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Underactuated multibody systems have fewer control inputs than degrees of freedom. In trajec-
tory tracking control of such systems an accurate dfidient feedforward control is often necessary. For
multibody systems feedforward control by model inversion can be designed using servo-constraints. So far
servo-constraints have been mostly applied ftedentially flat underactuated mechanical systemfebsn-
tially flat systems can be inverted purely by algebraic manipulations and using a finite humbige refndi-
ations of the desired output trajectory. However, such algebraic solutions are often hard to find and therefore
the servo-constraint approach provides #iicient and practical solution method. Recently first results on
servo-constraint problems of non-flat underactuated multibody systems have been reported. Hereby additional
dynamics arise, so-called internal dynamics, yielding a dynamical system as inverse model. In this paper the
servo-constraint problem is analyzed for bottfetientially flat and non-flat systems.fiirent arising impor-
tant phenomena are demonstrated using two illustrative examples. Also strategies for the numerical solution of
servo-constraint problems are discussed.

A very appealing and fécient feedforward control de-

sign approach for multibody systems is the use of so-
Multibody systems with fewer control inputs than degreescalled servo-constraints, which are also called programm
of freedom are called underactuated. Typical examples ar@onstraints or control constraints, sekjer (1992; Camp-
multibody systems with passive joints, body flexibility, joint pell (1995; Kirgetov (1967); Rosen(1999; Bajodah et al.
elasticities, aircrafts and cranes. A possible performance task005. Thereby the equations of motion of the underactuated
of such systems is output trajectory tracking, e.g. tracking ofmultibody system are supplemented by a servo-constraint,
the end-@ector point of flexible manipulators. In order to which enforces the exact reproduction of the desired output
obtain a good performance in trajectory tracking an accuratrajectory. This yields as set of ftérential-algebraic equa-
and dficient feedforward control is often necessary, which tions (DAEs), whose solution provides the searched control
then can be combined with a feedback controller. A feed-input. Due to some similarities to classical constraints, servo-
forward control is an inverse model of the multibody sys- constraint problems have recently been attracted increasing
tem, providing the necessary control inputs for exact outputattention in the multibody system dynamics context.
reproduction. Depending on the system’s properties the in- The servo-constraint approach is often applied to so-
verse model might be purely algebraic or might contain acalled diferentially flat underactuated mechanical systems,
dynamical part. While there is a large amount of various lin-such as cranes, aircrafts and mass-spring chains, as inves-
ear and nonlinear feedback control strategies available, therggated in Betsch et al.(2008; Blajer and Kolodziejczyk

exist much less concepts for feedforward control design 0f(2004 2007, 2011); Fumagalli et al.(2011). The theory
nonlinear systems.



of differential flatness is a fiierential algebraic approach, arm with passive joint. Finally some remarks on the numeri-
which is due to the fundamental work Bfiess et al(1995. cal solution of servo-constraint problems are given. The nu-
Differential flathess is a structural property, which is de-merical solution methods depend strongly on the previously
termined by the system and the imposed system outputanalyzed system properties.

Roughly speaking, in a fierentially flat system a system

output can be found, from which all states and inputs can

be determined without integration. However, a finite number

of derivatives of the output might have to be takent®ien-

tially flat nonlinear systems can be seen as a generalizatiomumbody systems withf degrees of freedom an con-

of linear controllable systems, as discusse@®byhfuss etal.  trol inputs are considered. For underactuated multibody sys-
(1997). These systems have the favorable property that theyems it is imperativen < f. The kinematics of multibody sys-
can be inverted purely by algebraic manipulations and ustems is described using generalized coordingte® . The

ing a finite number of dierentiations of the system output. control inputsu € R™ are assumed to be control forces and
However, such algebraic solutions are often hard to find an%rques. Based on d’Alembert’s principle the equations of
therefore the servo-constraint approach providesfiatient  motion in minimal form can be derived using the Newton-

and practical solution method for model inversion. An exten- gyler-Formalism, see e.§chiehlen et al(2006. The non-
sion of this servo-constraint approach is its use in feedbackinear equations of motion are given by,

linearization, where the model is formulated in redundant co-
ordinates, seErye and Fabie2017). M(a)g+ f(g,q) = B(q)u, Q)

More recently also first results on the application of servo-
constraints to non-flat systems, such as, e.g. flexible manipwhere M e R™' is the symmetrical and positive definite
ulators or systems with passive joints, have been reportednass matrix and € R’ summarizes all generalized forces.
seeSeifried (20123; Moberg and Hanssef2007); Kovacs  These generalized forces are given by k- g, whereby
et al.(2011); Masarati et al(2011). In the inverse model of K is the vector of generalized gyroscopic, centrifugal and
non-flat systems additional dynamics arise, so-called interCoriolis forces and are all applied forces such as gravity.
nal dynamics. Thus the inverse model is a dynamical modelThe system inputa € R™ are distributed by the input matrix
This internal dynamics of the inverse model might be stableB € R™™ on the directions of the generalized coordinates.
or unstable. Therefore it must be analyzed carefully in or-Generally it is assumed that there is no redundant actuation
der to obtain a meaningful solution and is treated extensivelyand thus the rank d8 equalsm. Itis often useful to partition
in differential-geometric nonlinear control theory, $sidori  the equations of motion of underactuated multibody systems
(1995; Sastry(1999. in actuated and unactuated parts,

In this paper the servo-constraint problem is analyzed for ) .
both, flat and non-flat systems. Two approaches for ana[ Mga(Q) Mau(Q) [qa o fala 9)]:[ Ba(Q)}u. )
lyzing and solving the servo-constraint problem are taken! Mal(@ Muu(@) || & | | fu(@.@) | | Bu(@)

[I:herebyqaeRm are the actuated generalized coordinates

andq, € R'-™ are the unactuated coordinates. This partition

These are a projection approach and a coordinate transfo
mation approach. The projection approach is duBlajer

is based on the requirement that the rank of the submatrix
B, € R™™ equalsm. In many instances, e.g. passive joint

and Kolodziejczyl(2004 2007). It allows a straightforward
formulation of the servo-constraint problem and simplifies
significantly the numerical solution of the arising DAES. This ; . . :

) . . manipulators or flexible multibody systems, the input sub-
method has also been applied téfelientially flat multibody : . :

; . - . matrices might reduce tB, =1 andB, = 0, wherel is the
systems with mixed geometric and servo-constraints as rei_dentit matrix. In this case each generalized coordinate of
ported byBetsch et al(2008 andBlajer and Kolodziejczyk Y i 9
(201)). In the coordinate transformation approach the servo-
constraint problem is reformulated in new coordinates con-
taining the output. In this way a DAE formulation might be
avoided, which significantly simplifies the analysis of the The control task which is considered in this paper is output

servo-constraint system dynamics. The equivalence of bo“?rajectory tracking. Thereby, a system outyut R™ of the
approaches is discussed3eifried (20123. In this paper a multibody system is given by

slightly different formulation of the coordinate transforma-

tion approach is used, see aBtajer and Seifried2012); y = h(q). ©)
Blajer et al.(2013. Based on both formulations of the servo-

constraint problem, the various possible situations which carThis system output can depend linearly or nonlinearly on all
occur in servo-constraint problems are demonstrated. Theregeneralized coordinates. A typical example for such a sys-
fore two illustrative examples are used. These are a masgem output is an endfkector position of a manipulator. The
spring-damper system on a car and a rotational manipulatodimension of input and output coincide, an assumption often

g, is directly collocated with one component of input



kinematics of a fully actuated system the nonlinear output

yL> Inverse L;O_u) multibody ; equation (Eq3) can be solved, providing for givey the
model + || system trajectoriesqy of the generalized coordinates. This can be
q, q achieved by algebraic manipulations, numerical solution or
u, differential kinematics, respectively. For details it is pointed
feedback to Siciliano et al.(2010. By using the determined, and
controller its derivativesqy, ¢y in the equations of motion (EQ) the
control inputsug can be computed algebraically.
. :)\ ) For underactuated multibody systems the inverse kinemat-
< ics following from Eq. B) is under-determined. Also the in-

verse dynamics problem cannot be solved since the input ma-
trix B is not invertible. Thus, for underactuated multibody
systems the splitting of the model inversion into inverse kine-
matics and inverse dynamics is in general not possible and

required in nonlinear control theory. The velocity and accel-Poth parts must be be solved concurrently. Fdfedentially

