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Abstract. This paper presents the design, analysis, and experimental validation of the passive case of a vari-
able stiffness suspension system. The central concept is based on a recently designed variable stiffness mech-
anism. It consists of a horizontal control strut and a vertical strut. The main idea is to vary the load transfer
ratio by moving the location of the point of attachment of the vertical strut to the car body. This movement is
controlled passively using the horizontal strut. The system is analyzed using anL2-gain analysis based on the
concept of energy dissipation. The analyses, simulation, and experimental results show that the variable stiff-
ness suspension achieves better performance than the constant stiffness counterpart. The performance criteria
used are; ride comfort, characterized by the car body acceleration, suspension deflection, and road holding,
characterized by tire deflection.

1 Introduction

Improvements over passive suspension designs is an active
area of research, as documented by the works ofAlkhatib
et al. (2004); Williams (1997); Butsuen(1989); Tseng and
Hedrick(1994); Valasek and Kortum(1998, 2001); Karnopp
et al. (1974); Karnopp(1983); Karnopp and Heess(1991);
Evers et al.(2011); van der Knaap et al.(2008). Past ap-
proaches utilize one of three techniques (Ashfak et al., 2011);
adaptive (Fialho and Balas, 2002), semi-active (Do et al.,
2010; Butsuen, 1989) or fully active suspension (Williams
et al., 1993). An adaptive suspension utilizes a passive spring
and an adjustable damper with slow response to improve the
control of ride comfort and road holding. A semi-active sus-
pension is similar, except that the adjustable damper has a
faster response and the damping force is controlled in real-
time. A fully active suspension replaces the damper with a
hydraulic actuator, or other types of actuators such as elec-
tromagnetic actuators, which can achieve optimum vehicle
control, but at the cost of design complexity, expense, etc.
The fully active suspension is also not fail-safe in the sense
that performance degradation results whenever the control
fails, which may be due to either mechanical, electrical, or

software failures. Recently, research in semi-active suspen-
sions has continued to advance with respect to capabilities,
narrowing the gap between semi-active and fully active sus-
pension systems. Today, semi-active suspensions (e.g. using
Magneto-Rheological (MR) (Ashfak et al., 2011), Electro-
Rheological (ER) (Sung et al., 2007) etc.) are widely used in
the automobile industry due to their small weight and vol-
ume, as well as low energy consumption compared to purely
active suspension systems.

However, most semi-active suspension systems are de-
signed to only vary the damping coefficient of the shock ab-
sorber while keeping the stiffness constant. Meanwhile, in
suspension optimization, both the damping coefficient and
the spring rate of the suspension elements are usually used
as optimization arguments. Therefore, a semi-active suspen-
sion system that varies both the stiffness and damping of the
suspension element could provide more flexibility in balanc-
ing competing design objectives. Suspension designs that ex-
hibit variable stiffness phenomenon are few in literature con-
sidering the vast amount of researches that has been done
on semi-active suspension designs.van der Knaap(1989);
Venhovens and van der Knaap(1995); Evers et al.(2011) de-
signed a variable geometry actuator for vehicle suspension
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called the Delft active suspension (DAS). Although, the in-
tention of the design was not to vary the stiffness of the sus-
pension system, the design used a variable geometry con-
cept to vary the suspension force by effectively changing the
stiffness of the suspension system. The basic idea behind the
DAS concept is based on a wishbone which can be rotated
over an angle and is connected to a pretensioned spring at a
variable location. The spring pretension generates an effec-
tive actuator force, which can be manipulated by changing
the position. This was achieved using an electric motor.Jerz
(1971) invented a variable stiffness suspension system which
includes two springs connected in series. One of the springs
is stiffer than the other. Under normal load conditions, the
softer spring is responsible for keeping a good ride comfort.
Upon the imposition of heavier load forces, the vehicle is
supported more stiffly and primarily by the stronger spring.
Conversion between the two conditions was done automati-
cally by engagement under heavy load conditions of a pair
of stop shoulders acting to limit the compression of the light
spring. Similarly, upon excessive extension of the springs, an
additional set of stop shoulders are engaged automatically to
limit the amount of extension of the softer spring and causes
the stiffer spring to resist further extension. Kobori proposed
a variable stiffness system to suppress a buildings’ responses
to earthquakes (Kobori et al., 1993). The aim was to achieve
a non-stationary and no-resonant state during earthquakes.
Youn and Hac used an air spring in a suspension system to
vary the stiffness among three discrete values (Youn and Hac,
1995). Liu et al.(2008) proposed a suspension system which
uses two controllable dampers and two constant springs to
achieve variable stiffness and damping. A Voigt element and
a spring in series are used to control system stiffness. The
Voigt element is comprised of a controllable damper and a
constant spring. The equivalent stiffness of the whole system
is changed by controlling the damper in the Voigt element.

