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Abstract. Underactuated multibody systems have fewer control inputs than degrees of freedom. In trajec-
tory tracking control of such systems an accurate and efficient feedforward control is often necessary. For
multibody systems feedforward control by model inversion can be designed using servo-constraints. So far
servo-constraints have been mostly applied to differentially flat underactuated mechanical systems. Differen-
tially flat systems can be inverted purely by algebraic manipulations and using a finite number of differenti-
ations of the desired output trajectory. However, such algebraic solutions are often hard to find and therefore
the servo-constraint approach provides an efficient and practical solution method. Recently first results on
servo-constraint problems of non-flat underactuated multibody systems have been reported. Hereby additional
dynamics arise, so-called internal dynamics, yielding a dynamical system as inverse model. In this paper the
servo-constraint problem is analyzed for both, differentially flat and non-flat systems. Different arising impor-
tant phenomena are demonstrated using two illustrative examples. Also strategies for the numerical solution of
servo-constraint problems are discussed.

1 Introduction

Multibody systems with fewer control inputs than degrees
of freedom are called underactuated. Typical examples are
multibody systems with passive joints, body flexibility, joint
elasticities, aircrafts and cranes. A possible performance task
of such systems is output trajectory tracking, e.g. tracking of
the end-effector point of flexible manipulators. In order to
obtain a good performance in trajectory tracking an accurate
and efficient feedforward control is often necessary, which
then can be combined with a feedback controller. A feed-
forward control is an inverse model of the multibody sys-
tem, providing the necessary control inputs for exact output
reproduction. Depending on the system’s properties the in-
verse model might be purely algebraic or might contain a
dynamical part. While there is a large amount of various lin-
ear and nonlinear feedback control strategies available, there
exist much less concepts for feedforward control design of
nonlinear systems.

A very appealing and efficient feedforward control de-
sign approach for multibody systems is the use of so-
called servo-constraints, which are also called programm
constraints or control constraints, seeBlajer (1992); Camp-
bell (1995); Kirgetov (1967); Rosen(1999); Bajodah et al.
(2005). Thereby the equations of motion of the underactuated
multibody system are supplemented by a servo-constraint,
which enforces the exact reproduction of the desired output
trajectory. This yields as set of differential-algebraic equa-
tions (DAEs), whose solution provides the searched control
input. Due to some similarities to classical constraints, servo-
constraint problems have recently been attracted increasing
attention in the multibody system dynamics context.

The servo-constraint approach is often applied to so-
called differentially flat underactuated mechanical systems,
such as cranes, aircrafts and mass-spring chains, as inves-
tigated in Betsch et al.(2008); Blajer and Kolodziejczyk
(2004, 2007, 2011); Fumagalli et al.(2011). The theory
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of differential flatness is a differential algebraic approach,
which is due to the fundamental work ofFliess et al.(1995).
Differential flatness is a structural property, which is de-
termined by the system and the imposed system output.
Roughly speaking, in a differentially flat system a system
output can be found, from which all states and inputs can
be determined without integration. However, a finite number
of derivatives of the output might have to be taken. Differen-
tially flat nonlinear systems can be seen as a generalization
of linear controllable systems, as discussed byRothfuss et al.
(1997). These systems have the favorable property that they
can be inverted purely by algebraic manipulations and us-
ing a finite number of differentiations of the system output.
However, such algebraic solutions are often hard to find and
therefore the servo-constraint approach provides an efficient
and practical solution method for model inversion. An exten-
sion of this servo-constraint approach is its use in feedback
linearization, where the model is formulated in redundant co-
ordinates, seeFrye and Fabien(2011).

More recently also first results on the application of servo-
constraints to non-flat systems, such as, e.g. flexible manip-
ulators or systems with passive joints, have been reported,
seeSeifried (2012a); Moberg and Hanssen(2007); Kovács
et al.(2011); Masarati et al.(2011). In the inverse model of
non-flat systems additional dynamics arise, so-called inter-
nal dynamics. Thus the inverse model is a dynamical model.
This internal dynamics of the inverse model might be stable
or unstable. Therefore it must be analyzed carefully in or-
der to obtain a meaningful solution and is treated extensively
in differential-geometric nonlinear control theory, seeIsidori
(1995); Sastry(1999).