Control structure with feedforward and feedback con-
troller.

eration of the system output follow as flat underactuated multibody systems a purely algebraic in-
verse model can be derived, using a finite number of deriva-

y = H(9)q, 4) tives of the system outpyt In contrast, for non-flat systems

y = H(@y+h(g o). (5) the inverse model is a dynamical system. Flatness is a system

property determined by the system dynamics and the chosen
TherebyH e_Rme is the Jacobian matrix of the system out- output, but is independent of the used coordinates to describe
put andh = Hg e R™. In trajectory tracking the system out- the multibody system.
put (Eq.3) should track exactly a time-variant output tra-
jectory y4(t), which is defined in space and time. Thus also
velocity y,(t) and acceleratiofy,(t) of the system output are

specified. An efficient and straightforward approach for model inver-
Multibody systems in output trajectory tracking perform sion is the use of servo-constraints. The basic idea of servo-
often large working motion. Thus, the equations of mo- constraints is the enforcement of output trajectory tracking
tion (Eq. 1) are highly nonlinear and in many instances lin- py introducing constraint equations. These servo-constraints
ear control theory cannot be applied. Afigent approach of  can be seen as an extension of classical geometric con-
output trajectory tracking of nonlinear systems is a so-calledstraints, which makes this approach so appealing in multi-
two design degree-of-freedom control structure, consistinghody system dynamics. In order to introduce the concept of
of a feedforward control and an additional feedback con-servo-constraints, classical constraints are briefly reviewed.
trol, see Fig1l. Thereby the feedforward control is an inverse For example, consider a multibody system with a kinematic
model of the multibody system. It provides for a given output joop, see Fig2. In order to obtain its equation of motion
trajectoryyy(t) the associated control inputlg and the tra-  the kinematic loop is cut at a suitable joint, removingon-
jectoriesqy of all generalized coordinates. In the absence ofstraints. Then, the corresponding equations of motion of the
any uncertainties and disturbances the controlingggnbe  open chain system are derived in minimal form and the kine-
applied to the multibody system and reproduces the desireghatic loop is enforced by introducing algebraic loop closing
output trajectory exactly. Since in a real hardware implemen-constraintsce(q,t) = 0 € R". Restricting to a multibody sys-
tation always some parameter uncertainties and disturbancesm without control action, the equations of motion of the

arise, additional feedback control is necessary and providegpen chain system yields together with the constraint equa-
additional control inputi.. For feedback control design the tjons,

computed trajectoriegy of the generalized coordinates can
be used as reference signal. In trajectory tracking the mosM(g)g+ f(q,q) = c'a, (6)
control action is provided by the feedforward part and the ce(q) = 0. (7)
feedback part has to compensate only small derivations fol-
lowing from uncertainties and disturbances. Therefore, ofteriThereby C = dc./dq e R™" is the Jacobian matrix of the
simple linear control strategies such as PID control might beconstraint equation andle R" are the Lagrangian multipli-
applicative for the feedback part. ers. These ensure that the loop closing constraints are met.
For fully actuated multibody systems, such as fully ac- Equations §)—(7) form a set of diferential algebraic equa-
tuated manipulators, it i =m. Then, the inverse model tions (DAE). The numerical solution of the DAE provides
can be derived easily by pure algebraic manipulations, se¢he forward dynamics of the closed loop multibody system
e.g.Spong et al(2006. In this case the inverse model can be with trajectories of the stateg q and the Lagrangian multi-
splitinto inverse kinematics and inverse dynamics. In inversepliers A.



a.) multibody system with kineamtik loop body system with classical constraints the maﬁﬂmrojects
the Lagrange multipliers on the directions orthogonal to the
e constraint manifold, which is defined by the constraint equa-
tion (Eq.7). Thus, the generalized reaction fora@51 are
orthogonal to the constraint manifold, see RBgTherefore
such a system is called an ideal orthogonal realization.

A In contrast, the generalized actuation fordas are not
o,{)/ necessarily ideal orthogonal to the constraint manifold which
A is defined by the servo-constraint (E@). The actuation

forcesBu might be non-ideal orthogonal or in the extreme
case even tangential to the constraint manifold, see Jig.
These cases are called non-ideal orthogonal realization and
tangential realization, respectively. Thereby, ideal and non-
b.) multibody system with servo-constraints ideal orthogonal realization have many similarities, and are
in the following only distinguished, if dierent phenomena
occur. In the case of both types of orthogonal realization con-
trol inputs are explicitly available in all directions orthogonal
to the servo-constraints and can directly actuate the servo-
constraint condition. However, in the case of non-ideal or-

b/ N Co o
d u thogonal realization the projection wiBiyields also compo-
0%/ : nents in direction tangential to the constraint manifold. In a

Y

tangential realization the control inputs are projected in tan-
gential direction. Then, the control inputiscannot actuate
directly the constraint condition, but output tracking yof

O unactuated joint

@ actauted joint might be still possible due to coupling with other forces of
the system, seBlajer and Kolodziejczy2004). This tan-
Multibody systems with constraints. gential projection is often connected to underactuatéeri

entially flat systems. However, as will be shown in secBon
, . tangential realization can also arise in non-flat systems. Fur-
In order to derive an inverse model for underactuatediher analysis from a geometric point of view are also found
multibody systems a_5|mllar_approa_1cr_1 can be usgd. The prohy, Blajer (1992, Blajer and KolodziejczyK2004 and Blajer
lem of tracking a desired trajectoyy is induced by introduc- .4 KolodziejczyK2007).

ing m algebraic seryo—constraints. _The inve_rse model of an For systems with multiple inputs and outputs it might oc-
underactuated multibody systems is then given by the €quas ¢ that hoth, orthogonal (ideal or non-ideal) and tangen-
tions motion (Eq1) and the servo-constraints, tial realization exist. Thus, in so-called mixed orthogonal-
M(a)d+ f(q,a) = B(q)u, (8) tangential realizations only some outputs can be directly in-
_ _ fluenced by the inputs, while others can only be influenced
¢(@.0) = h(a) - ya() = 0, ©) indirectly. A measure of the control singularity is the defi-
where Eq. 9) represents the servo-constraint. As noticedciency in rankp of the matrix
by Blajer (19973; Blajer and Kolodziejczyl(2004 2007 P-HM-1B (10)
the servo-constraint problem Eg8)£(9) is mathematically ’
equivalent to Eqgs.)—(7). Thereby the desired trajectory The casep = mindicates that all components of the system
y4(t) can be interpreted as a drift in time of constraint man-outputy can directly be actuated by the inputsThe case
ifold c(g) =0 in the system configuration space, dgla- 0 < p < mshows that onlyp components of the output can be
jer (200)). The generalized actuating forcBsi can then be  regulated in the orthogonal way, while realization of the other
viewed as a generalized reaction forces of the servo conm- p output components are without direct involvement of
straints. Thus, structurally the generalized actuation forceshe actuating force8u. Finally, p= 0 refers to a pure tan-
Bu corresponds to the generalized reaction for€asl. gential realization of servo-constraints, as the system inputs
Therefore, in the servo-constraint approach the control inputslo not directly influence the outputs.