This paper presents the design and analysis of the passive
case of a variable stiffness suspension system. The variation
of stiffness concept used in this chapter uses the “reciprocal
actuation” (Anubi et al., 2010) to effectively transfer energy
between a vertical traditional strut and a horizontal oscillat-
ing control mass, thereby improving the energy dissipation
of the overall suspension. Due to the relatively fewer number
of moving parts, the concept can easily be incorporated into
existing traditional front and rear suspension designs. An im-
plementation with a double wishbone is shown in this paper.
The rest of this paper is organized as follows. In Sect.2, the
variable stiffness concept is described, and the variable stiff-
ness suspension system introduced. A detailed analysis of
the system is presented in Sect.3. Section3.3 describes the
analysis of the passive case. Experimental results are given
in Sect.4. Time domain and frequency domain simulation
results are presented in Sect.5. The conclusion follows in
Sect.6.

Figure 1. Variable Stiffness Mechanism.

2 System description

This section gives a detailed description of the variable stiff-
ness concept, the overall system, its incorporation in a vehi-
cle suspension, and the resulting system dynamic model.

2.1 Variable stiffness concept

The variable stiffness mechanism concept is shown in Fig.1.
The Lever arm OA, of lengthL, is pinned at a fixed point O
and free to rotate about O. The spring AB is pinned to the
lever arm at A and is free to rotate about A. The other end B
of the spring is free to translate horizontally as shown by the
double headed arrow. It is also free to rotate about point B.
Without loss of generality, the external forceF is assumed to
act vertically upwards at point A.d is the horizontal distance
of B from O. The idea is to vary the overall stiffness of the
system by lettingd vary passively under the influence of a
horizontal spring-damper system (not shown in the figure).
Let k andl0 be the spring constant and the free length of the
spring AB respectively, and∆ the vertical displacement of
the point A. The overall free length∆0 of the mechanism is
defined as the value of∆ when no external force is acting on
the mechanism.

2.2 Mechanism description

The suspension system considered is shown in Fig.2. The
schematic diagram is shown in Fig.3. The model is com-
posed of a quarter car body, wheel assembly, two spring-
damper systems, road disturbance, and lower and upper
wishbones. The points O, A, and B are the same as shown
in the variable stiffness mechanism of Fig.1. The horizon-
tal control forceu controls the positiond of the control mass
md which, in turn, controls the overall stiffness of the mech-
anism. The tire is modeled as a linear spring of spring con-
stantkt.

Mech. Sci., 4, 139–151, 2013 www.mech-sci.net/4/139/2013/



O. M. Anubi et al.: Passive variable stiffness suspension 141

Figure 2. Variable Stiffness Suspension System.

The assumptions adopted in Fig.3 are summarized as fol-
lows:

1. The lateral displacement of the sprung mass is ne-
glected, i.e only the vertical displacementys is consid-
ered.

2. The wheel camber angle is zero at the equilibrium posi-
tion and its variation is negligible throughout the system
trajectory.

3. The springs and tire deflections are in the linear regions
of their operating ranges.

2.3 Equations of motion

Let

q=

 ys

θ
d

 , (1)

be defined as the generalized coordinates. The equations of
motion, derived using Lagrange’s method, are then given by

M (θ)q̈+C(θ, θ̇)+B(θ)q̇−K (q)+G(θ)

= e3,3u+Wd(θ)dr (2)

where

M (θ) =

 ms+mu+md mulD cosθ 0
mulD cosθ Ic+mul2D cos2θ 0

0 0 md

 ,

Figure 3. Quarter Car Model

C(θ, θ̇) = −mulDθ̇
2 sinθw(θ),

w(θ) =

 1
lD cosθ

0

 ,

B(θ) =


bt btlD cosθ 0

btlD cosθ btl2D cos2θ+bsgθ
bs
2 gdθ

0 bs
2 gdθ bsgd

 ,
gd(d, θ) =

(d− lA cosθ)2

H2+d2+ l2A−2lAdcosθ−2HlA sinθ
,

gdθ(d, θ) =
2lA (d− lA cosθ) (dsinθ−H cosθ)

H2+d2+ l2A−2lAdcosθ−2HlA sinθ
,

gθ(d, θ) =
l2A (dsinθ−H cosθ)2

H2+d2+ l2A−2lAdcosθ−2HlA sinθ
,

K (q) =

 kt (ρt −1)(ys+ lD sinθ)
kt (ρt −1) lD cosθ (ys+ lD sinθ)

ks(ρs−1)(d− lA cosθ)


+

 0
ks(ρs−1) lA (dsinθ−H cosθ)

0

 ,
www.mech-sci.net/4/139/2013/ Mech. Sci., 4, 139–151, 2013
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G(θ) =

 ms+mu+md

mulD cosθ
0

g,

Wd(θ) =

 kt(ρt −1) bt

ktlD(ρt −1)cosθ btlD cosθ
0 0

 ,

dr =

[
r
ṙ

]
.

r(t) is the road displacement signal. It is a function of the road
profile and the vehicle velocity. The termsρs andρt charac-
terize the compression of the vertical strut and tire springs
respectively. They are defined as the instantaneous length di-
vided by its free length.