In this paper the servo-constraint problem is analyzed for
both, flat and non-flat systems. Two approaches for ana-
lyzing and solving the servo-constraint problem are taken.
These are a projection approach and a coordinate transfor-
mation approach. The projection approach is due toBlajer
and Kolodziejczyk(2004, 2007). It allows a straightforward
formulation of the servo-constraint problem and simplifies
significantly the numerical solution of the arising DAEs. This
method has also been applied to differentially flat multibody
systems with mixed geometric and servo-constraints as re-
ported byBetsch et al.(2008) andBlajer and Kolodziejczyk
(2011). In the coordinate transformation approach the servo-
constraint problem is reformulated in new coordinates con-
taining the output. In this way a DAE formulation might be
avoided, which significantly simplifies the analysis of the
servo-constraint system dynamics. The equivalence of both
approaches is discussed inSeifried(2012a). In this paper a
slightly different formulation of the coordinate transforma-
tion approach is used, see alsoBlajer and Seifried(2012);
Blajer et al.(2013). Based on both formulations of the servo-
constraint problem, the various possible situations which can
occur in servo-constraint problems are demonstrated. There-
fore two illustrative examples are used. These are a mass-
spring-damper system on a car and a rotational manipulator

arm with passive joint. Finally some remarks on the numeri-
cal solution of servo-constraint problems are given. The nu-
merical solution methods depend strongly on the previously
analyzed system properties.

2 Trajectory tracking of underactuated multibody
systems

Multibody systems withf degrees of freedom andm con-
trol inputs are considered. For underactuated multibody sys-
tems it is imperativem< f . The kinematics of multibody sys-
tems is described using generalized coordinatesq ∈ R f . The
control inputsu ∈ Rm are assumed to be control forces and
torques. Based on d’Alembert’s principle the equations of
motion in minimal form can be derived using the Newton-
Euler-Formalism, see e.g.Schiehlen et al.(2006). The non-
linear equations of motion are given by,

M(q)q̈+ f (q, q̇) = B(q)u, (1)

where M ∈ R f× f is the symmetrical and positive definite
mass matrix andf ∈ R f summarizes all generalized forces.
These generalized forces are given byf = k− g, whereby
k is the vector of generalized gyroscopic, centrifugal and
Coriolis forces andg are all applied forces such as gravity.
The system inputsu ∈ Rm are distributed by the input matrix
B ∈ R f×m on the directions of the generalized coordinates.
Generally it is assumed that there is no redundant actuation
and thus the rank ofB equalsm. It is often useful to partition
the equations of motion of underactuated multibody systems
in actuated and unactuated parts,[

Maa(q) Mau(q)
MT

au(q) Muu(q)

] [
q̈a
q̈u

]
+

[
f a(q, q̇)
f u(q, q̇)

]
=

[
Ba(q)
Bu(q)

]
u. (2)

Thereby qa ∈ R
m are the actuated generalized coordinates

andqu ∈ R
f−m are the unactuated coordinates. This partition

is based on the requirement that the rank of the submatrix
Ba ∈ R

m×m equalsm. In many instances, e.g. passive joint
manipulators or flexible multibody systems, the input sub-
matrices might reduce toBa = I and Bu = 0, whereI is the
identity matrix. In this case each generalized coordinate of
qa is directly collocated with one component of inputu.

2.1 Output trajectory tracking control

The control task which is considered in this paper is output
trajectory tracking. Thereby, a system outputy ∈ Rm of the
multibody system is given by

y= h(q). (3)

This system output can depend linearly or nonlinearly on all
generalized coordinates. A typical example for such a sys-
tem output is an end-effector position of a manipulator. The
dimension of input and output coincide, an assumption often
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Figure 1. Control structure with feedforward and feedback con-
troller.

required in nonlinear control theory. The velocity and accel-
eration of the system output follow as

ẏ = H(q)q̇, (4)

ÿ = H(q)q̈+ h(q, q̇). (5)

TherebyH ∈ Rm× f is the Jacobian matrix of the system out-
put andh = Ḣ q̇ ∈ Rm. In trajectory tracking the system out-
put (Eq. 3) should track exactly a time-variant output tra-
jectory yd(t), which is defined in space and time. Thus also
velocity ẏd(t) and acceleration̈yd(t) of the system output are
specified.

Multibody systems in output trajectory tracking perform
often large working motion. Thus, the equations of mo-
tion (Eq.1) are highly nonlinear and in many instances lin-
ear control theory cannot be applied. An efficient approach of
output trajectory tracking of nonlinear systems is a so-called
two design degree-of-freedom control structure, consisting
of a feedforward control and an additional feedback con-
trol, see Fig.1. Thereby the feedforward control is an inverse
model of the multibody system. It provides for a given output
trajectoryyd(t) the associated control inputsud and the tra-
jectoriesqd of all generalized coordinates. In the absence of
any uncertainties and disturbances the control inputud can be
applied to the multibody system and reproduces the desired
output trajectory exactly. Since in a real hardware implemen-
tation always some parameter uncertainties and disturbances
arise, additional feedback control is necessary and provides
additional control inputuc. For feedback control design the
computed trajectoriesqd of the generalized coordinates can
be used as reference signal. In trajectory tracking the most
control action is provided by the feedforward part and the
feedback part has to compensate only small derivations fol-
lowing from uncertainties and disturbances. Therefore, often
simple linear control strategies such as PID control might be
applicative for the feedback part.