u ensure that the servo-constraints are met. The similarities If the solution of the servo constraint problem (Egs9)
between both cases are illustrated in Rg. exists, the numerical solution of this DAE provides the trajec-
At first, multibody systems with servo- and physical con- tories of all statesg),, g4 as well as the corresponding control

straints show many similarities. However, servo-constraintinputsug. For characterizing DAEs often thefi#irentiation
problems can posses more complex properties, which have tmdex is used. Followingdairer and Wanne2010 the dif-
be understood to obtain a meaningful solution. For a multi-ferentiation index is the number of derivatives of the DAE,



a.) ideal orthogonal realization until the first time the control input occurs. If the relative de-
gree isr = n, then the system isfilerentially flat and a purely
algebraic inverse model can be extracted. In the caseso-
called internal dynamics remain and the inverse model will
contain a dynamical part. For extension to systems with mul-
tiple inputs and outputs it is pointed to the aforementioned

tangential

orthogonal _.~":

nonlinear control literature. I@ampbell(1995 it is pointed
constratat out that the dierentiation index is one higher than the rel-
. ative degree, if the internal dynamics are nficeted by a
manifold .
constraint.
b.) non-ideal orthogonal realization
tangential .,:"h T o Bu

! In Blajer (19973 it is shown that the equation of motion with
additional constraints can be projected into two complemen-
tary subspaces in velocity space. These are the constrained
and unconstrained subspace. The unconstrained subspace is
tangential to the constraint manifold, while the constrained
subspace is orthogonal to it, see RBgThe constrained sub-
space describes in the servo-constraint context the output
c.) tangential realization subspace and follows from projection with the Jacobian ma-
; trix H e R™ of the output, which has rank. For the second
tangential subspace an orthogonal complem&ne R™"™ with rank
.................... ! Bu f —mmust be derived, such that

orthogonal _.-":

constraint
manifold

NG HD=0 and D'H' =0 (11)
orthogonal /
is satisfied. Using these two matrices the equations of motion

constraint . ”
are projected into the two subspaces,

manifold
. N . ) . HM ™1 .
Possible realizations in servo-constraint problems. [ o7 ](M g+ f - Bu) -0, (12)
. . , ) ) which yields,
or parts of it, until an ordinary dierential equation (ODE)
for all unknowns are obtained. For multibody systems with Hg+HM " f = HM*Bu, (13)
classical constraints it is well know that they havéieien-  p"Mg+ D' f = D'Bu. (14)

tiation index 3. Here the constraint equation (Egmust be
differentiated three times in order to derive an ODE for theWith the output equation (E®) at acceleration level the cor-
unknownA. This is provided by the fact that for classical con- responding servo-constraint provides| = y, — h. This rela-
straints the matrix (Eql0) becomesP = CM~*CT, which tionship can be used in EqLy). Introducing the new state
has full rank if the constraints are independent, He@er v = g and adding the servo-constraints at position level, after
and Wanne(2010). reordering the projected servo-constraint formulation, pro-

In the case of servo-constraints this is not any more necvides
essarily true. In the case of orthogonal realizatiéhfias

full rank and index 3 arises. However, if the servo-constraint Q =V (15)
problem includes a tangential realizatiéhis singular and D'MV = -D'f+D'Bu (16)
higher diferentiation index arise. For various mechanical 0 = Pu-HM™f+h-y, (17)
systems with servo-constraints théeientiation index is an- 0 = h(g)-v, (18)

alyzed inCampbell(1995.

The diferentiation index is closely related to the relative This forms a set of 2+ mdifferential-algebraic equations for
degree used in fferential geometric nonlinear control the- the 2f + munknownsg,v,u. Equation {7) has dimensiom
ory. An extensive treatment of this nonlinear control theory and describes an algebraic equatiomjm, u. Together with
is given inlsidori (1999; Sastry(1999. Restricting to sys- themservo-constraints (E4.8) there are thalgebraic equa-
tems withn states and one input and one output, the relativetions in these DAESs. By this projection and incorporating the
degree is the number of Lie derivatives of the system output servo-constraint at acceleration level, an index reduction by



two is achieved, which in general simplifies the numerical The equations of motion (Eq&2-23) can be helpful in ana-
solution. For example, for the crane considereBlmjer and  lyzing both, orthogonal and tangential realization, as will be
Kolodziejczyk (2004 2007), the diferentiation index is re-  seen in the next subsection.
duced from 5 to 3 using this projection approach. The coordinate transformation approach is inspired by
differential-geometric control theory, which is the basis of
feedback linearization and can also be used for feedforward
control design, seésidori (1999; Sastry(1999. Thereby,
The numerical solution of Eqs1$)—(18) provides the model  nonlinear systems are transformed byfebmorphic coor-
inversion. However, for analysis purpose it might be of ad- dinate transformations into the so-called nonlinear input-
vantage to write first the equations of motion in a new setoytput normal form using new states, containing the output
of coordinates containing the system output. In addition, thisand a finite number of its time derivatives. The application of
might also be used to simplify the projections in EQ5){  this nonlinear control theory to underactuated multibody sys-

(18). Also for systems with orthogonal realization an inverse tems in orthogonal realization is given Seifried(2012ab).
model as ODE can be derived in a straightforward way. For

example, as new set of coordinates

s Y 1-7 Mowa) _

a=[ 4 |=] Tq " |=9@ (19)
might be used, which yields for the velocities

= 1V qp_rHa Huyp Gaq_9¢(9),

a=[ 4 1=l o "l qu]-a—qq (20)

It is noted that the first row of Eq20) is identical to Eq.4),

i.e. H=[H4 Hy]. In order to be an admissible coordinate
transformation, it must be afé@omorphism, i.e. smooth and

invertible. Relationship (EdL9) is at least a local dieomor-
phism if the Jacobian matrix in EqL9) is non-singular. In-
specting Eq.19) shows, that this is true if the submatiti

is nonsingular. This requires that the output equation 8kqg.

depends on athactuated coordinateg. This is for example

the case for manipulators with flexible links or passive joints
in end-dfector tracking. A counterexample is a manipulator

with flexible joints in end-fector tracking, see e.fe Luca
(1998.

With the results of Eq.5) the coordinate transforma-

tion (Eqg.19) at acceleration level is,
- y H, H g h
a=[ 4 1=l 0 " lgllo!

From the equations of motion (E#) follows = M~1(Bu -
f) which can be inserted in EcRY) and yields

(21)

y = Pu-HM™f+h, (22)

o8 [0: I]MY(Bu-f). (23)
In all entries of these two equations the original states),
must be replaced by the new statey. Therefore the upper
part of Eq. (9) must be solved fon,, which is in general
nonlinear. Afterwards the velocitigég can be computed from
the linear equations provided by EQQ}.

The two second order filerential Eqs.22)—(23) represent

The following short discussion highlights some correspon-
dence of the servo-constraint approach with aforementioned
nonlinear control theory for underactuated multibody sys-
tems in orthogonal realization. In this case, the equations
of motion (EQgs.22-23) in new coordinateq are identi-
cal to the nonlinear input-output normal form. The matrix
P = HM 1B is called decoupling matrix in nonlinear control
theory. Equation4?2) links the inputu to the second deriva-
tive of the outputy, describing the input-output relationship.
Equation 23) is called in nonlinear control theory the inter-
nal dynamics. This is the remaining system dynamics of the
inverse model. From this input-output normal form feedback
linearization and feedforward control design are easily pos-
sible. For a desired output trajectoyythe necessary control
input follows from Eq. 22) as
Ug=PYHM 2 —h+ ). (24)

It is noticed that this is structurally identical to EdL7],
however expressed in terms of the new coordinates. Equa-
tion (24) is an algebraic expression for the input, depending
solely on the known valueg,, y; and the unknowns,, ¢,.