Properties

The following properties of the dynamics given in Eq. (2) are
exploited in subsequent analyses:

1. The inertia matrixM (θ) is symmetric, positive definite.
Also, since each element ofM (θ) can be bounded be-
low and above by positive constants, it follows that the
eigenvalues, hence the singular values ofM (θ) can also
be bounded by constants. Thus, there existsm1,m2 ∈ R

+

such that

m1 ‖x‖2 ≤ xTM (θ)x ≤m2 ‖x‖2 and (3)

1
m2
‖x‖2 ≤ xTM−1(θ)x ≤

1
m1
‖x‖2 , ∀x ∈R2 (4)

2. C(θ, θ̇) can be upper bounded as follows∥∥∥C(θ, θ̇)
∥∥∥ ≤ c1θ̇

2, c1 ∈R
+. (5)

Also, there exist a matrixVm(θ, θ̇) such thatC(θ, θ̇) =
Vm(θ, θ̇)q̇ and

xT

(
1
2

Ṁ (θ)−Vm(θ, θ̇)

)
x = 0, ∀x ∈R2 (6)

The property in Eq. (6) is the usual skew symmetric
property of the Coriolis/centripetal matrix of Lagrange
dynamics (Lewis et al., 2004).

3. The damping matrixB(θ) is symmetric and positive
semi definite. Also, there exists positive definite matri-
cesB andB̄ such that

0< xTBx ≤ xTB(θ)x ≤ xTB̄x, ∀x ∈R2. (7)

4. The stiffness vectorK(q) is Lipschitz continuous, i.e.
there exists a positive constantk2 such that

‖K(q1)− K(q2)‖ ≤ k2‖q1− q2‖. (8)

5. The unique static equilibrium point q0 =[
ys0 θ0 d0

]T
of the undisturbed system is known

and is given by

K(q0)−G(θ0)+e3,3u0 = 0. (9)

3 System analysis

This section presents the finite-gain stability analysis of the
system described in the previous section. The disturbancedr

in Eq. (2) is assumed to be unknown a priori but bounded
in the sense thatdr ∈ L2. As a result, robust optimal control
is considered in which the gain of the system is optimized
under worst excitations:Ball and Helton(1989); Helton and
James(1999); Soravia(1996); van der Schaft(1996). The
following definition describes the notion of stability used in
the subsequent analyses.

Finite-Gain L-Stable (van der Schaft, 1996) Consider the
nonlinear system

ẋ = f (x,w)

z= h(x) (10)

wherex ∈ Rn,w ∈ Rp, z∈ Rm are the state, input, and output
vectors, respectively. The system in Eq. (10), with the map-
ping MH :Lp

e→L
m
e , is said to be finite-gainL-stable if there

exist real constantsγ,β ≥ 0 such that

‖MH(w)‖L ≤ γ ‖w‖L + β, (11)

where‖.‖L denotes theL norm of a signal, andLn
e is the

extendedL space defined as

Ln
e = {χ|χτ ∈ L

n,∀τ ∈ [0,∞)} (12)

whereχτ is a truncation ofχ given as

χτ(t) =

{
χ(t) 0≤ t ≤ τ
0 t > τ.

. (13)

For the purpose of this paper, theL2-space is consid-
ered, hence the finite-gainL-stability condition in Eq. (11)
is rewritten as (van der Schaft, 1996)

‖MH(w)‖2 ≤ γ ‖w‖2+ β, (14)

where‖.‖2 denotes theL2 norm of a signal given by

‖χ‖2 =


∞∫

0

χT(t)χ(t)dt


1
2

. (15)

γ∗ = inf {γ| ‖MH(w)‖2 ≤ γ ‖w‖2+ β} is the gain of the system,
and, in the case of linear quadratic problems, is theH∞ norm
of the system. Given an attenuation levelγ > 0, and the cor-
responding system dynamics, the objective is to show that
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Eq. (14) is satisfied for someβ > 0. This solution is ap-
proached from the perspective of dissipative systems (Ball
and Helton, 1989; van der Schaft, 1996). The following def-
inition describes the concept of dissipativity with respect to
the system in Eq. (10).