For fully actuated multibody systems, such as fully ac-
tuated manipulators, it isf =m. Then, the inverse model
can be derived easily by pure algebraic manipulations, see
e.g.Spong et al.(2006). In this case the inverse model can be
split into inverse kinematics and inverse dynamics. In inverse

kinematics of a fully actuated system the nonlinear output
equation (Eq.3) can be solved, providing for givenyd the
trajectoriesqd of the generalized coordinates. This can be
achieved by algebraic manipulations, numerical solution or
differential kinematics, respectively. For details it is pointed
to Siciliano et al.(2010). By using the determinedqd and
its derivativesq̇d, q̈d in the equations of motion (Eq.1) the
control inputsud can be computed algebraically.

For underactuated multibody systems the inverse kinemat-
ics following from Eq. (3) is under-determined. Also the in-
verse dynamics problem cannot be solved since the input ma-
trix B is not invertible. Thus, for underactuated multibody
systems the splitting of the model inversion into inverse kine-
matics and inverse dynamics is in general not possible and
both parts must be be solved concurrently. For differentially
flat underactuated multibody systems a purely algebraic in-
verse model can be derived, using a finite number of deriva-
tives of the system outputy. In contrast, for non-flat systems
the inverse model is a dynamical system. Flatness is a system
property determined by the system dynamics and the chosen
output, but is independent of the used coordinates to describe
the multibody system.

2.2 Servo-constraints in multibody systems

An efficient and straightforward approach for model inver-
sion is the use of servo-constraints. The basic idea of servo-
constraints is the enforcement of output trajectory tracking
by introducing constraint equations. These servo-constraints
can be seen as an extension of classical geometric con-
straints, which makes this approach so appealing in multi-
body system dynamics. In order to introduce the concept of
servo-constraints, classical constraints are briefly reviewed.
For example, consider a multibody system with a kinematic
loop, see Fig.2. In order to obtain its equation of motion
the kinematic loop is cut at a suitable joint, removingn con-
straints. Then, the corresponding equations of motion of the
open chain system are derived in minimal form and the kine-
matic loop is enforced by introducing algebraic loop closing
constraintscc(q, t) = 0 ∈ Rn. Restricting to a multibody sys-
tem without control action, the equations of motion of the
open chain system yields together with the constraint equa-
tions,

M(q)q̈+ f (q, q̇) = CTλ, (6)

cc(q) = 0. (7)

TherebyC= ∂cc/∂q ∈ R f×n is the Jacobian matrix of the
constraint equation andλ ∈ Rn are the Lagrangian multipli-
ers. These ensure that the loop closing constraints are met.
Equations (6)–(7) form a set of differential algebraic equa-
tions (DAE). The numerical solution of the DAE provides
the forward dynamics of the closed loop multibody system
with trajectories of the statesq, q̇ and the Lagrangian multi-
pliersλ.
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Figure 2. Multibody systems with constraints.

In order to derive an inverse model for underactuated
multibody systems a similar approach can be used. The prob-
lem of tracking a desired trajectoryyd is induced by introduc-
ing m algebraic servo-constraints. The inverse model of an
underactuated multibody systems is then given by the equa-
tions motion (Eq.1) and the servo-constraints,

M(q)q̈+ f (q, q̇) = B(q)u, (8)

c(q, t) = h(q)− yd(t) = 0, (9)

where Eq. (9) represents the servo-constraint. As noticed
by Blajer (1997a); Blajer and Kolodziejczyk(2004, 2007)
the servo-constraint problem Eqs. (8)–(9) is mathematically
equivalent to Eqs. (6)–(7). Thereby the desired trajectory
yd(t) can be interpreted as a drift in time of constraint man-
ifold c(q) = 0 in the system configuration space, seeBla-
jer (2001). The generalized actuating forcesBu can then be
viewed as a generalized reaction forces of the servo con-
straints. Thus, structurally the generalized actuation forces
Bu corresponds to the generalized reaction forcesCTλ.
Therefore, in the servo-constraint approach the control inputs
u ensure that the servo-constraints are met. The similarities
between both cases are illustrated in Fig.2.