The later ones follow from solving the internal dynamics by
applying Eg. 24) to the ODE Eq.23), resulting in

[0: IIMYBPYHMf —h+yy) - f],
a(dy, Gu» Ya» Yo Var)-

These aref —m second order dlierential equations foq,,
driven by the desired outpyf, and its derivativeyy, V4.

Qu

(25)

The diferent phenomena which might arise in servo-
constraint problems of underactuated multibody systems are
demonstrated using a spring-mass system mounted on a car,
which is shown in Fig4. The car with masey moves along

the horizontak; axis and is actuated by the forae- F. On

the car a massy, is mounted, which moves along an axis
which is inclined by the angle. The system is described

the equations of motion of the multibody system expressedy the two generalized coordinatgs- [X, s], wherebyx is

in the new coordinateg, which include the system outpyt

the horizontal car position anglthe relative position of the



Mass on car system.

mass along the inclined axis. Thereloy,= x is the actu-
ated coordinate ang|, = sis the unactuated coordinate. The

Based on this description of the system dynamidgedint
occurring phenomena are discussed, whereby fdterdint
cases are distinct.

Case 1:the relative motion of the mass occurs in vertical di-
rection, i.ea = 90°, see Figha. In this case the system output
is identical to the car positiop= x and (Eq.30) reduces to

P = (my + mp)~! # 0. Thus, the equations of motion EQ6}
and Egs. 81)—(32) coincide and provide

F
—ks—ds.

(33)

(my + mp)y
S (34)

mpS

Both equations are here fully decoupled. The foFeds

mass is supported by a parallel spring-damper combinationorthogonal to the constraint manifold, which is described by

with spring and damping céigcientsk, d, respectively. In the
equilibrium position it iss= 0. This yields the equations of

motion
HE

The system output is the horizontal position of the mass,

0
ks+ds

%
8

m +M MpCcoSw
M, COSt m

F
18] e

Yy = X+ SCOsa, (27)

which should follow a predefined trajectoyy(t). This yields
the servo constraint

c(g,t) = X+ scosa — yq4(t). (28)

Equations 26) and @8) form the servo-constrained problem.
From Eq. £8) follow the two projection matrices,

=

With these matrices the projected Eqb)((18) of the servo-
constraint problem can be computed. Thereby it follows
from Eq. (L8)

cosx
-1

H:[l cos‘a], D (29)

sifa

P=HM'B= ————.
my + My Sirf a

(30)
It becomes apparent that this matrix is nonsingulanferO,
i.e. it poses an orthogonal realization. Howeverdot 0 a
tangential realization occurs.
In order to analyze this servo-constraint problem in more

. . . i
detail, the coordinate transformation approach presente&1

in Sect.2.4is applied. The new set of coordinates contain-
ing the output are chosen gs- [y, s|. The system dynamics
in new coordinates follows from evaluating Egg2)—(23),

_m COSa/[kS-|- dg) smza. F 31)
MM + mésife My + msirfa

_ (mu+ mz)[ks.+ dg cosw (32)
MM + MEsifa My + mpsirfe

the servo-constraint (E®8), see Fig.5a. This is identical

to classical geometric constraints and the control force
regulates directly the output. The control action which
is necessary to reproduce the output trajectory follows
from Eq. B3) as Fq=(m +mMy)yy. The dynamics of the
mass in vertical direction is described by E§4) and is
not influenced by the control force and vice versa. This
dynamics of the mass cannot be observed by the system
outputy and thus in reference to nonlinear control theory this
dynamics (Eq.34) is called internal dynamics, sdsidori
(1995 andSastry(1999.

Case 2: the mass moves along a tilted slope with
0° <a <90, see Fig.5h. The system dynamics in new
coordinates are given by Eq81j—(32) and from Eq. 80)
follows P # 0. This indicates a non-ideal orthogonal real-
ization since the control force has an orthogonal component
to the constraint manifold. The control forde can still
regulate directly the constraint condition, however it also has
a component in tangential direction influencing the relative
motion of the mass, see Figh.

For a given output trajectoryy Eq. (31) can be solved
algebraically for the desired control input,

My +mpsirfa,

sifa

The control input depends on the second derivative of the
system outpuyy and the unknown statess which must be
computed from Eq.32). Replacing in Eg. 32) the control

put by Eq. 85) yields after reordering

my cosa[ks+ d§]

F
d mp Sirf

(35)

mpsirf a$+ ds+ ks= —yymp cosa. (36)
This is the dynamics of the mass, on the tilted slope
under the applied trajectory tracking control forEe In
accordance to nonlinear control theory it forms again the
internal dynamics. The control fordg, and thus the system
output y, influence the internal dynamics, while internal
dynamics again influence the control forEe In this case
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Possible situations arising in servo-constraint problems.

the internal dynamics is a second ordefatiential equation,
which is driven by the second derivative of the desired
system output trajectoryy.

Case 3: the mass moves in horizontal direction, i.e.
a =0°, see Fig5c. For this case the equations of motion in
new coordinate follow from Eqs3Q0)—(32) after reordering
as

mpy = —ks—ds,
mmp 8= —(my + mp)[ks+ d§] — mpF.

37)
(38)

In addition, it follows from Eq. 80) thatP = 0. This indicates
a tangential realization, where the control fofeés tangen-
tial to the constraint manifold, see Figc. ThusF cannot
directly regulate the servo-constraint, i.e. the system outpu
y. This is also seen from Eq3T7), which containsgy,"but not
any more the control inpuE. However, output tracking of
is still possible due to coupling with other forces of the sys-
tem, here the spring force and damper force.

For tracking of the desired output trajectory the neces-
sary control input can be computed form E8g)as
Fa=

= [ks+d§] —my8&.

_ (mlr;mz) (39)

Firstly, the values 0§, § § are unknown. For givegy these
can be computed from Eq37) as,
ks+d$ = —mpyq. (40)

This is a diferential equation fos and poses in this case the

case 4: without damping: index 5 (differentially flat)

provides the corresponding valugs Then, the values; fol-
low directly form the algebraic solution of EQ@) as

kg mp.
a _ar

Taking one time-derivative of Eq4() yields an algebraic
expression fosg,

(41)

N k. m
S = de a
Thus, all quantities for evaluating the control forée
using Eq. 89) are available. The last equation shows, that in
contrast to the previous two cases the third derivative of the
desired output trajectoryy must be available.

tCase 4:the mass moves in horizontal direction and no
damping is present, i.exr =0° andd = 0. Similar to case

3 a tangential realization exists sinfe= 0, and the same
interpretations apply. The equations of motion in new
coordinates simplifies to

1}

p (42)

(43)
(44)

My = ks
MM = —(my + Mp)ks— mpF.

