0,T(u(·))v(·) = Jx0,T(u(·))v(·).

It follows that the computation of the Jacobian involves the
integration of the differential equation (4) from 0 toT at zero
initial condition. IfΦ(t, s) denotes the transition matrix of (4),

∂Φ(t, s)
∂t

= A(t)Φ(t, s), Φ(s, s) = In,

this means that the JacobianJx0,T(u(·)) : X −→ Rr can be ex-
pressed as

Jx0,T(u(·))v(·) =C(T)

T∫
0

Φ(T, s)B(s)v(s)ds. (8)

The Jacobian allows to distinguish regular and singular con-
trols (endogenous configurations) of system (1). A control
u(·) ∈ X will be called regular, if the Jacobian is surjective
ontoRr , otherwise the controlu(·) is referred to as singular.
It can be shown that at regular controls the control affine sys-
tem (1) is locally controllable.

Using the inner product (2) in the endogenous configura-
tion space and the Euclidean structure of the output space,
the dual Jacobian mapJ∗x0,T

(u(·)) : Rr −→X can be defined
in the following way(
J∗x0,T(u(·))η

)
(t) = R−1(t)BT(t)ΦT(T, t)CT(T)η. (9)

2.2 Jacobian motion planning

Using the end-point map, the general motion planning prob-
lem in system (1) is tantamount to computing a control
function ud(·), such thatKx0,T(ud(·)) = yd. The problem can
be solved by means of a Jacobian motion planning algo-
rithm whose derivation relies on the continuation (homotopy)
method (Sussmann, 1993). Given the motion planning prob-
lem, we begin with any initial controlu0(·) ∈ X. If the ini-
tial choice does not solve the problem, i.e.Kx0,T(u0(·)) , yd,
we choose inX a differentiable curveuθ(·), θ ∈ R, passing at
θ = 0 throughu0(·), and compute the task space error along
this curve

e(θ) = Kx0,T(uθ(·))− yd. (10)

Next, we request that the error decrease exponentially along
with θ, with a prescribed decay rateγ > 0, i.e.

de(θ)
dθ
= −γe(θ). (11)

By differentiating the formula (10) with respect toθ, we ar-
rive at the Wȧzewski-Davidenko equation

Jx0,T(uθ(·))
duθ(·)

dθ
= −γe(θ), (12)

involving the Jacobian (8). If J#
x0,T

(u(·)) : Rr −→X denotes
a right Jacobian inverse, such thatJx0,T(u(·))J#

x0,T
(u(·)) = Ir ,

then (12) can be converted into a dynamic system

duθ(·)
dθ
= −γJ#

x0,T(uθ(·))e(θ) (13)

evolving in X. Finally, a solution of the motion planning
problem is obtained as the limit

ud(t) = lim
θ→+∞

uθ(t).

A frequently used right Jacobian inverse is the Moore–
Penrose inverse derived from minimizing the square norm
||v(·)||2R under the equality constraint (a Jacobian equation)

Jx0,T(u(·))v(·) = η, (14)

η ∈ Rr . The resulting formula is (Tchón and Jakubiak, 2003),

(
J#

x0,T(u(·))η
)
(t)=R−1(t)BT(t)ΦT(T, t)CT(T)G−1

x0,T(u(·))η, (15)

where

Gx0,T(u(·))=C(T)

T∫
0

Φ(T, s)B(s)R−1(s)BT(s)ΦT(T, s)dsCT(T).

denotes the Gram matrix associated with the linear system
(4), that in robotics context is referred to as the dexterity
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or mobility matrix of system (1) (Tchón and Zadarnowska,
2003). At regular control functions the Gram matrix is full
rank, making the inverse (15) well defined. The Gram matrix
can be conveniently computed by integrating the Lyapunov
differential equation

Ṁ(t) = B(t)R−1(t)BT(t)+A(t)M(t)+M(t)AT(t), (16)

at zero initial conditionM(0)= 0, and then substituting
Gx0,T(u(·)) =C(T)M(T)CT(T). By invoking the definition of
dual Jacobian (9), it is easily checked that the Gram matrix
equals the composition

Gx0,T(u(·)) = Jx0,T(u(·))J∗x0,T(u(·)).