At first, multibody systems with servo- and physical con-
straints show many similarities. However, servo-constraint
problems can posses more complex properties, which have to
be understood to obtain a meaningful solution. For a multi-

body system with classical constraints the matrixCT projects
the Lagrange multipliersλ on the directions orthogonal to the
constraint manifold, which is defined by the constraint equa-
tion (Eq. 7). Thus, the generalized reaction forcesCTλ are
orthogonal to the constraint manifold, see Fig.3. Therefore
such a system is called an ideal orthogonal realization.

In contrast, the generalized actuation forcesBu are not
necessarily ideal orthogonal to the constraint manifold which
is defined by the servo-constraint (Eq.9). The actuation
forcesBu might be non-ideal orthogonal or in the extreme
case even tangential to the constraint manifold, see Fig.3.
These cases are called non-ideal orthogonal realization and
tangential realization, respectively. Thereby, ideal and non-
ideal orthogonal realization have many similarities, and are
in the following only distinguished, if different phenomena
occur. In the case of both types of orthogonal realization con-
trol inputs are explicitly available in all directions orthogonal
to the servo-constraints and can directly actuate the servo-
constraint condition. However, in the case of non-ideal or-
thogonal realization the projection withB yields also compo-
nents in direction tangential to the constraint manifold. In a
tangential realization the control inputs are projected in tan-
gential direction. Then, the control inputsu cannot actuate
directly the constraint condition, but output tracking ofyd

might be still possible due to coupling with other forces of
the system, seeBlajer and Kolodziejczyk(2004). This tan-
gential projection is often connected to underactuated differ-
entially flat systems. However, as will be shown in section3
tangential realization can also arise in non-flat systems. Fur-
ther analysis from a geometric point of view are also found
in Blajer(1992), Blajer and Kolodziejczyk(2004) and Blajer
and Kolodziejczyk(2007).

For systems with multiple inputs and outputs it might oc-
cur that both, orthogonal (ideal or non-ideal) and tangen-
tial realization exist. Thus, in so-called mixed orthogonal-
tangential realizations only some outputs can be directly in-
fluenced by the inputs, while others can only be influenced
indirectly. A measure of the control singularity is the defi-
ciency in rankp of the matrix

P= HM −1B. (10)

The casep=m indicates that all components of the system
output y can directly be actuated by the inputsu. The case
0< p<mshows that onlyp components of the output can be
regulated in the orthogonal way, while realization of the other
m− p output components are without direct involvement of
the actuating forcesBu. Finally, p= 0 refers to a pure tan-
gential realization of servo-constraints, as the system inputs
do not directly influence the outputs.

If the solution of the servo constraint problem (Eqs.8–9)
exists, the numerical solution of this DAE provides the trajec-
tories of all statesqd, q̇d as well as the corresponding control
inputsud. For characterizing DAEs often the differentiation
index is used. FollowingHairer and Wanner(2010) the dif-
ferentiation index is the number of derivatives of the DAE,
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Figure 3. Possible realizations in servo-constraint problems.

or parts of it, until an ordinary differential equation (ODE)
for all unknowns are obtained. For multibody systems with
classical constraints it is well know that they have differen-
tiation index 3. Here the constraint equation (Eq.7) must be
differentiated three times in order to derive an ODE for the
unknownλ. This is provided by the fact that for classical con-
straints the matrix (Eq.10) becomesP= CM−1CT , which
has full rank if the constraints are independent, seeHairer
and Wanner(2010).

In the case of servo-constraints this is not any more nec-
essarily true. In the case of orthogonal realizationsP has
full rank and index 3 arises. However, if the servo-constraint
problem includes a tangential realizationP is singular and
higher differentiation index arise. For various mechanical
systems with servo-constraints the differentiation index is an-
alyzed inCampbell(1995).

The differentiation index is closely related to the relative
degree used in differential geometric nonlinear control the-
ory. An extensive treatment of this nonlinear control theory
is given inIsidori (1995); Sastry(1999). Restricting to sys-
tems withn states and one input and one output, the relative
degreer is the number of Lie derivatives of the system output

until the first time the control input occurs. If the relative de-
gree isr = n, then the system is differentially flat and a purely
algebraic inverse model can be extracted. In the caser < n so-
called internal dynamics remain and the inverse model will
contain a dynamical part. For extension to systems with mul-
tiple inputs and outputs it is pointed to the aforementioned
nonlinear control literature. InCampbell(1995) it is pointed
out that the differentiation index is one higher than the rel-
ative degree, if the internal dynamics are not affected by a
constraint.