Similarly to case 3, the control fordgy can be computed al-
gebraically form Eq.44), wheres, § are unknowns. In con-
trast to case 3 Eq4B) is now an algebraic expression for
computingsy for givenyy,

internal dynamics. In contrast to the previous two cases, thdaking two time-derivatives of Eq46) yields

internal dynamics is here a first ordefffdrential equation.
For givenyy the solution of the internal dynamics Ed0f

Sa= 2. (45)
g=—"2y. (46)



The last equation shows, that in this case the forth derivative
of the output trajectory is necessary. Combing E44)+(46)
yields the control force The previous discussion highlights that the inverse model
might be a dynamical system, namely containing internal dy-
MMy d'V), (47) namics. This can occur in both cases, the orthogonal real-
k ization and the tangential realization. In the computation of
Thus, in this case the control inputy and all states the inverse model these internal dynamics must be solved.
Yo, Vd» So» & of the system can be computed by purely Thereby, the stability of the internal dynamics, i.e. the sys-
algebraic manipulations, without the need of solving anytem dynamics of the servo-constraint problem, must be in-
differential equations. Thus, since all these quantities ar&/estigated carefully. For an ideal orthogonal realization, e.g.
specified by the system outpuiaind its four time-derivatives, ~ classical constraints, the stability properties and analysis of
this case poses aftérentially flat system. multibody systems with classical constraints applies. This
ideal orthogonal realization also occurs in underactuated
Summary and comparison of casesthe servo-constraint Mmultibody systems with collocated inputs and outputs, i.e.
problem for this illustrative example has been analyzed usinghere is a control input at each system output. This occurs
the coordinate transformation approach. Of course, also thér example in case 1 of the mass on car example which is
DAEs (Eqgs.8-9) or the projected DAEs (Eq45-18) can  presented in Secs
be established. Thereby, the previous analysis can be used For non-ideal orthogonal and tangential realization, the in-
to analyze the dierentiation index. In accordance with the ternal dynamics might be more complex, and stability might
discussion at the end of Se@t2it can be obtained that the not be ensured. This is due to the combination of the multi-
differentiation index of the original DAEs (Eq8-9) is one  body system with a control, whereby inputs and outputs are
higher than the highest derivative of the system output notcollocated. In the case of unstable internal dynamics, for-
which is necessary to compute the control fofce ward time integration of the internal dynamics might yield
The cases 1 and 2 are orthogonal realizations and thereforénbounded states and control inputs, which provides an un-
provide DAEs with diferentiation index 3, similar to systems feasible inverse model. Therefore, careful stability analysis
with geometric constraints. This is irrespectively of the exis- Of the internal dynamics is necessary. Using the coordinate
tence of damping in the system. The dynamics along the contransformation approach the internal dynamics of the inverse
straint manifold is not specified by the output, which forms model can be extracted explicitly, which is helpful in system
the internal dynamics. Thus, these are twidatentially non-  analysis. For example, for the orthogonal realization the in-
flat mechanical systems. These cases 3 and 4, with tangentiggrnal dynamics is given by ERY).
realizations, yield higher @erentiation index, which is de- In general, the internal dynamics is nonlinear and driven
pendent on the existence of damping. In case 3, where dam@y the desired output trajectory,(t), posing a nonlinear
ing is present, the system has index 4. Internal dynamics retime-variant system. Since stability analysis of such systems
main, which in this case is a dynamical system of first order.is quite complex, one uses often the concept of zero dy-
Thus this example with damping poses a tangential realizanamics, sedsidori (1999; Sastry(1999. The zero dynam-
tion for a diferentially non-flat system. In case 4 no damping ics is the internal dynamics under a constant system out-
exists and dferentiation index 5 arises. Then, the complete put, e.g.yy = 0,Vt. This reduces the internal dynamics to a
motion is specified by the trajectory of the outpuand its  time-invariant nonlinear system. For the orthogonal realiza-
time-derivatives. No internal dynamics remains and this tan-tion follows from Eg. £5) the zero dynamics,
gential realization represents the case offéedentially flat — a(qy, &) (48)
underactuated mechanical system. It should be mentionecﬂu w
that diferentially flat systems with higher index exist. Such Local stability of the zero dynamics can then be checked,
an example is the-mass-spring chain as analyzedBlajer e.g. using Lyapunov’s indirect method. Local asymptotic sta-
(1997h. bility requires that the linearized zero dynamics has only
This example is representative for thefeient possible eigenvalues with negative real part. If at least one eigenvalue
phenomena in servo-constraint problems of underactuatetias a positive real part the system is unstable. If there are
multibody systems. An orthogonal realization yields index 3 both, eigenvalues with negative real part and purely imagi-
and internal dynamics remains, which are describefl-byn nary eigenvalues, then Lyapunov’s indirect method is incon-
differential equations of second order. For tangential realiza€lusive. In this case stability can be checked e.g. using Lya-
tion higher index arise. Thereby an increasin@edentiation  punov’s direct method, see elghalil (2002, or the center
index indicates a reduced size of the internal dynamics andnanifold method, see e.tsidori (1995.
the need for higher derivatives of the output trajectory. Inthe For a linear system it can be shown that the eigenvalues
limit cases no internal dynamics remains, and the system caof the zero dynamics are precisely the zeros of the trans-
be inverted purely algebraically, i.e. the system i8eden-  fer function, seelsidori (1995. Further details about the
tially flat. close connection between the concept of zero dynamics of

Fa = (M + mp)yq +



Properties for mass on car system.
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Eigenvalues of zero dynamics for mass on car system.

Rotational arm with passive joint.

nonlinear systems and zeros of linear systems are discussed

in Isidori and Moog(1989. A linear system is called min- ) )
imum phase, if all its zeros are in the open left half pIane,AS simple example for an underactuated multibody system

i.e. its zero dynamics is exponentially stable. This defini- With unstable internal dynamics a single rotational manipu-

tion is also extended to nonlinear systems. In nonlinear conlator arm with a passive joint is considered, see Figrhe
trol theory systems with asymptotical stable zero dynamicsotational arm consists of two identical homogenous links
are called asymptotically minimum phase, otherwise non-With lengthl, center of mass=1/2, massm and inertia
minimum phase, seksidori (1995. It is important to no- | =ml?/12. The first link is actuated by the control torque

tice, that local asymptotic stability of the zero dynamics is Y= T- The second link is connected by a passive joint to
a necessary but not siicient condition for stability of the ~the first link, which is supported by a linear spring-damper

driven internal dynamics. This last step is often very com-¢0mbination with spring constawtand damper cdicient
plex and from a practical point one restricts often to verify d. Thus, the passive joint manipulator has its elasticity par-

local asymptotic stability of the zero dynamics. allel to the joint and shows very many similar properties as
manipulators with flexible links, se8eifried et al.(2013.

In contrast, such a passive joint system is quitéedent to

a so-called flexible joint manipulator with drive train elas-
ticities, where the flexibility is located between a link of the
manipulator and its motor, s&e Luca(1998.

The rotational manipulator arm is described by the gen-
eralized coordinateq = [a, 8], wherebyq, =8 denotes the
unactuated coordinate. The arm moves perpendicular to the
direction of gravity and the equations of motion are given by

5 1 1 S
3 +1c058 3+ 510058 } [ @
3+ 300 3 B

~0,51°mB(24 + ) sing } - [T } (49)

For the mass on car example in Setinternal dynamics
remains for cases 1-3. FiguBeshows the location of the
eigenvalues of the zero dynamics férda < 90°, i.e. case 1
and 2. The system properties are summarized in Thidlae
eigenvalues of the zero dynamics follow from the internal
dynamics (Eq36) with ¥4 = 0. The internal dynamics is in
these cases similar to a spring-mass system and is therefOE:m
asymptotically stable for the damped case and stable for th
undamped case. Far=9(° it is identical to a free damped
mass-spring system and mass vibrates freely in vertical
direction. Hereby, in the undamped case the eigenfrequency
of the free vibration isv = 0.25Hz. However, with the incli- The position of a poinS on the second link is described
nation angler the dynamic behavior of the internal dynamics in the body fixed coordinate system byxG< |, see Fig.7.
changes. Thus for example, for=5° andd =0Nsnt! the  The control goal is the tracking of the position of pofit
eigenfrequency of the zero dynamics increases.88 dz. For smallg the position can be described approximately by
Also in the damped case the behavior changes dramaticallyhe system output

and forae < 9.1° andd = 1NsnT! an over-damped behavior

occurs. Thus, due to the servo-constraint, the dynamical bey = a +
havior of the internal dynamics can be quitéfelient from

the dynamics of the uncontrolled underactuated multibodyThis system output is a linear combination of the two gen-
system. eralized coordinates and can be seen as an auxiliary gngle

+

¢B+ dB + 0,51°’masing 0

>, (50)

S+



see Fig.7. For example, with this auxiliary angle the position
in e, direction is

Properties for rotational manipulator arm.