Dissipativity The dynamics system Eq. (10) is dissipative
with respect to a given supply rates(w, z) ∈ R, if there ex-
ists an energy functionV(x) ≥ 0 such that, for allx(t0) =
x0 andt f ≥ t0,

V(x(t f )) ≤ V(x(t0))+

t f∫
t0

s(w, z)dt, ∀w ∈ L2. (16)

If the supply rate is taken as

s(w, z) = γ2‖w‖2− ‖z‖2, (17)

then the dissipation inequality in Eq. (16) implies finite-gain
L-stability (van der Schaft, 1996), and the system is said to
beγ-dissipative. The dissipativity inequality is then written
as

V̇ ≤ γ2‖w‖2− ‖z‖2. (18)

3.1 Performance objective

As usual with suspension systems designs, the performance
criterion is expressed in terms of the ride comfort, suspension
deflection, and dynamic tire force. The performance vector

z=

 ω1ycba

ω2ysd

ω3ydtf

 (19)

characterizes the ride comfort, suspension deflection, and
road holding performances, whereω1,ω2, andω3 are the re-
spective user specified performance weights for car body ac-
celerationycba, suspension deflectionysd, and dynamic tire
forceydtf. The ride comfort is characterized by the car body
acceleration ¨ys which is approximated using the following
high gain observer (Khalil, 1996):

εη̇ = Aη+bẏs, η(0)= 0
ycba=

1
ε
cTη

(20)

where

A =
[
−1 1
−1 0

]
, b =

[
1
1

]
, c=

[
0
1

]
.

The L2-norm of the car body acceleration can be upper
bounded as (Khalil, 1996)

‖ycba‖2 ≤ c1 ‖ẏs‖2 ≤ c1 ‖ė‖2 , (21)

where

c1 =
2λ2

max(P)‖b‖2‖c‖2
λmin(P)

andP is the solution of the Lyapunov equationPA+ATP+I =
0, which is obtained as

P=
1
ε

[
1 1

2
1
2

3
2

]
.

The suspension deflection is given as

ysd(t) =
√

l2s(0)− l2s(t)

=
{
d(0)2−d(t)2−2Hx(sinθ(0)− sinθ(t))

−2x(d(0)cosθ(0)−d(t)cosθ(t))}
1
2 (22)

≤
[

0 k41 k42

]  |y0s − ys|

|θ− θ0|
|d−d0|

 , (23)

Using the Cauchy-Schwarz inequality,ysd(t) can be upper
bounded as

ysd(t) ≤ k4‖e‖, (24)

where k41,k42, andk4 are positive constants, and

k4 ≥

√
k2

41+ k2
42.

The dynamic tire force is characterized using the tire
deflection and is given by

ydtf(t) = yu(0)− yu(t)

= y0s − ys+ lD(sinθ0− sinθ) (25)

≤
[

1 k5 0
]  |y0s − ys|

|θ− θ0|
|d−d0|

 , (26)

wherek5 is a positive constant. Using the Cauchy-Schwarz
inequality,ydtf(t) can be upper bounded as

ydtf ≤

√
1+ k2

5 ‖e‖ = k6‖e‖. (27)

Finally, theL2-norm of the performance vector in Eq. (19)
can be upper bounded as

‖z‖2 ≤ φ1‖ė‖2+ φ2‖e‖2 (28)

where

φ1 = ω1c1

φ2 = ω2k4+ω3k6.
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144 O. M. Anubi et al.: Passive variable stiffness suspension

3.2 Constant stiffness case

Now, consider the constant stiffness case in which the control
mass is locked at a given positiond. As a result, the overall
stiffness is constant for the entire trajectory of the system.
For this case, the dynamics in Eq. (2) reduces to

M1(θ)q̈1+C1(θ, θ̇)+B1(θ)q̇1− K1(q1)+G1(θ) = w, (29)

where

M1 =M1:2,1:2,C1 = C1:2,

K1 = K1:2,B1 = B1:2,1:2,

w=Wd1 dr ,Wd1 =Wd1:2,1:2

Here, the corresponding dynamics of the control mass has
been eliminated.

Let

e1 = q1− q01 (30)

where

q01 =

[
ys0

θ0

]
(31)

be the equilibrium value of the reduced state vectorq1. After
using the Mean Value Theorem, the closed-loop dynamics in
Eq. (29) is expressed as

M1ë1+Vm1ė1+K1e1+B1ė1 = w (32)

where

K1 = −
∂K1

∂q1

∣∣∣∣∣
q1=ζ1

+
∂G1

∂q1

∣∣∣∣∣
q1=ζ2

ζ1,ζ2,∈ Ls(q01,q1).

Lemma 1: The matrix

P=
[

I m1I
m1I M 1

]
(33)

is positive definite, wherem2
1 < λmin{M1}.