Moreover, it follows that the Jacobian inverse (15) can be
written as(
J#

x0,T(u(·))η
)
(t) =

(
J∗x0,T(u(·))G−1

x0,T(u(·))η
)
(t),

what justifies the identity

J#
x0,T(u(·)) = J∗x0,T(u(·))G−1

x0,T(u(·)). (17)

2.3 Computations

The Jacobian motion planning algorithm derived in the previ-
ous subsection exploits a solution of a functional differential
equation (13) in the endogenous configuration spaceX. In
order to make this equation tractable, we need to discretize
theθ variable, and pass to a discrete control updating scheme

uθ+1(t) =

uθ(t)− γR
−1(t)BT

θ (t)Φ
T
θ (T, t)C

T
θ (T)G−1

x0,T(uθ(·))e(θ), (18)

whereBθ(t), Φθ(t, s), Cθ(t) are computed along (uθ(t), xθ(t))
in agreement with (6), and e(θ) = Kx0,T(uθ(·))− yd, for θ =
0,1, . . ..

Given uθ(t), a basic step of the updating (18) consists in
solving simultaneously a system of differential equations


ẋθ(t) = f (xθ(t))+g(xθ(t))uθ(t),
∂Φθ(T,t)
∂t = −Φθ(T, t)Aθ(t),

Ṁθ(t) = Bθ(t)R−1(t)BT
θ (t)+Aθ(t)Mθ(t)+Mθ(t)AT

θ (t)

with respective boundary conditionsxθ(0)= x0, Φθ(T,T) =
In andMθ(0)= 0.

Alternatively, we can expand the control functions into a
truncated orthogonal series that leads to a finite parametriza-
tion of controls. More specifically, we select a finite base of
orthogonal functions{ϕ0(t),ϕ1(t), . . . ,ϕk(t)}, and assume that

uλ(t) = Ψ(t)λ, uλ i(t) =
k∑

j=0

ϕ j(t)λi j , i = 1,2, . . . ,m,

whereλ ∈ Rs, s=m(k+1), and matrixΨ(t) of dimensionm×s
contains the suitably arranged basic functions. By orthogo-
nality of the base

∫ T

0
ΨT(t)Ψ(t)dt = Is. Under assumption that

v(t) = Ψ(t)µ, the Jacobian (8) takes the matrix form

Ĵx0,T(λ) =Cλ(T)

T∫
0

Φλ(T, s)Bλ(s)Ψ(s)ds,

where the matrices (6) need to be computed foru(t) = uλ(t)
andx(t) = ϕx0,t(uλ(·)). It follows that this Jacobian can be ob-
tained by the integration of the matrix differential equation

Ṅλ(t) = Bλ(t)Ψ(t)+Aλ(t)Nλ(t)

with initial condition Nλ(0)= 0, followed by the substitu-
tion Ĵx0,T(λ) =Cλ(T)Nλ(T). For the matrix Jacobian, the Ja-
cobian equation (14) assumes the form̂Jx0,T(λ)µ = η. It can
be shown that the Moore–Penrose Jacobian inverse assumes
the matrix form

Ĵ#
x0,T(λ) = S−1Ĵx0,T(λ)

(
Ĵx0,T(λ)S−1ĴT

x0,T(λ)
)−1
, (19)

where S =
∫ T

0
ΨT(t)R(t)Ψ(t)dt. Consequently, the updating

scheme of the control function (18) converts to

λθ+1 = λθ − γĴ
#
x0,T(λθ)e(θ). (20)

The representation of the control functions by means of a
truncated orthogonal series will be called parametric. By
contrast, the representation that does not use any base will
be referred to as non-parametric. This terminology extends
to the corresponding motion planning algorithms.

3 Multiple-task motion planning

If the motion planning problem consists only of the motion
planning task, it will be called single-task. When the motion
planning task is augmented with additional tasks, the motion
planning problem will be referred to as a multiple-task prob-
lem. We shall assume that the additional tasks are defined by
task mapsiKx0,T : X −→ R i= 1,2, . . . , p, operating in the en-
dogenous configuration space of (1). Most frequently, these
task maps have the form

iKx0,T(u(·)) =

T∫
0

Fi(x(t),u(t))dt, (21)

for a non-negative functionFi(x,u) ≥ 0 that is assumed dif-
ferentiable wherever defined. Givenp additional tasks, the
multiple-task motion planning problem consists in determin-
ing a control functionu(·) ∈ Xminimizing the collective error

e(θ) =
(
0e(θ),1e(θ), . . . , pe(θ)

)
, (22)
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where 0e(θ) = Kx0,T(uθ(·))− yd and ie(θ) = iKx0,T(uθ(·)) i =
1,2, . . . , p are errors corresponding to subsequent subtasks.
We associate with the task maps the Jacobians: the Jacobian
for the task number 0 is given by (8), while for thei-th sub-
task the Jacobian
iJx0,T(u(·))v(·) =

T∫
0

(
∂Fi(x(t),u(t))

∂x
ξ(t)+

∂Fi(x(t),u(t))
∂u

v(t)