I=1m m=3438kg k=50Nmrad® d=025Nmsrad*

re = Isina + ssin(e + B) =~ (I + 9) siny. (51)

This approximation holds for sma#l, which can be veri-
fied by computing the Jacobian linearization aroynd0, ‘ v
seeSeifried(20120. It is noted, that the following computa- sN—23 -,
tions and analysis for the exact position®follow the same
steps and yield the same results. However, the use of the lin- 50¢ 2}
early combined system output (E&f)) simplifies the expres- s/l=1
sions significantly and allows an easier discussion of the re-
sults. Similar linearly combined outputs are also often used
in end-dfector tracking of flexible manipulators, see ég
Luca(1998; Seifried et al(2011). |
For this rotational arm the servo-constraint is given by ﬁ

100

Imag())

(52)

S
cgt)=a+ Q'B_ Ya(t) ~10 =

50 100

0
and its Jacobian matrix is Real(A)

H =[ 1 = ] (53) Eigenvalues of zero dynamics for rotational arm.

I+s

With this matrix follows from Eq. 18)

2l(3scosB - 21)
mi2(l + s)(9cos(B) — 23)

Fors* =2l/(3cog) itis P=0, i.e. only for this cases a tan-

Therebyay, a;,a9 correspond to the céigcients of the char-
acteristic polynomial. Using Stodola’s criterion the lin-
earized zero dynamics (EF6) of the rotational arm is only

P=HM™'B=

(54)

gential realization occurs. For small angiethe positions*
approximates the center of percussionFliess et al(1995

asymptotically stable, if all cdBcientsay,a;,8p have the
same sign and are non-zero. The consterdf the spring-

it is shown, that for a manipulator with one passive joint the damper combination and the dimensidns are by nature

center of percussion might yield afidirentially flat system
output. In contrast, in the following the case s' is consid-
ered, i.e. the case of an orthogonal realizatiors #f0 then
the input and output are collocated since a. In this case

positive, yielding positive constandg, a;. Thus also the co-
efficienta, must be positive to obtain stable internal dynam-
ics. From this follows that fos/| < 2/3 the internal dynamics
is locally asymptotically stable, while fas/l > 2/3 the in-

an ideal orthogonal realization occurs, otherwise a non-idealernal dynamics is unstable. The location of the eigenvalues
orthogonal realization exists. From the previous discussiondor different 0< s<1 is shown in Fig8. The used system

it is obvious that internal dynamics remain.

parameters are summarized in TaBleThis shows clearly

To analyze the internal dynamics and the servo-constrainthat the dynamics of a servo-constraint problem, namely its
problem in more detail, the coordinate transformation ap-internal dynamics, might be fundamentallyffdrent from

proach presented in Se@4is applied. The new set of co-

ordinates containing the output are choseig agy, 8]. The

the dynamics of the uncontrolled mechanical system. End-
effector tracking, i.es=1, is in robotic manipulator applica-

system dynamics in new coordinates follows from evaluatingtions the most interesting case. The presented analysis shows

Egs. €2—(23). For a given output trajectory the required

control inputuy follows from Eq. @4). Then, the system dy-

that in this example unstable internal dynamics occur in end-
effector trajectory tracking.

namics of the inverse model, i.e. the internal dynamics, are The analysis of the rotational arm shows that the stability
described by Eq.25). For its analysis the zero dynamics Of the internal dynamics can depend on the choice of the sys-
is derived, which follows from the internal dynamics with tem output location. In addition, if a non-homogenous design
y =0, Yt. For this example the zero dynamics turns out to be for the links is admitted, the stability of the internal dynam-

mP(s+1)(2l — 3scosB) 3

= _3meI2sing? - 6(s+1)2(cB + dB). (55)

For analysis the zero dynamics (Exp) is linearized around
its equilibrium points = 0 yielding

mP(2l —3s)[§+6d(s+I)[S’+60(S+I)E=O. (56)
S————— S—— S——

a ai ag

ics also depends on the mass distribution of the links, see the
analysis inSeifried(20120. Then, the mass distribution can
also be designed in such a way that for efieéetor trajectory
tracking stable internal dynamics remain.

The presented analysis and the discussed structural proper-
ties for this small servo-constraint system are representative
for many multibody systems with passive joints and flexible
manipulators in endfgector trajectory tracking. Analysis of



such systems are given e.g.9eifried (2012 andSeifried
et al.(2011), respectively.
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In most cases the inverse model requires a numerical so--
lution, whereby the solution method depends on the previ-
ously analyzed system properties. In the following some ba-
sic numerical solution methods are summarized feden-
tially flat systems, systems with stable internal dynamics and
systems with unstable internal dynamics. For demonstration
purpose these methods are applied to the two presented illus-
trative examples. The following presentation highlights some
solution issues and demonstrates also ffeceof the difer-
ent system properties. However, it is not meant as a full in
depth investigation of numerical time integrators for servo-(2004. Thereby the time derivative§ and v are approx-
constraint problems. imated with their backward fferences ¢, — g,)/At and
(Vns1 — Vn)/At, respectively. Therebyt is the constant inte-
gration time step, such th&t,; =t, + At. With the known
valuesq,, v, at timet,, the solutiong,,, 1, Va+1, Un+1 at time

For differentially flat systems, a purely algebraic inverse . can be obtained from the solution to the set of nonlinear
model can be derived. However, this requires often a 'argealgebraic equations

number of symbolic time-derivations and manipulations of

desired trajectory y p [m]
=
I‘d o

o
[¢)]

o J) )
|

4
time[s]

OO
N

Desired output trajectoryy for massm,.

the output equation and the equations of motion. This might On1— On—AtVnyr = 0 (61)
be possible for small systems, such as in case 4 of the masa(q,,, ;)[Vni1 — Vo] — Ata(Vns1, Gpyg-Unsz) = O (62)
on car system, but for larger systems these symbolic compu- b(v. Unin § -0 63
tations might become very burdensome. Therefore, also for (V12 G2 Un: Yo nc1) (63)
differentially flat systems a numerical solution based on the C(Gns1-Yaner) = 0. (64)
servo-constraint approach might be useful. This schema can also be used for systems with mixed ge-

Due to the tangential realization in underactuateffiedi  ometric and servo-constraints as presentedlajer and
entially flat systems the original servo-constraint formula- Kolodziejczyk(2011).
tion (Egs.8-9) has diferentiation index greater 3. For the  Thijs very basic solution schema is applied to the mass on

numerical solution the use of the projection approach precar system. Mass 2 should follow the output trajectory
sented in Sec.3 might be advantageous, yielding a index

reduction. Then, the set of fiérential-algebraic Eqs18)-  yy=vyo + [126(t ! )5—420(t ! )8 +540(t ! )’
(18) must be solved numerically. For readability these equa- i~To i~l 11—l

tions are summarized as - 315 L)B + 70(L)9](yf ~Yo), (65)
. f—1lo tr—to
a =V (567) whereby starting poingo = 0.5m and finial pointy; = 2.5m
Av = a(v,qu) (58)  are chosen. After reaching the final point at tie- 6s
0 = bv.qu,iy) (59) the output is at rest. The complete simulation time is 10s.
0 = c(ayy) (60) This trajectory is designed in such a way, that also its higher

derivatives are dticiently smooth. The trajectory is shown
The solution of this set of B+ m equations are variations in Fig. 9.