2.3 Projection approach

In Blajer(1997a) it is shown that the equation of motion with
additional constraints can be projected into two complemen-
tary subspaces in velocity space. These are the constrained
and unconstrained subspace. The unconstrained subspace is
tangential to the constraint manifold, while the constrained
subspace is orthogonal to it, see Fig.3. The constrained sub-
space describes in the servo-constraint context the output
subspace and follows from projection with the Jacobian ma-
trix H ∈ Rm× f of the output, which has rankm. For the second
subspace an orthogonal complementD ∈ R f× f−m with rank
f −m must be derived, such that

HD = 0 and DT HT = 0 (11)

is satisfied. Using these two matrices the equations of motion
are projected into the two subspaces,

[ HM −1

DT

](
Mq̈+ f − Bu

)
= 0, (12)

which yields,

Hq̈+ HM −1 f = HM −1Bu, (13)

DT Mq̈+ DT f = DT Bu. (14)

With the output equation (Eq.5) at acceleration level the cor-
responding servo-constraint providesHq̈= ÿd− h. This rela-
tionship can be used in Eq. (13). Introducing the new state
v= q̇ and adding the servo-constraints at position level, after
reordering the projected servo-constraint formulation, pro-
vides

q̇ = v (15)

DT Mv̇ = −DT f + DT Bu (16)

0 = Pu− HM −1 f + h− ÿd (17)

0 = h(q)− yd. (18)

This forms a set of 2f +mdifferential-algebraic equations for
the 2f +m unknownsq,v,u. Equation (17) has dimensionm
and describes an algebraic equation inq,v,u. Together with
themservo-constraints (Eq.18) there are 2malgebraic equa-
tions in these DAEs. By this projection and incorporating the
servo-constraint at acceleration level, an index reduction by
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two is achieved, which in general simplifies the numerical
solution. For example, for the crane considered inBlajer and
Kolodziejczyk(2004, 2007), the differentiation index is re-
duced from 5 to 3 using this projection approach.

2.4 Coordinate transformation

The numerical solution of Eqs. (15)–(18) provides the model
inversion. However, for analysis purpose it might be of ad-
vantage to write first the equations of motion in a new set
of coordinates containing the system output. In addition, this
might also be used to simplify the projections in Eqs. (15)–
(18). Also for systems with orthogonal realization an inverse
model as ODE can be derived in a straightforward way. For
example, as new set of coordinates

q=
[ y

qu

]
=
[ h(qa,qu)

qu

]
= φ(q) (19)

might be used, which yields for the velocities

q̇=
[ ẏ

q̇u

]
=
[ Ha Hu

0 I

][ q̇a
q̇u

]
=
∂φ(q)
∂q

q̇. (20)

It is noted that the first row of Eq. (20) is identical to Eq. (4),
i.e. H = [Ha Hu]. In order to be an admissible coordinate
transformation, it must be a diffeomorphism, i.e. smooth and
invertible. Relationship (Eq.19) is at least a local diffeomor-
phism if the Jacobian matrix in Eq. (19) is non-singular. In-
specting Eq. (19) shows, that this is true if the submatrixHa

is nonsingular. This requires that the output equation (Eq.3)
depends on allmactuated coordinatesqa. This is for example
the case for manipulators with flexible links or passive joints
in end-effector tracking. A counterexample is a manipulator
with flexible joints in end-effector tracking, see e.g.De Luca
(1998).

With the results of Eq. (5) the coordinate transforma-
tion (Eq.19) at acceleration level is,

q̈=
[ ÿ

q̈u

]
=
[ Ha Hu

0 I

][ q̈a
q̈u

]
+
[ h

0

]
. (21)

From the equations of motion (Eq.1) follows q̈= M−1(Bu−
f ) which can be inserted in Eq. (21) and yields

ÿ = Pu− HM −1 f + h, (22)

q̈u =
[
0
... I
]
M−1(Bu− f ). (23)

In all entries of these two equations the original statesqa, q̇a
must be replaced by the new statesy, ẏ. Therefore the upper
part of Eq. (19) must be solved forqa, which is in general
nonlinear. Afterwards the velocitiesq̇a can be computed from
the linear equations provided by Eq. (20).

The two second order differential Eqs. (22)–(23) represent
the equations of motion of the multibody system expressed
in the new coordinatesq, which include the system outputy.

The equations of motion (Eqs.22–23) can be helpful in ana-
lyzing both, orthogonal and tangential realization, as will be
seen in the next subsection.