Proof.Letλ be an eigenvalue ofP. It follows thatλ ∈ R, since
P is symmetric. The characteristic polynomial ofP is given
by

p(λ) = det{λI −P} (34)

= det
{
(λ−1)(λI −M )−m2

1I
}

(35)

Now, λ = 1⇒ p(λ) =m4
1, which implies thatλ = 1 is NOT

an eigenvalue ofP. Suppose without loss of generality that
λ , 1, then

p(λ) = (λ−1)2 det

λ2− λ−m2
1

λ−1
I −M

 . (36)

Thus there exists an eigenvalueλm of M such that

λ2− λ−m2
1

λ−1
= λm, (37)

which implies that

λ =
1
2

(
1+ λm±

√
(1+ λm)2−4

(
λm−m2

1

))
, (38)

from which it follows thatλ > 0. SinceP is symmetric, the
conclusion follows.

Remark It follows from Rayleigh-Ritz Inequality that

p1

∥∥∥χ∥∥∥2
≤ χTPχ ≤ p2

∥∥∥χ∥∥∥2
, (39)

wherep1 = λmin{P}, andp2 = λmax{P}.

Theorem 1. If the matrix

H1 =
1
2

 −K̂1− K̂T
1 −KT

1 −m1M−1
1 B1

−K1−m1

(
M−1

1 B1

)T
−2B̂1

 , (40)

where

K̂1 =m1M−1
1 K1−

c1‖ė‖
2

I (41)

B̂1 = B1−

(
m1+

c1‖ė‖
2

)
I , (42)

is negative definite along the entire trajectory of the closed-
loop error system in Eq.(32), then theL2-norm of the per-
formance vector in Eq.(19) can be upper bounded as

‖z‖2 ≤ γ1 ‖w‖2+ β1, (43)

where

γ1 =
φσp2

p1h1
, (44)

β1 =

√
2φp2√
p1h1

, (45)

and

φ =max{φ1,φ2} (46)

σ = σmax

{[
m1M−1

1
I

]}
(47)

h1 = |λmin{H1}|. (48)

Proof.Consider the energy function

V(e1, ė1) =
1
2
χT

1 Pχ1, (49)

where

χ1 =

[
e1

ė1

]
. (50)
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Taking time derivative of Eq. (49) and using the skew sym-
metric property in Eq. (6) yields

V̇ = −ėT
1 (B1−m1I ) ė1− ėT

1 K1e1+ ėT
1 w+m1eT

1 M−1
1 w

−m1eT
1 M−1

1 Vmė1−m1eT
1 M−1

1 B1ė1−m1eT
1 M−1

1 K1e1. (51)

Using the property in Eq. (5) yields

V̇ ≤ χT
1 H1χ1+χ

T
1

[
m1M−1

1
I

]
w, (52)

which after using the negative definiteness ofH1 yields

V̇ ≤ −h1

∥∥∥χ1

∥∥∥2
+σ

∥∥∥χ1

∥∥∥‖w‖ . (53)

TakeW(t) =
√

V(χ1).WhenV(χ1) , 0, Ẇ= V̇/(2
√

V) yields

Ẇ≤ −
h1

2p2
W+

σ

2
√

p1
‖w‖ . (54)

WhenV(χ1) = 0, it can be verified (Khalil, 1996) that

D+W≤
σ

2
√

p1
‖w‖ , (55)

whereD+ denotes the upper right hand differentiation opera-
tor. Hence

D+W≤ −
h1

2p2
W+

σ

2
√

p1
‖w‖ (56)

for all values ofV(χ1). Next using comparison (Lemma 3.4,
Khalil, 1996) yields

W(t) ≤W(0)exp

(
−

h1t
2p2

)

+
σ

2
√

p1

t∫
0

‖w‖exp

(
−

h1(t− τ)
2p2

)
dτ, (57)

which implies that∥∥∥χ1(t)
∥∥∥ ≤ √

p2

p1

∥∥∥χ1(0)
∥∥∥exp

(
−

h1t
2p2

)

+
σ

2p1

t∫
0

‖w‖exp

(
−

h1(t− τ)
2p2

)
dτ. (58)

Thus∥∥∥χ1(t)
∥∥∥

2
≤
σp2

p1h1
‖w‖2+

√
2p2√
p1h1

∥∥∥χ1(0)
∥∥∥ .

Lastly, after using the inequality in Eq. (28), theL2-norm of
the performance vector can be upper bounded as

‖z‖2 ≤
φσp2

p1h1
‖w‖2+

√
2φp2√
p1h1

∥∥∥χ1(0)
∥∥∥ . (59)

Remark TheL2-gain of the system decreases with increas-
ing h1. This means that the more the negative definiteness
of H1, the more the disturbance rejection achievable by the
system.

The following theorem gives the bounds on achievableγ.