in time of them control inputsu(t) which are required for It is noticed that the original servo-constraint problem has
the exact reproduction of the desired output trajectQy), differentiation index 5, while the projection approach yields
and variations of the Rstateqy(t), v(t) = q(t) in the specified index 3. FigurelO shows the control forcesy computed

motion. with the projection approach and compared to the analytical

Since diferentially flat systems can completely be inverted solution from Eq. 47). This shows, that this rough compu-
algebraically, the output specifies completely the entire mo-tational scheme is of acceptable accuracy for appropriately
tion of the system and Eqs57)—(60) do not contain any in-  small values ofAt. Here, the Euler backward schema yields
ternal dynamics. This allows théfeient use of rather simple nearly identical control inputs as the analytical solution for
solution formulas. A simple numerical solution schema for time sizes 1 ms and 10ms. Only after increasing the time step
solving the DAEs can be based on the Euler backwdfdrdi  size to 100ms significant errors in form of a time delay are
entiation scheme, as proposed Bhajer and Kolodziejczyk  obvious. For diterentially flat systems, the inverse model is
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completly specified by the output. Thus, it can be argued that 8 K \ |
in this case the issue of numerical damping, which for such S oK / \\\ h
a simple discretization schema normally appears, might not o
pose a significant problem here. -02r - R
More accurate time discretization schema can be used for 0 5 4 é 8 10
the solution of the servo-constraint problem afelientially time [s]
flat underactuated multibody systems. Therefore, in E@g.
also the solution obtained byRadau llaschema is added. Mass on car — case 4, flat system: computed states

This method is capable of handling index 3 DAEs, bagrer % G-

and Wannef2010. Hereby an accurate solution is obtained

by using only 56 time points. This compares to 1000—-10 000,. .
points using the Euler backward schema. In literature fur—t'on' Therelby the case of a strongly damped ;ystem with
ther solution methods have been proposed féiedintially d= 1Ns.nT and thg uqdamped syste'm are con5|dereq.

flat servo-constraint problem®&etsch et al.(2007, 2008 By using the prOj_ect!on approach,_lndex L DAES arise for
use a energy conserving schema for solving the projecteﬁe orthogonal realization. As numerical solution schema for

Egs. 67)—(60), whereby redundant coordinates are used. Fo € projected servo-constraint Eq$5X—(_18) fche previou_sly
a differentially flat craneFumagalli et al(2017) propose a presented Euler backward schema with time step size 1ms

solution based on backwardirentiation formula. and 10ms are used. In addition a numerical backward dif-

In Fig. 11the analytical solution for the desired trajectories feren'tlatlon formula is usegl, as |mplemented'|n'the Matlab
: . . I function ode15s seeShampine et al(1999. This is capa-
of the generalized coordinates and its derivatives are show Sle of solving index 1 DAES. Also the coordinate transfor
Since hardly any dierences to the numerical solutions are mat'onsaw rg;ch )s( sed Eeresb the 'nten;al q nams'cs -'s
visible, the presentation of the numerical solutions are omit- . ' ppr IS used. y nter y Ics
ted here. From Figl1, as well as from the control force plot, given explicitly by Eq. 86) a}nd the c_ontrol |np.ut follows
itis seen that the complete system is at rest aftei6 s, indi- :orr:i EQ. EG%GF?I: thl\e/l ntlljn;egcjl5?r?JUIlfr; orfithe |ntder\r,1var1]|i da/-
cating the final position of the output. This is due to the fact. amics (Eq36) the Matlabode egratoris used, c

that for this system the output trajectory specifies the com-> an explicit Runge-Kutta formula of order 4 and 5 using the

plete system behavior and no internal dynamics remain. Thigormand-Prmce pair. . , .
is typical for a diferentially flat system The obtained control forces using thefdrent solution

methods are shown for the damped and undamped case in

Fig. 12. The velocities of the generalized coordinates are

presented in Figl3. Since diterences between the solution

methods are seen best in the control force, the velocity plot
Underactuated multibody systems with stable internal dy-shows only the solution obtained using the coordinate trans-
namics can be solved by forward time integration. There-formation approach.
fore, the same numerical integrators as in the previous dis- Due to the presence of the internal dynamics the output
cussed dferentially flat case might be used. This is demon- does not specify completely the motion of the system. Af-
strated using the mass on car system with an inclination anter the output reaches its final position, it remains at rest.
gle of @ =5°, representing a non-ideal orthogonal realiza- However, the system itself is at tinte= 6s not at rest, as
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seen from the force and velocity plots. The remaining mo-
tion of the system is its zero dynamics. For the case with

d=1Nsnm* an overdamped internal dynamics occurs, asForward time integration of systems with unstable internal
also seen from the eigenvalue plot of the zero dynamics irgynamics yield unbounded states and thus unbounded con-
Fig. 6. Thus, the internal dynamics decays rapidly. In con-tro| inputsug. This does not provide a feasible feedforward
trast for the undamped case strong vibrations occur. Thesgontrol. Therefore the previously presented solution schema
are best visible in the control force plot, whereby vibrations for differentially flat systems and systems with stable internal
of the internal dynamics occur during trajectory tracking asdynamics cannot be used. Compared to the previous cases,
well as after the Output reaches its final pOSition. It Shouldthere are much less approaches for the solution of inverse
be noted, that the eigenfrequency of the internal dynamics i$nodels with unstable internal dynamics.
much higher than the natural frequency of the uncontrolled | the following the so-called stable inversion approach
system, see also Fig. is briefly presented, which is due fdevasia et al(1996.
For the damped case the numerical solutions USing the dIfThIS approach has been so far app“ed for So|ving the in-
ferent methods W|d6|y coincide, which is seen in the uppeérternal dynamics given as ODE, such as aﬁ)(for the or-
plot of Fig.12. In contrast, for the undamped case some cleathogonal realization. Examples are the feedforward control
differences are observed, see the lower plot of EjgHere  design of flexible manipulators, s&eifried et al.(2011).
vibrations occur whose frequency is over 10 times highenyjith this approach bounded trajectorigg ¢, of the inter-
than in the uncontrolled case. These high frequency vibrang| dynamics (Eq25) and thus bounded control inputs
tions of the internal dynamics are numerically damped usingare obtained. However, the solution might be non-causal, i.e.
the Euler backward schema. This yields less accurate conte trajectories depend on future states providing a so-called
trol inputs, deteriorating the performance of the feedforwardpre_actuation phase.
control. However, using the more sophisticated methods, the |n stable inversion it is assumed that the starting and end-
control inputs computed with the projection approach and thqng point of the desired system output trajectggyare equi-
coordinate transformation approach coincide. librium points of the multibody system. Further, it is required
that the corresponding equilibrium points of the internal dy-
namics are hyperbolic such that stable maniftiand un-
stable manifoldW" exist at each equilibrium poinGastry
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Desired output trajectoryy for rotational manipulator. Rotational manipulator arm: computed control inpt

(1999. Any trajectory starting on the stable manifold®
converges to the equilibrium point as time» oo and any
trajectory starting on the unstable manifélf converges to
the equilibrium point as timé¢ — —co. The solution of the —
stable inversion is then formulated as a two-sided bound- =
ary value problem. The boundary conditions are described
by the unstable and stable eigenspaEgsE? at the corre-
sponding equilibrium points, which are local approximations
of the unstable manifol@&/g and stable manifoltV, respec-
tively, Sastry(1999. This yields for the internal dynamics
bounded trajectorieg,, g, which start at time, on the unsta-

ble manifoldWg and reach the stable manifdld at timet;. 0.05
Thus, the initial conditiong,, g, at timeto, cannot exactly

be pre-designated. Therefore, a pre-actuation phase is neces

sary which drives the system along the unstable manifold to Op===zz------""-"7-"-——--—- -
a particular initial conditiorgy,(to), g,(to), while maintaining =
the constant outpugy = y4(to). Also a post-actuation phase <« |
is necessary to drive the internal dynamics along the stable  -0.05} 1
manifold close to its resting position. The two-sided bound- 3

Zzoom

ary value problem must be solved numerically, e.g. by a finite
difference method as proposedTaylor and Li(2002. _0'6

This stable inversion approach is applied to the rotational
manipulator example. Thereby, the system outpshould
follow the trajectory shown in Figld. The system output Rotational manipulator arm: computed trajectory of un-
should be at rest fdr< ty = 1sand > t; = 3s. For 1<t < 3s actuated coordinage:
the output should move forn? @o 270, whereby the trajec-
tory has the same form as E5}.