)
dt, (23)

whereξ(t) denotes the solution of (4), see Appendix for a
derivation. The Moore–Penrose inverse for0Jx0,T(u(·)) is de-
fined by expression (15). In Appendix we have shown that
the Moore–Penrose inverse of theith Jacobian,i = 1,2, . . . , p,
takes the following form(
iJ

#
x0,T(u(·))η

)
(t) =

bi(t)+ ci(t)

||bi(·)+ ci(·)||2R
η, (24)

η ∈ R, where

bi(t) = R−1(t)BT(t)

T∫
t

ΦT(s, t)

(
∂Fi(x(s),u(s))

∂x

)T

ds, (25)

ci(t) = R−1(t)

(
∂Fi(x(t),u(t))

∂u

)T

. (26)

The task Jacobians can be arranged into a collective Jacobian

Jx0,T(uθ(·))v(·) =(
0Jx0,T(u(·))v(·),1Jx0,T(u(·))v(·), . . . , pJx0,T(u(·))v(·)

)
. (27)

These subtasks can either be treated as equivalent and solved
simultaneously or ordered according to their importance and
solved sequentially. These two approaches will be further re-
ferred to as egalitarian and prioritarian. In the following two
subsections we shall derive an egalitarian and a prioritarian
Jacobian motion planning algorithm.

3.1 Egalitarian approach

In accordance with the egalitarian approach all subtasks need
to be solved simultaneously. Imposing the exponential de-
crease of the error (22) with a decay rateγ > 0, and us-
ing the collective Jacobian (27), we arrive at the Wȧzewski-
Davidenko equation

Jx0,T(uθ(·))
duθ(·)

dθ
= −γe(θ). (28)

Finally, similarly to (13), the equation (28) can be solved by
means of the Moore–Penrose Jacobian inverse of the collec-
tive Jacobian,

duθ(·)
dθ
= −γJ#

x0,T(uθ(·))e(θ). (29)

The egalitarian solution of the multiple-task motion planning
problem is obtained as the limitud = limθ→+∞uθ(t) of the tra-
jectory of dynamic system (29).

3.2 Prioritarian approach

Differently to the egalitarian algorithm, now the subtasks will
be ordered with decreasing priorities. The essential assump-
tion of the prioritarian approach is that the solution of a lower
priority task is sought in a space rendered accessible by the
higher priority tasks, so it should not affect the solution of
any task with higher priority. Given thei-th error (22) and
the i-th Jacobian (27), we start the derivation from a state-
ment of the Jacobian equation for thei-th subtask,

d ie(θ)
dθ

= iJx0,T(uθ(·))
duθ(·)

dθ
= −iγ ie(θ), (30)

with iγ > 0 andi = 0,1, . . . , p. A general solution of this equa-
tion involves the Jacobian inverse with projection (Tchón and
Jakubiak, 2003),

duθ(·)
dθ
= −iγ iJ

#
x0,T(uθ(·))

ie(θ)+ iPx0,T(uθ(·))
iζθ(·), (31)

where

iPx0,T(uθ(·)) = idX −
iJ

#
x0,T(uθ(·))

iJx0,T(uθ(·))

denotes the projection onto keriJx0,T(uθ(·)), and iζθ(·) ∈ X is
any element of the endogenous configuration space. For the
highest priority task (number 0) the equality (31) is required
to hold in the whole endogenous configuration space,

duθ(·)
dθ
= −0γ 0J

#
x0,T(uθ(·))

0e(θ)+ 0Px0,T(uθ(·))
0ζθ(·). (32)

For the lower priority task (number 1) this equality needs to
be satisfied only within the kernel of0J

#
x0,T(uθ(·)), i.e.

0Px0,T(uθ(·))
duθ(·)

dθ
= −1γ0Px0,T(uθ(·))

1J
#
x0,T(uθ(·))

1e(θ)

+0Px0,T(uθ(·))
1Px0,T(uθ(·))

1ζθ(·). (33)

Having projected (32) onto ker0Jx0,T(uθ(·)), we get

0Px0,T(uθ(·))
duθ(·)

dθ
= 0Px0,T(uθ(·))

0ζθ(·), (34)

where we have used the identityiPx0,T(uθ(·)) iJ
#
x0,T(uθ(·)) = 0,

and the idempotency of the projection. Now, a combination
of (33) and (34) results in

0Px0,T(uθ(·))
0ζθ(·) = −

1γ0Px0,T(uθ(·))
1J

#
x0,T(uθ(·))

1e(θ)

+0Px0,T(uθ(·))
1Px0,T(uθ(·))

1ζθ(·).