Theorem 2. Given an attenuation levelγ, and provided that
the performance weights are selected to satisfy the sufficient
condition

φ =max{φ1,φ2} <
√

h1, (60)

then the closed loop error system in Eq.(32) is γ-dissipative
with respect to the supply rate

s(w, z) = γ2‖w‖2− ‖z‖2 (61)

if

γ ≥
0.5σ√
h1− φ2

. (62)

Proof. Consider the energy storage function in (49). Tak-
ing first time-derivate, and adding and subtracting the supply
rate yields

V̇ ≤ χTH1χ+χ
T Lw

≤ γ2 ‖w‖2− ‖z‖2+χTH1χ

− γ2

∥∥∥∥∥∥w− LTχ

2γ2

∥∥∥∥∥∥2

+
1

4γ2
χT LLTχ+ φ2

∥∥∥χ∥∥∥2

≤ γ2 ‖w‖2− ‖z‖2+χT

(
H1+

(
φ2+

σ2

4γ2

)
I

)
χ

≤ γ2 ‖w‖2− ‖z‖2−
(
h1− φ

2−
σ2

4γ2

)∥∥∥χ∥∥∥2
(63)

After using the inequality in Eq. (62)

V̇ ≤ γ2‖w‖2− ‖z‖2, (64)

which implies that the closed loop error system in Eq. (32) is
γ-dissipative.

Remark The inequality in Eq. (62) shows that the level of
performance achievable is limited by the amount of damp-
ing and stiffness available in the system. It will be shown in
subsequent sections that this limit can be pushed further by
using a variable stiffness architecture. The lower bound in
Eq. (62) is termed “best-case-gain”. It defines the smallest
gain achievable by the system.

The stiffness and damping matricesK1, and B1 contain
bounded functions of state and uncertain dynamic param-
eters which range between bounded values. Thus the best-
case gain of the system with constant stiffness can be lower
bounded as

γ
1
≥

0.5σ√
h∗1− φ

2
. (65)
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where h∗1 is the smallest positive number larger than the
smallest singular value ofH1, andγ

1
is termed the “robust

best-case gain”.

3.3 Passive variable stiffness case

Here, the control mass is allowed to move under the influ-
ence of a restoring spring and damper forces. There is no
external force generator added to the system. As a result, the
system response is purely passive. Letku andbu be the spring
constant and damping coefficient of the restoring spring and
damper respectively. The control forceu is then given by

u= −buḋ− ku(d− l0d), (66)

and the resulting dynamics of the control mass is given by

mdd̈+buḋ+ ku(d− l0d)+ ks(ρs−1)(d− xcosθ)

+
bs

2
gdθθ̇+bsgdḋ = 0, (67)

and the static equilibrium equation for the control mass is
given by

ku(d0− l0d)+ ks(ρs0 −1)(d0− xcosθ0) = 0, (68)

whered0 is the equilibrium position of the control mass, and
l0d is the free length of the restoring spring. Let

ed = d−d0 (69)

be the displacement of the control mass from its equilibrium
position. Substituting Eq. (69) into Eq. (67) and using the
Mean Value Theorem yields

mdëd + BT
d ė+ KT

d e= 0, (70)

where

e=
[

e1

ed

]
, (71)

Bd =


0

bs
2 gdθ

bsgd +bu

 , (72)

Kd =


0

ks
∂(ρs−1)(d−xcosθ)

∂θ

∣∣∣∣
θ∈Ls(θ0,θ)

ku+ ks
∂(ρs−1)(d−xcosθ)

∂d

∣∣∣∣
d∈Ls(d0,d)

 . (73)

Now, consider the energy function

V2(e, ė) = .χT
2 P2χ2, (74)

where,

χ2 =

[
e
ė

]
, (75)

and

P2 =

[
I mI

mI M

]
(76)

is positive definite, withm2 < λmin{M }. Taking the first time
derivative of Eq. (74), and following a similar procedure as
in the constant stiffness case in the previous section yields

V̇2 ≤ γ
2 ‖w‖2− ‖z‖2+χT

2 H2χ2, (77)

where

H2 =
1
2

 −K̂ − K̂T −KT −mM−1B

−K −m
(
M−1B

)T
−2B̂

 , (78)

K̂ =mM−1K −
c1‖ė‖

2
I , (79)

B̂ = B−
(
m1+

c1‖ė‖
2

)
I , (80)

and

K = −
∂K
∂q

∣∣∣∣∣
q=ζ1

+
∂G
∂q

∣∣∣∣∣
q=ζ2

,ζ1,ζ2,∈ Ls(q0,q). (81)

Now, the robust best-case gain of the system with a passive
variable stiffness is given by

γ
2
≥

0.5σ√
h∗2− φ

2
. (82)

whereh∗2 is the smallest positive number larger than smallest
singular value ofH2. Here, the spring constantku, and the
damping coefficientbu of the control mass restoring spring-
damper system can be chosen such thatγ

2
< γ

1
. Thus, a bet-

ter performance can be achieved just by letting the stiffness
vary naturally using a spring-damper system. This claim is
supported subsequently by experimental and simulation re-
sults. This is a very appealing result due to its practicability.
No additional electronically controlled or force generating
device is required, only mechanical elements like the spring
and damper are used.