For the model inversion the internal dynamics is derivedfor 8 as well as the control torquiestart befordg = 1s, which
using the coordinate transformation approach, and is givernindicates the start of the output trajectory. This is best seen
by Eq. £5). Thus for the internal dynamics a second or- in the enlargement ¢f aroundt = 1s, which is also shown in
der diferential equation fo8 arises, which is the unactuated Fig. 16.
coordinate of this manipulator arm. The numerical solution Alternative methods for solving model inversion for sys-
of the stable inversion problem is computed in Matlab us-tems with unstable internal dynamics have been recently pro-
ing the general boundary value sohNmrbe, seeKierzenka  posed for the original servo-constraint formulation (Egs.
and Shamping2008. In Fig. 15the obtained control torque  9). In Seifried et al(2013 the problem is projected numeri-

Ug = T is shown. Figurd 6 presents the trajectory for the un- cally into the unconstrained subspace, from which the inter-
actuated coordinaf@ It is clearly seen that the obtained so- nal dynamics as ODE arises. This is then solved using the
lution for the inverse model is bounded. However, it turns previously described stable inversion method. This approach
out, that the computed solution is non-causal, i.e. trajectoriehas been applied to the feedforward control of a flexible

9 0.95 1 1.05 11



multibody system with a kinematic loop, featuring 18 unac- at least for the orthogonal realization, an ODE formulation.
tuated elastic degrees of freedom which represent the interndlhis coordinate transformation approach is inspired by non-
dynamics. Other solution approaches have been proposetinear control theory. It is especially useful if the servo-
where the servo-constraint problem is reformulated into opti-constraint equations can be solved analytically. For the nu-
mization problems, seioberg and Hanssg2009; Bastos  merical solution of inverse models time integration schemas
etal.(201)). For example, ilBastos et al(2011]) the solution  can be used for tlierentially flat systems or systems with sta-
of the servo-constraint problem is stated as optimal controble internal dynamics. Hereby a variety of time-integration
problem, where the objective function is the minimization of schema for DAEs or ODEs can be used. For the projection
the trajectories of internal dynamics. Thus a bounded soluapproach a simple Euler-backwarddtelientiation schema
tion can be obtained. The stated problem is then solved bynight be used. This provides accurate results for flat systems.
standard optimal control algorithms using a direct colloca-In contrast, it might provide only rough accuracy for systems
tion method. with internal dynamics, which is due to errors induced by nu-

merical damping. In this case more sophisticated numerical

methods must be used.

For systems with unstable internal dynamics forward time

integration cannot be used to compute a meaningful feed-
The servo-constraint approach is afficéent and straight- forward control. Therefore, the problem can be reformulate
forward way for deriving inverse models of underactuatedinto a boundary value problem, which must be solvétire.
multibody systems, yielding firstly a set of DAESs. In the This provides then a bounded but non-causal solution for the
servo-constraint approach the control inputs are used to meetontrol inputs and the trajectories of all states.
the imposed servo-constraints. In the case of an orthogonal
realization the control forces can directly regulate the con-

straint manifold, which is defined by the servo constraint. German Research Foundation (DFG) for financial support of the

This provides a DAE system \,N'th_ féerentiation index 3. project within the Cluster of Excellence in Simulation Technology
In contrast for a tangential realization the control forces caneyc 3101) at the University of Stuttgart.

only regulate the constraint manifold indirectly, yielding in-

dex larger 3. For the orthogonal realization of underactuated:dited by: A. Tasora

multibody systems internal dynamics remain in the inverseReviewed by: two anonymous referees

model. For a tangential realization, depending on the system

parameters, internal dynamics might or might not exist. In

the latter case the complete motion of the system is specified

by the system output and a finite number of its derivatives.Bajodah, A., Hodges, H., and Chen, Y.-H.: Inverse Dynamics of
Such a system is calledftirentially flat. In this paper it is Servo-Constraints Based on the Generalized Inverse, Nonlinear
demonstrated that thesefféirent system properties, i.e. the ~ Dynam., 39, 179-196, 2005.

existence of internal dynamics, m|ght be Changed by alterBastos, G., Seifried, R., and #ls, O.: Inverse Dynamics of Under-
ing some system parameters. For the presented mass-spring-actuated Multibody Systems using a DAE Optimal Control Ap-
damper system on a car these system parameters are the in_proa_ch, in: Procee_dmgs of the_ECCOMAS 'I_'hematlc Conft_erence
clination angle and the damping parameter. Multibody Dynamics 2011, edited by: Samin, J. C. and Fisette,

. . . . P., Brussels, Belgium, 4—7 July 2011.
In order to obtain a meaningful solution theséfetient Betsch, P., Uhlar, S., and Quasem, M.: On the Incorporation of

system pr‘?pe”'?s must be 'nV_eSt'gated' Especially t_he inter- Servo Constraints into a Rotationless Formulation of Flexible
nal dynamics might be very ierent form the dynamics of  \yitibody Dynamics, in: Proceedings of the ECCOMAS The-
the system without servo-constraint. In the extreme case the matic Conference Multibody Dynamics, Milano, Italy, 2007.
internal dynamics might be unstable. The stability of the in- Betsch, P., Uhlar, S., and Quasem, M.: Numerical Integration of
ternal dynamics depends on physical system parameters and Discrete Mechanical Systems with Mixed Holonomic and Con-
the selected system output. For example, the presented casetrol Constraints, in: Proceedings of the 4th Asian Conference on
of a passive joint manipulator shows, that the stability of the Multibody Dynamics, Jeju, Korea, 2008.

internal dynamics changes, if the output location is altered Blajer, W.: Index of Diferential-Algebraic Equations Governing
Here, using the endector position of the manipulator as the Dynamics of Constraint Mechanical Systems, Appl. Math.
system output yields unstable internal dynamics. This can. Model 16,70-77, 1992.

also be observed for many manipulators with flexible links rblajer’ W:: A Geometric Unification of Constrained System Dy-
y P : namics, Multibody Syst. Dyn., 1, 3-21, 1997a.

In th!S paper th formulations have t_)een presented for _theBIajer, W.: Dynamics and Control of Mechanical Systems in Partly
analysis and solution of servo-constraint problems. The first Specified Motion, J. Frankl. Inst., 334B, 407426, 1997b.

approach is a projection approach which yields a DAE for- jajer, W.: A Geometric Interpretation and Uniform Matrix Formu-
mulation with reduced dlierentiation index. The second ap-  lation for Multibody System Dynamics, ZAMM, 81, 247—259,
proach is a coordinate transformation approach which yields, 2001.
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