Finally, a substitution of the above identity into (32) yields
the following prioritarian Jacobian motion planning algo-
rithm for two subtasks

duθ(·)
dθ
=−0γ 0J

#
x0,T(uθ(·))

0e(θ)−1γ 0Px0,T(uθ(·))
1J

#
x0,T(uθ(·))

1e(θ)

+0Px0,T(uθ(·))
1Px0,T(uθ(·))

1ζθ(·) (35)

www.mech-sci.net/4/153/2013/ Mech. Sci., 4, 153–166, 2013



158 A. Ratajczak and K. Tchoń: Multiple-task motion planning

If there are only two subtasks, the last term1ζθ(·) is zero,
otherwise it could be used to define the prioritarian algorithm
for the remaining lower priority tasks.

In this way the presented derivation extends top+1 sub-
tasks, resulting in the following motion planning algorithm
(Ratajczak et al., 2010; Ratajczak, 2012),

duθ(t)
dθ
= −

p∑
i=0

iγ

 i∏
j=0

j−1Px0,T(uθ(·))

 iJ
#
x0,T(uθ(·))

ie(θ), (36)

where−1Px0,T(uθ(·)) = idX. In the terminology ofAntonelli
(2009) this algorithm belongs to the successive inverse-based
projection methods. Again, the solution of the multiple-task
motion planning problem is obtained as the limitud(t) =
limθ→+∞uθ(t) of the trajectory of system (36).

Let us take a closer examination of the control formula
(35). By a substitution of this formula into (32), it is easily
seen that the first error

d0e(θ)
dθ
= −0γ 0e(θ)

decreases exponentially, as requested in (11). However, be-
cause of the task-priority assumption, the second error

d1e(θ)
dθ
= −1γ 1e(θ)− 0γ1Jx0,T(uθ(·))

0J
#
x0,T(uθ(·))

0e(θ)

+1γ1Jx0,T(uθ(·))
0J

#
x0,T(uθ(·))

0Jx0,T(uθ(·))
1J

#
x0,T(uθ(·))

1e(θ),

behaves differently. The error1e(θ) will converge toward zero
exponentially, provided that it does not affect convergence of
the error0e(θ). This happens when1Jx0,T(uθ(·)) 0J

#
x0,T(uθ(·)) =

0. Taking into account the form of (17), the last equality will
be satisfied whenever

1Jx0,T(uθ(·))
0J
∗

x0,T(uθ(·)) = 0,

what may be interpreted as a sort of orthogonality of Jaco-
bians0Jx0,T(u(·)) and1Jx0,T(u(·)).

4 Motion planning of trident snake

The presented algorithms will be utilized in order to solve
a motion planning problem for the trident snake mobile
robot (Ishikawa, 2004; Ishikawa et al., 2010; Paszuk et al.,
2012). In the following subsections we are going to present
a control-theoretic model, state a multiple-task motion plan-
ning problem, and introduce the egalitarian and the prioritar-
ian motion planning algorithm for the trident snake robot.

4.1 Model

The trident snake is a non-holonomic mobile robot. It con-
sists of a triangular-shape body and three links able to rotate
around the attachment points (see Fig.1). Each link is ended
with a passive wheel which is subjected to non-holonomic

φ1

φ2

φ3

α1

α3
r

l

X

Y

x

y

θ

Figure 1. Trident snake robot: conceptual model.

constraints. The control inputs of the robot are the driving
torques exerted at the joints between the body and the links.
The anglesα1 = −

2
3π, α2 = 0, α3 =

2
3π are constant geomet-

ric parameters of the robot,l denotes the length of each link,
andr stands for the distance between the center of the robot
body and the joints.

4.1.1 Kinematics

According to Fig.1, the vector of generalized coordinates is
defined asq= (x,y, θ,φ1,φ2,φ3) = (x,y, θ,φ) ∈ R6. For every
wheel the non-holonomic constraints arise from the assump-
tion of non-slipping laterally. The corresponding constraints
matrix takes the form (Ishikawa et al., 2010; Paszuk et al.,
2012)

A(q) =
[

A1(q)RotT(Z, θ) −lI3

]
,

where Rot(Z, θ) is the rotation matrix around Z-axis byθ an-
gle, andA1(q) is defined as

A1(q)=

 sin(α1+ φ1) −cos(α1+ φ1) −l − r cosφ1

sin(α2+ φ2) −cos(α2+ φ2) −l − r cosφ2

sin(α3+ φ3) −cos(α3+ φ3) −l − r cosφ3

 .
Using the relationA(q)G(q) = 0, we find

G(q) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1
sin(α1+φ1)

l −
cos(α1+φ1)

l −1− r cosφ1

l
sin(α2+φ2)

l −
cos(α2+φ2)

l −1− r cosφ2

l
sin(α3+φ3)

l −
cos(α3+φ3)

l −1− r cosφ3

l


=

[
G1(θ)
G2(φ)

]
,

(37)
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so the trident snake kinematics can be represented by the
driftless control system

q̇= G(q)v,

v ∈ R3 denoting the control variable.