4 Experiment

The experimental setup is shown in Fig.4. It is a quarter
car test rig scaled down to a ratio of 1:10 compared to an
average passenger car in 2004 (NHTSA, 2004). The quarter
car body is allowed to translate up-and-down along a rigid
frame. This was made possible through the use of two pairs
of linear motion ball-bearing carriages, with each pair on
separate parallel guide rails. The guide rails are fixed to the
rigid frame and the carriages are attached to the quarter car
frame. The quarter car frame is made of 80/20 aluminium
framing and then loaded with a solid steel cylinder weighing
approximately 80 lbs. The horizontal and vertical struts are
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Figure 4. Quarter Car Experimental Setup.

the 2011 Honda PCX scooter front suspensions. The road
generator is a simple slider-crank mechanism actuated by
Smartmotor® SM3440D geared down to a ratio of 49 : 1 us-
ing CMI® gear head P/N 34EP049. Three accelerometers are
attached, one each to the quarter car frame, the wheel hub,
and the road generator. Data acquisition was done using the
MATLAB data acquisition toolbox via NI USB-6251. Exper-
iments were performed for the passive case, where the hori-
zontal strut is just a passive spring-damper system, and also
for the fixed stiffness case, where the top of the vertical strut
is locked in a fixed position. This position is the equilibrium
position of the passive case when the system is not excited.

Two tests were carried out; sinusoidal, and drop test. For
the sinusoidal test, the road generator is actuated by a con-
stant torque from the DC motor. As a result, the quarter car
frame moves up and down in a sinusoidal fashion. To facili-
tate a good comparison of the observations, the “approximate
gain” of the system defined as

γ2 =

∫ T

0
z(t)2dt∫ T

0
r(t)2dt

, (83)

wherez(t) is the signal of interest, andr(t) is the road accel-
eration signal, is numerically computed. The signals of inter-
est are the frame acceleration and tire deflection acceleration
signals. The experimental procedure was repeated multiple
times in order to verify the repeatability of the experiment.
Figures5 and6 show the box plots of the approximate gain
distributions for the fixed stiffness and passive variable stiff-
ness cases. It is seen that the worst and best case gains for
the fixed stiffness are higher than those of the passive vari-
able stiffness case, thereby confirming the analytical result
obtained earlier that the variable stiffness achieves better dis-
sipation.

Figure 5. Box Plot: Car Body Acceleration.

Figure 6. Box Plot: Tire Deflection Acceleration.

For the drop test, the suspension system was dropped to the
ground1 from a fixed height (6 inches from the equilibrium
position and the wheel was not in contact with the ground).
The resulting quarter car body acceleration and tire deflection
accelerations were recorded. This test examines the response
of the system to initial conditions. Figures7 and8 shows the
car body acceleration responses and tire deflection accelera-
tion responses for the fixed and variable stiffness cases.

Table1 shows the approximate gains for the sinusoidal and
the rms values of the drop test. The approximate gains of the
sinusoidal test given in the table are the mean values of the
multiple experiments.

5 Simulation

In order to study the behavior of the quarter car system at full
scale as well as responses like suspension deflection, which

1Here the ground is non accelerating as against the sinusoidal
test where the ground simulates the road signal.
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Figure 7. Drop Test: Car Body Acceleration.

Figure 8. Drop Test: Tire Deflection Acceleration.

Figure 9. Solidworks Quarter Car Model.

were difficult to measure experimentally, and excitation sce-
narios that are difficult to implement experimentally, realistic
simulations were carried out using MATLAB Simmechanics
Second Generation. First, the system was modeled in Solid-
works as shown in Fig.9. Next, the Simmehanics model was
developed. The mass/inertia properties used are the ones gen-
erated from the Solidworks model. The vertical strut and tire

Table 1. RMS/Approximate gain values of experimental results.
CBA: Car Body Acceleration. TDA: Tire Deflection Acceleration.

Fixed Passive

Drop (RMS)
CBA (g) 0.4543 0.3710

TDA (g) 0.2746 0.2396

Sinusoidal (Gain)
CBA 0.6220 0.5170

TDA 1.3316 1.2944

Table 2. Dynamic parameter values.

Parameter Value

ms 315 kg
mu 37.5 kg
bs 1500 N m−1 s−1

ks 29 500 N m−1

kt 210 000 N m−1

damping and stiffness used are the ones given in the “Re-
nault Mégane Couṕe” model (Zin et al., 2004). The values
are given in Table2.