The coordinate transformation approach is inspired by
differential-geometric control theory, which is the basis of
feedback linearization and can also be used for feedforward
control design, seeIsidori (1995); Sastry(1999). Thereby,
nonlinear systems are transformed by diffeomorphic coor-
dinate transformations into the so-called nonlinear input-
output normal form using new states, containing the output
and a finite number of its time derivatives. The application of
this nonlinear control theory to underactuated multibody sys-
tems in orthogonal realization is given inSeifried(2012a,b).

The following short discussion highlights some correspon-
dence of the servo-constraint approach with aforementioned
nonlinear control theory for underactuated multibody sys-
tems in orthogonal realization. In this case, the equations
of motion (Eqs.22–23) in new coordinatesq are identi-
cal to the nonlinear input-output normal form. The matrix
P= HM −1B is called decoupling matrix in nonlinear control
theory. Equation (22) links the inputu to the second deriva-
tive of the outpuẗy, describing the input-output relationship.
Equation (23) is called in nonlinear control theory the inter-
nal dynamics. This is the remaining system dynamics of the
inverse model. From this input-output normal form feedback
linearization and feedforward control design are easily pos-
sible. For a desired output trajectoryyd the necessary control
input follows from Eq. (22) as

ud = P−1(HM −1 f − h+ ÿd). (24)

It is noticed that this is structurally identical to Eq. (17),
however expressed in terms of the new coordinates. Equa-
tion (24) is an algebraic expression for the input, depending
solely on the known valuesyd, ẏd and the unknownsqu, q̇u.
The later ones follow from solving the internal dynamics by
applying Eq. (24) to the ODE Eq. (23), resulting in

q̈u =
[
0
... I
]
M−1[BP−1(HM −1 f − h+ ÿd)− f ],

= a(qu, q̇u, yd, ẏd, ÿd). (25)

These aref −m second order differential equations forqu,
driven by the desired outputyd and its derivativeṡyd, ÿd.

3 Illustrative example 1: mass on car

The different phenomena which might arise in servo-
constraint problems of underactuated multibody systems are
demonstrated using a spring-mass system mounted on a car,
which is shown in Fig.4. The car with massm1 moves along
the horizontale1 axis and is actuated by the forceu= F. On
the car a massm2 is mounted, which moves along an axis
which is inclined by the angleα. The system is described
by the two generalized coordinatesq= [x, s], wherebyx is
the horizontal car position ands the relative position of the
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Figure 4. Mass on car system.

mass along the inclined axis. Thereby,qa = x is the actu-
ated coordinate andqu = s is the unactuated coordinate. The
mass is supported by a parallel spring-damper combination,
with spring and damping coefficientsk, d, respectively. In the
equilibrium position it iss= 0. This yields the equations of
motion[

m1+m2 m2 cosα
m2 cosα m2

] [
ẍ
s̈

]
+

[
0

ks+dṡ

]
=

[
F
0

]
. (26)

The system output is the horizontal position of the mass,

y= x+ scosα, (27)

which should follow a predefined trajectoryyd(t). This yields
the servo constraint

c(q, t) = x+ scosα− yd(t). (28)

Equations (26) and (28) form the servo-constrained problem.
From Eq. (28) follow the two projection matrices,

H =
[

1 cosα
]
, D =

[
cosα
−1

]
. (29)

With these matrices the projected Eqs. (15)–(18) of the servo-
constraint problem can be computed. Thereby it follows
from Eq. (18)

P= HM −1B =
sin2α

m1+m2 sin2α
. (30)

It becomes apparent that this matrix is nonsingular forα , 0,
i.e. it poses an orthogonal realization. However forα = 0 a
tangential realization occurs.

In order to analyze this servo-constraint problem in more
detail, the coordinate transformation approach presented
in Sect.2.4 is applied. The new set of coordinates contain-
ing the output are chosen asq= [y, s]. The system dynamics
in new coordinates follows from evaluating Eqs. (22)–(23),

ÿ= −
m1 cosα[ks+dṡ]

m1m2+m2
2 sin2α

+
sin2α

m1+m2 sin2α
F, (31)

s̈= −
(m1+m2)[ks+dṡ]

m1m2+m2
2 sin2α

−
cosα

m1+m2 sin2α
F. (32)

Based on this description of the system dynamics different
occurring phenomena are discussed, whereby four different
cases are distinct.