4.1.2 Dynamics

The dynamics equations of the trident snake can be obtained
from the Lagrange formalism together with the d’Alembert
principle. A detailed derivation can be found inPietrowska
(2012). After the elimination of the traction forces, the re-
sulting equations of motion take the form

q̇= G(q)v
v̇= N(q,v)+P(q)w,

y= k(q,v).
(38)

The matrixG(q) is given by (37), the termsN(q,v) andP(q)
can be reconstructed from the data provided in the Sect.A2.
It follows that the trident snake has dimv= dim w= 3, so it is
fully controlled. Therefore, it is possible to apply a partially
linearizing feedback transformation

w= P−1(q) (u−N(q,v)) , (39)

u denoting a new control variable, that simplifies the control
system representation substantially, and produces a kinemat-
ically reduced system (Lewis, 1999),

q̇= G(q)v
v̇= u,

y= k(q,v).
(40)

In Paszuk et al.(2012), it has been shown that the feedback
(39) is well defined provided that the lower submatrix of (37)
is non-singular, i.e. detG2(φ) , 0.

To obtain a control affine system (1), we need to introduce
a state vectorx= (q,v) ∈ R9. Then, the kinematics and dy-
namics of the trident snake may be rewritten as{

ẋ= f (x)+g(x)u,

y= k(x),
(41)

whereu ∈ R3 and

f (x) =

(
G(q)v
03×1

)
, g(x) =

[
03×3

I3

]
.

Assuming that all state variablesx are subject to motion plan-
ning, we get the output functiony= k(x) = x.

4.2 Motion planning

The motion planning problem for the trident snake will con-
sist in defining a control functionu(t) in system (41) that

drives the system from an initial state to a desired termi-
nal output, over a prescribed time horizonT > 0. In order to
make the feedback (39) well defined, the controlu(t) should
also prevent matrixG2(φ) from getting singular. Clearly, the
motion planning problem includes two subtasks, of which the
former will be called the proper motion planning task (index
0), whereas the latter will be named the singularity avoidance
task (index 1). The task map0Kx0,T(u(·)) is just the end-point
map of system (41). The singularity avoidance task will be
assigned the task map1Kx0,T(u(·)) of the form (21) with func-
tion F1(x,u) = det−2(G2(φ)). The collective errore(θ) and the
collective JacobianJx0,T(u(·)) can be derived directly from
(22) and (27).

4.3 Algorithms

The motion planning problem for the trident snake robot will
be solved by means of the multiple-task motion planning al-
gorithms introduced in Sect.3. For the egalitarian motion
planning the collective error is defined as

e(θ) = (0e(θ), δ1e(θ)),

where the second component has been multiplied by a scal-
ing factorδ in order to maintain a dynamic balance of the two
subtasks. The egalitarian motion planning algorithm takes
the form (29). The solution is the limitud = limθ→+∞uθ(t) of
the trajectory of (29).

In the prioritarian approach, the proper motion planning
subtask will be assigned a higher priority, while the singu-
larity avoidance subtask will get a lower priority. Having
defined two errors:0e(θ), 1e(θ) and two Jacobian inverses:
0J

#
x0,T(u(·)) and 1J

#
x0,T(u(·)) given, respectively, by (15) and

(24), we can provide the following formula for the priori-
tarian motion planning algorithm (36)

duθ(·)
dθ
=

−0γ 0J
#
x0,T(uθ(·))

0e(θ)− 1γ 0Px0,T(uθ(·))
1J

#
x0,T(uθ(·))

1e(θ),

where0Px0,T(u(·)) denotes the projection into ker0Jx0,T(u(·)).
In the next section the performance of both these algorithms
will be illustrated by means of numerical computations.

5 Implementation and computations

Potentially, in the egalitarian as well as in the prioritarian
motion planning algorithm, both the parametric and non-
parametric computational approaches introduced in Sect.2.3
are applicable. In order to demonstrate this possibility, two
numerical solutions of the same motion planning problem
for the trident snake will be presented. The problem in-
volves the proper motion planning task and the singularity
avoidance task. In the first case, the solution will be delive-
red by the non-parametric egalitarian algorithm. In the sec-
ond case, the parametric prioritarian algorithm is used. The
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Figure 2. Trident snake robot: physical model.