5.1 Time domain simulation

In the time domain simulation, the vehicle traveling at a
steady horizontal speed of 40 mph is subjected to a road
bump of height 8 cm. The Car Body Acceleration, Sus-
pension Deflection, and Tire Deflection responses are com-
pared between the constant stiffness and the passive vari-
able stiffness cases. For the constant stiffness case, the con-
trol mass was locked at three different locations (d = 40 cm,
d = 45.56 cm andd = 50 cm). The valued = 45.56 cm is the
equilibrium position of the control mass. Next, a simulation
is performed for the passive case. The results are reported in
Figs.10, 11 and12 which are the the car body acceleration,
suspension deflection, and tire deflection responses, respec-
tively. Figure 13 shows the position history of the control
mass for the passive variable stiffness case.

5.2 Frequency domain simulation

For the frequency domain simulation, an approximate fre-
quency response from the road disturbance input to the per-
formance vector given in Eq. (19), is computed using the
notion of variance gain (Schoukens et al., 2001; Stack and
Doyle, 1995). The approximate variance gain is given by
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Figure 10. Time Domain Simulation: Car Body Acceleration.

Figure 11. Time Domain Simulation: Suspension Deflection.

Figure 12. Time Domain Simulation: Tire Deflection.

Figure 13. Time Domain Simulation: Control Mass Position.

G( jω) =

√√√√√√√√√√√√√√√√√√√√√√√√√√√√

2πN/ω∫
0

z2 dt

2πN/ω∫
0

A2 sin2(ωt) dt

, (84)

wherezdenotes the performance measure of interest which is
taken to be car body acceleration, suspension deflection, and
tire deflection. The closed loop system is excited by the si-
nusoidr = Asin(ωt), t ∈ [0, 2πN/ω], whereN is an integer
big enough to ensure that the system reaches a steady state.
The corresponding output signals were recorded and the ap-
proximate variance gains were computed using Eq. (84). Fig-
ures14, 15, and16 show the variance gain plots for the car
body acceleration, suspension deflection, and tire deflection
respectively. The figures show that the variable stiffness sus-
pension achieves better vibration isolation in the human sen-
sitive frequency range (4–8 Hz) (ISO 2631-1, 1997), and bet-
ter handling beyond the tire hop frequency (>59 Hz) (Fialho
and Balas, 2002).

6 Conclusion

The design, analysis, and experimentation of the passive case
of a new variable stiffness suspension system is presented.
Using a detailedL2-gain analysis based on the concept of
energy dissipation, it is shown that inclusion of a variable
stiffness mechanism in the suspension design yields an im-
provement in the performance of the traditional system in
terms of ride comfort, suspension deflection, and road hold-
ing. The analysis claims are supported by both experimental
and simulation results. In the future, work will be done on
the semi-active case, where the passive spring/damper sys-
tem will be replaced with a semi-active element like the MR
damper. Also, the active case will be examined, where the
horizontal strut will be replaced with a force generator such
as hydraulic or pneumatic actuators. Moreover, the effect of
nonlinear passive elements in the horizontal strut will be con-
sidered, and possibly considering nonlinear paths for the con-
trol mass as well. The effect of variable stiffness on roll and
pitch dynamics will also be examined using a half-car model.
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Figure 14. Frequency Domain Simulation: Car Body Acceleration.

Figure 15. Frequency Domain Simulation: Suspension Deflection

Figure 16. Frequency Domain Simulation: Tire Deflection.

Nomenclature

‖v‖ Euclidean norm of the vectorv
yu Vertical displacement of the unsprung

mass
ys Vertical displacement of the sprung mass
hu Half distance between points C and D
ls Vertical strut length
l0s Natural length of vertical strut
lD Length of the lower wishbone
H Height of the control mass from the pivot

point of the lower wishbone
x Distance between points O and A along the

lower wishbone
kt, bt Tire spring constant and damping coeffi-

cient
ks, bs Vertical Strut stiffness and damping coeffi-

cient
ku, bu Control(Horizontal) Strut stiffness and

damping
ms, mu, md Sprung, unsprung and control masses
Ic Moment of inertia of control arm.
λmin{A} The minimum eigenvalue of the matrixA
λmax{A} The maximum eigenvalue of the matrixA
σmin{A} The minimum singular value of the matrix

A
σmax{A} The maximum singular value of the matrix

A
A i: j,k:l The sub-matrix of matrixA formed by

rows i to j and columnsk to l
A i: j The sub-matrix of matrixA formed by

rows i to j and all columns
tr{A} The trace of the matrixA
det{A} The determinant of the matrixA
Ls(q1,q2) The set of points that lie on the line seg-

ment joining the vectorsq1 andq2

I Identity matrix
ei,n The i-th column of the identity matrix of

dimensionn
R The set of real numbers
Re{α} The real part of the complex numberα
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