Case 1:the relative motion of the mass occurs in vertical di-
rection, i.e.α = 90◦, see Fig5a. In this case the system output
is identical to the car positiony= x and (Eq.30) reduces to
P= (m1+m2)−1 , 0. Thus, the equations of motion Eq. (26)
and Eqs. (31)–(32) coincide and provide

(m1+m2)ÿ = F (33)

m2s̈ = −ks−dṡ. (34)

Both equations are here fully decoupled. The forceF is
orthogonal to the constraint manifold, which is described by
the servo-constraint (Eq.28), see Fig.5a. This is identical
to classical geometric constraints and the control force
regulates directly the output. The control action which
is necessary to reproduce the output trajectory follows
from Eq. (33) as Fd = (m1+m2)ÿd. The dynamics of the
mass in vertical direction is described by Eq. (34) and is
not influenced by the control force and vice versa. This
dynamics of the mass cannot be observed by the system
outputy and thus in reference to nonlinear control theory this
dynamics (Eq.34) is called internal dynamics, seeIsidori
(1995) andSastry(1999).

Case 2: the mass moves along a tilted slope with
0◦ < α < 90◦, see Fig.5b. The system dynamics in new
coordinates are given by Eqs. (31)–(32) and from Eq. (30)
follows P, 0. This indicates a non-ideal orthogonal real-
ization since the control force has an orthogonal component
to the constraint manifold. The control forceF can still
regulate directly the constraint condition, however it also has
a component in tangential direction influencing the relative
motion of the mass, see Fig.5b.

For a given output trajectoryyd Eq. (31) can be solved
algebraically for the desired control input,

Fd =
m1+m2 sin2α

sin2α
ÿd +

m1 cosα[ks+dṡ]

m2 sin2α
. (35)

The control input depends on the second derivative of the
system output ¨yd and the unknown statess, ṡ which must be
computed from Eq. (32). Replacing in Eq. (32) the control
input by Eq. (35) yields after reordering

m2 sin2αs̈+dṡ+ ks= −ÿdm2 cosα. (36)

This is the dynamics of the massm2 on the tilted slope
under the applied trajectory tracking control forceF. In
accordance to nonlinear control theory it forms again the
internal dynamics. The control forceF, and thus the system
output y, influence the internal dynamics, while internal
dynamics again influence the control forceF. In this case
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Figure 5. Possible situations arising in servo-constraint problems.

the internal dynamics is a second order differential equation,
which is driven by the second derivative of the desired
system output trajectoryyd.

Case 3: the mass moves in horizontal direction, i.e.
α = 0◦, see Fig.5c. For this case the equations of motion in
new coordinate follow from Eqs. (31)–(32) after reordering
as

m2ÿ= −ks−dṡ, (37)

m1m2s̈= −(m1+m2)[ks+dṡ] −m2F. (38)

In addition, it follows from Eq. (30) thatP= 0. This indicates
a tangential realization, where the control forceF is tangen-
tial to the constraint manifold, see Fig.5c. ThusF cannot
directly regulate the servo-constraint, i.e. the system output
y. This is also seen from Eq. (37), which contains ¨y, but not
any more the control inputF. However, output tracking ofy
is still possible due to coupling with other forces of the sys-
tem, here the spring force and damper force.

For tracking of the desired output trajectoryyd, the neces-
sary control input can be computed form Eq. (38) as

Fd = −
(m1+m2)

m2
[ks+dṡ] −m1s̈. (39)

Firstly, the values ofs, ṡ, s̈ are unknown. For givenyd these
can be computed from Eq. (37) as,

ks+dṡ= −m2ÿd. (40)

This is a differential equation fors and poses in this case the
internal dynamics. In contrast to the previous two cases, the
internal dynamics is here a first order differential equation.
For givenÿd the solution of the internal dynamics Eq. (40)

provides the corresponding valuessd. Then, the values ˙sd fol-
low directly form the algebraic solution of Eq. (40) as

ṡd = −
ksd

d
−

m2

d
ÿd. (41)

Taking one time-derivative of Eq. (41) yields an algebraic
expression for ¨sd,

s̈d = −
k
d

ṡd −
m2

d
y(III)

d . (42)

Thus, all quantities for evaluating the control forceF
using Eq. (39) are available. The last equation shows, that in
contrast to the previous two cases the third derivative of the
desired output trajectoryyd must be available.