proper motion planning task consists in driving the system
(41) from the initial statex0 = (0,0,0,0,0,0,0,0,0) to the de-
siredyd = xd = (0.1,0,0,0,0,0,0,0,0), over the time horizon
T = 1. Taking into account geometric parameters of the tri-
dent snaker = l = 0.12, this task could be interpreted as an
elementary a rest-to-rest move forward. For both these sim-
ulations, the motion planning problem is regarded as solved,
when the norm‖0e(θ)‖ drops below 10−4, and the determi-
nant det(G2(φ)) , 0 during the whole motion time. The ini-
tial control functions for both cases are chosen constant,
u0 = (2,1,−1). In the egalitarian algorithm the error decay
rateγ = 0.1, and the scaling factorδ = 10−4. The prioritar-
ian algorithm uses decay coefficients0γ = 0.5 and1γ = 10−3.
In the parametric representation a truncated Fourier series of
lengthk= 20 has been chosen, so the vector of control pa-
rametersλ ∈ R63. The dynamics model of the trident snake
robot has been borrowed fromPietrowska(2012). The model
corresponds to the trident snake robot designed at our labo-
ratory,Gospodarek(2011), displayed in Fig.2. Its dynamic
parameters are the following:

– body massm0 = 0.52kg,

– wheel massmw = 0.03kg,

– wheel radiusrw = 0.02m,

– wheel thicknessd = 0.001m,

– moment of inertia of the body around its center of mass
I0 =

m0r2

4 ,

– moment of inertia of the wheel around the center of
mass of the robot bodyI0w =mw( r2

w
4 +

d2

12),

– link massml = 0.07kg,

– motor massmm = 0.055kg,

– total massmc =m0+3(mw +mm+ml).
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Figure 3. Motion path inXY plane: egalitarian solution (left) and
prioritarian solution (right).
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Figure 4. Position and linear velocity: egalitarian solution (top) and
prioritarian solution (bottom).

The results of computations are depicted in Figs.3–11. SI
units of measure have been employed. The motion paths cor-
responding to the solutionud(t) of the motion planning prob-
lem provided by the algorithms are presented in Fig.3, that
also displays the robot body every 0.2 s. As it can be seen,
these paths are different for the two algorithms. Figures4–6
show the state space trajectories. One can observe that the
proper motion planning task has been solved correctly. The
robot position and orientation (x,y, θ) as well as the joint vari-
ablesφ have reached the desired values atT. Also, all ve-
locitiesv have become equal to zero. Figure7 presents the
control u(t) in the linearized model. Comparing the control
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Figure 5. Orientation and angular velocity: egalitarian solution
(top) and prioritarian solution (bottom).
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Figure 6. Joint angles: egalitarian solution (top) and prioritarian
solution (bottom).
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Figure 7. Linearized controlu(t), egalitarian solution (top) and pri-
oritarian solution (bottom).
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Figure 8. Original controlw(t): egalitarian solution (top) and prio-
ritarian solution (bottom).
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Figure 9. Determinant det(G2(φ)): egalitarian solution (top) and
prioritarian solution (bottom).

functions obtained from the non-parametric egalitarian and
the parametric prioritarian approaches, one can see that the
non-parametric controls are smoother. The original control
w(t) representing the torques in the joints is depicted in
Fig. 8. Again, as in the case ofu(t) control, the functionw(t)
produced by the non-parametric algorithm is smoother. Fig-
ure 9 refers to the singularity avoidance subtask. The plots
present the value of the determinant det(G2(φ)) during the
motion time. In both algorithms the determinant stays quite
far away from zero, what means that the egalitarian and the
prioritarian algorithms have solved the second task in a satis-
factory way. This conclusion is confirmed by Fig.10 show-
ing three-dimensional plots in the joint spaceφ. The sur-
face det(G2(φ)) = 0 represents singularities. Joint trajecto-
riesφ(t) (starting with the black color and going towards the
light green) remain safely inside the regular set. Finally, the
last Fig.11 illustrates the convergence of the algorithms. It
follows that the non-parametric egalitarian algorithm needs
more steps in order to fulfill the stop condition‖0e(θ)‖ < 10−4.
In the egalitarian algorithm the total errore(θ) decreases ex-
ponentially. In the case of the prioritarian algorithm the error
of the second task|1e(θ)| has been forced to increase by the
higher priority task.

Figure 10. Motion in joint spaceφ: egalitarian solution (top) and
prioritarian solution (bottom).

6 Conclusions

We have designed two multiple-task motion planning algo-
rithms for non-holonomic systems with dynamics. Concep-
tually, their derivation is rooted in the endogenous configu-
ration space approach, so the solution of the problem is a
control function in the control system representation of the
dynamics. The egalitarian algorithm treats all the compo-
nent tasks as equivalent. The prioritarian algorithm arranges
the tasks according to decreasing priorities. Computations of
the control function resulting from these algorithms can ei-
ther use a finite-dimensional expansion of control functions
at a prescribed base in the endogenous configuration space
or be base-independent. This gives rise to either the para-
metric or the non-parametric computational technique. The
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Figure 11. Convergence: egalitarian solution (top) and prioritarian
solution (bottom)top.

algorithms have been applied to solve a multiple-task motion
planning problem for the trident snake robot, that consists of
the proper motion planning task and the singularity avoid-
ance task. Numerical computations have shown that both the
algorithms provide correct, although different, solutions to
the problem. Also, the algorithms behave differently. In the
case of egalitarian algorithm, when all the tasks are solved
simultaneously, there are only two possibilities: either both
tasks are solved correctly or none of the tasks is solved what-
soever. Contrary to that, in the prioritarian algorithm there
is a risk that only the highest priority tasks will be solved.
This observation has been confirmed by the plots of error
convergence. In the egalitarian algorithm the total error de-
creases. It follows from the derivation of the prioritarian al-
gorithm that the error of a lower priority task can even in-
crease to enable the decrease of a higher priority task error.
The parametric computations of solution of the motion plan-
ning problem are base-dependent, what usually appears to be
quite restrictive. The non-parametric representation of con-
trol functions does not depend on the base choice, and is free
from the limitations of the parametric approach. The com-
putational effort in the parametric approach depends on the
dimension of the parameter space. If the number of parame-
ters is small, the parametric computations are much more ef-
ficient than the non-parametric. This, however, reverts, when
the number of parameters grows up. In the example presented

in this paper (63 control parameters), the parametric compu-
tations have been about 1.5 times more time consuming than
the non-parametric. This being so, the choice of the motion
planning strategy should depend on the complexity of the
non-holonomic system subject to motion planning as well as
on the type of the tasks defining the problem.

Appendix A

In this section we shall make a derivation of the Jacobian (23)
and its Moore–Penrose inverse (24), and present the dynam-
ics model of the trident snake robot used in Sect.4.

A1 Subtask Jacobian and its inverse

The i-th subtask Jacobian is equal to
iJx0,T(u(·))v(·) = D iKx0,T(u(·))v(·)

=
d

dα

∣∣∣∣∣∣
α=0

T∫
0

Fi(ϕx0,t(u(·)+αv(·)),u(t)+αv(t))dt,

where x(t) = ϕx0,t(u(·)) denotes the state trajectory of (1)
driven by the control functionu(·). The differentiation gives
iJx0,T(u(·))v(·)

=

T∫
0

(
∂Fi(x(t),u(t))

∂x
Dϕx0,t(u(·))v(·)+

∂Fi(x(t),u(t))
∂u

v(t)

)
dt.

Finally, a substitution forξ(t) = Dϕx0,t(u(·))v(·) from (5)
yields (23).

In order to find a formula for the Moore–Penrose Jacobian
inverse, we begin with a Jacobian equation

iJx0,T(u(·))v(·) = η,

whereη ∈ R. A solution of this equation will be sought by
minimizing the squared norm of the control function,

min
v(·)

||v(·)||2R =

T∫
0

vT(t)Rv(t)dt

 ,
with the equality constraint. After the substitution

ξ(t) =

t∫
0

Φ(t, s)B(s)v(s)ds,

the corresponding Lagrange function becomes

L(v(·),λ) =

T∫
0

vT(t)Rv(t)dt+ λ

T∫
0

(
∂Fi(x(t),u(t))

∂x

t∫
0

Φ(t, s)B(s)v(s)ds+
∂Fi(x(t),u(t))

∂u
v(t)dt

 ,
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λ ∈ R. Now, the differentiation of the Lagrange function with
respect tov(·)

DL(v(·),λ)w(·) =
d

dα

∣∣∣∣∣∣
α=0

L(v(·)+αw(·),λ),

use of the identity

T∫
0

t∫
0

f (t, s)dsdt =

T∫
0

T∫
s

f (t, s)dtds,

and then equating the derivative to 0 yield

vi(t) = −
1
2
λR−1(t)

BT(t)

T∫
t

ΦT(s, t)

(
∂Fi(x(s),u(s))

∂x

)T

ds

+

(
∂Fi(x(t),u(t))

∂u

)T ,
where the subscripti refers to thei-th subtask. To simplify
the notations, let us define a pair of functions

bi(t) = R−1(t)BT(t)

T∫
t

ΦT(s, t)

(
∂Fi(x(s),u(s))

∂x

)T

ds

and

ci(t) = R−1(t)

(
∂Fi(x(t),u(t))

∂u

)T

,

so that

vi(t) = −
1
2
λ(bi(t)+ ci(t)).

The Lagrange multiplierλ can be eliminated by inserting the
controlvi(t) into the Jacobian equation, that implies

−
1
2
λ

T∫
0

(
bT

i (t)R(t)+ cT
i (t)R(t)

)
(bi(t)+ ci(t))dt

= −
1
2
λ||bi(·)+ ci(·)||

2
R = η.

From the last identity we computeλ, and conclude that

vi(t) =
bi(t)+ ci(t)

||bi(·)+ ci(·)||2R
η,

what is just (24).

A2 Dynamics model of trident snake

A standard derivation based on the Lagrangian mechanics
and d’Alembert principle leads to the following definition of
terms appearing in the equations of motion (38) of the trident
snake robot

P(q) =M−1(q)GT(q)B(q),

M(q) = GT(q)Q(q)G(q),

N(q,v) = −M−1(q)GT(q)
(
Q(q)Ġ(q)+C(q,G(q)v)G(q)

)
v
)
,

whereG(q) is given by (37),

B(q) =

[
03×3

I3

]
denotes a control matrix,Q(q) is the inertia matrix defined
below, andC(q, q̇) is the matrix of Coriolis and centripetal
forces whose entries

Ck j(q, q̇) =
6∑

i=1

ck
i j (q)q̇i

are determined by the Christoffel’s symbols of the first kind
associated withQ(q)

ck
i j (q) =

1
2

(
∂Qik(q)
∂q j

+
∂Q jk(q)

∂qi
−
∂Qi j (q)

∂qk

)
, i, j,k= 1, . . . ,6.

The following form of the inertia matrix for the trident snake
robot can be found inPietrowska(2012)

Q(q) =



m11 0 m13 m14 m15 m16

0 m22 m23 m24 m25 m26

m13 m23 m33 m34 m35 m36

m14 m24 m34 m44 0 0
m15 m25 m35 0 m55 0
m16 m26 m36 0 0 m66


,

Mech. Sci., 4, 153–166, 2013 www.mech-sci.net/4/153/2013/
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where

m11 =m22 =mc,

m33 = I0+3I0w+3mw(r2+ l2)+2mwrl cosφ1

+2mwrl cosφ2+2mwrl cosφ3+ml(l
2+3r2+ lr cosφ1

+lr cosφ2+ lr cosφ3)+6mmr2,

m44 =m55 =m66 = I0w+mwl2+
1
3

ml l
2,

m13 = −mwl sin(α1+ φ1+ θ)−mwr sin(α1+ θ)

−mwl sin(α2+ φ2+ θ)−mwr sin(α2+ θ)

−mwl sin(α3+ φ3+ θ)−mwr sin(α3+ θ)

−
1
2

ml(2r sin(α1+ θ)+ l sin(α1+ φ1+ θ)+2r sin(α2+ θ)

+l sin(α2+ φ2+ θ)+2r sin(α3+ θ)+ l sin(α3+ φ3+ θ))

−mmr sin(θ+α1)−mmr sin(θ+α2)−mmr sin(θ+α3),

m14 = −mwl sin(α1+ φ1+ θ)−
1
2

ml l sin(α1+ φ1+ θ),

m15 = −mwl sin(α2+ φ2+ θ)−
1
2

ml l sin(α2+ φ2+ θ),

m16 = −mwl sin(α3+ φ3+ θ)−
1
2

ml l sin(α3+ φ3+ θ),

m23 =mwl cos(α1+ φ1+ θ)+mwr cos(α1+ θ)

+mwl cos(α2+ φ2+ θ)+mwr cos(α2+ θ)

+mwl cos(α3+ φ3+ θ)+mwr cos(α3+ θ)

+
1
2

ml(2r cos(α1+ θ)+ l cos(α1+ φ1+ θ)+2r cos(α2+ θ)

+l cos(α2+ φ2+ θ)+2r cos(α3+ θ)+ l cos(α3+ φ3+ θ))

+mmr cos(θ+α1)+mmr cos(θ+α2)+mmr cos(θ+α3),

m24 =mwl cos(α1+ φ1+ θ)+
1
2

ml l cos(α1+ φ1+ θ),

m25 =mwl cos(α2+ φ2+ θ)+
1
2

ml l cos(α2+ φ2+ θ),

m26 =mwl cos(α3+ φ3+ θ)+
1
2

ml l cos(α3+ φ3+ θ),

m34 = I0w+mwl2+mwrl cosφ1+
1
6

ml l(2l +3r cosφ1),

m35 = I0w+mwl2+mwrl cosφ2+
1
6

ml l(2l +3r cosφ2),

m36 = I0w+mwl2+mwrl cosφ3+
1
6

ml l(2l +3r cosφ3).
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