Case 4: the mass moves in horizontal direction and no
damping is present, i.e.α = 0◦ and d = 0. Similar to case
3 a tangential realization exists sinceP= 0, and the same
interpretations apply. The equations of motion in new
coordinates simplifies to

m2ÿ= −ks, (43)

m1m2s̈= −(m1+m2)ks−m2F. (44)

Similarly to case 3, the control forceFd can be computed al-
gebraically form Eq. (44), wheres, s̈ are unknowns. In con-
trast to case 3 Eq. (43) is now an algebraic expression for
computingsd for given ÿd,

sd = −
m2

k
ÿd. (45)

Taking two time-derivatives of Eq. (45) yields

s̈d = −
m2

k
y(IV)

d . (46)
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The last equation shows, that in this case the forth derivative
of the output trajectory is necessary. Combing Eqs. (44)–(46)
yields the control force

Fd = (m1+m2)ÿd +
m1m2

k
y(IV)

d . (47)

Thus, in this case the control inputud and all states
yd, ẏd, sd, ṡd of the system can be computed by purely
algebraic manipulations, without the need of solving any
differential equations. Thus, since all these quantities are
specified by the system outputy and its four time-derivatives,
this case poses a differentially flat system.

Summary and comparison of cases:the servo-constraint
problem for this illustrative example has been analyzed using
the coordinate transformation approach. Of course, also the
DAEs (Eqs.8–9) or the projected DAEs (Eqs.15–18) can
be established. Thereby, the previous analysis can be used
to analyze the differentiation index. In accordance with the
discussion at the end of Sect.2.2 it can be obtained that the
differentiation index of the original DAEs (Eqs.8–9) is one
higher than the highest derivative of the system outputy
which is necessary to compute the control forceF.

The cases 1 and 2 are orthogonal realizations and therefore
provide DAEs with differentiation index 3, similar to systems
with geometric constraints. This is irrespectively of the exis-
tence of damping in the system. The dynamics along the con-
straint manifold is not specified by the output, which forms
the internal dynamics. Thus, these are two differentially non-
flat mechanical systems. These cases 3 and 4, with tangential
realizations, yield higher differentiation index, which is de-
pendent on the existence of damping. In case 3, where damp-
ing is present, the system has index 4. Internal dynamics re-
main, which in this case is a dynamical system of first order.
Thus this example with damping poses a tangential realiza-
tion for a differentially non-flat system. In case 4 no damping
exists and differentiation index 5 arises. Then, the complete
motion is specified by the trajectory of the outputy and its
time-derivatives. No internal dynamics remains and this tan-
gential realization represents the case of a differentially flat
underactuated mechanical system. It should be mentioned,
that differentially flat systems with higher index exist. Such
an example is then-mass-spring chain as analyzed inBlajer
(1997b).

This example is representative for the different possible
phenomena in servo-constraint problems of underactuated
multibody systems. An orthogonal realization yields index 3
and internal dynamics remains, which are described byf −m
differential equations of second order. For tangential realiza-
tion higher index arise. Thereby an increasing differentiation
index indicates a reduced size of the internal dynamics and
the need for higher derivatives of the output trajectory. In the
limit cases no internal dynamics remains, and the system can
be inverted purely algebraically, i.e. the system is differen-
tially flat.

4 Stability of the internal dynamics

The previous discussion highlights that the inverse model
might be a dynamical system, namely containing internal dy-
namics. This can occur in both cases, the orthogonal real-
ization and the tangential realization. In the computation of
the inverse model these internal dynamics must be solved.
Thereby, the stability of the internal dynamics, i.e. the sys-
tem dynamics of the servo-constraint problem, must be in-
vestigated carefully. For an ideal orthogonal realization, e.g.
classical constraints, the stability properties and analysis of
multibody systems with classical constraints applies. This
ideal orthogonal realization also occurs in underactuated
multibody systems with collocated inputs and outputs, i.e.
there is a control input at each system output. This occurs
for example in case 1 of the mass on car example which is
presented in Sect.3.

For non-ideal orthogonal and tangential realization, the in-
ternal dynamics might be more complex, and stability might
not be ensured. This is due to the combination of the multi-
body system with a control, whereby inputs and outputs are
not collocated. In the case of unstable internal dynamics, for-
ward time integration of the internal dynamics might yield
unbounded states and control inputs, which provides an un-
feasible inverse model. Therefore, careful stability analysis
of the internal dynamics is necessary. Using the coordinate
transformation approach the internal dynamics of the inverse
model can be extracted explicitly, which is helpful in system
analysis. For example, for the orthogonal realization the in-
ternal dynamics is given by Eq. (25).

In general, the internal dynamics is nonlinear and driven
by the desired output trajectoryyd(t), posing a nonlinear
time-variant system. Since stability analysis of such systems
is quite complex, one uses often the concept of zero dy-
namics, seeIsidori (1995); Sastry(1999). The zero dynam-
ics is the internal dynamics under a constant system out-
put, e.g.yd = 0,∀t. This reduces the internal dynamics to a
time-invariant nonlinear system. For the orthogonal realiza-
tion follows from Eq. (25) the zero dynamics,

q̈u = a(qu, q̇u). (48)

Local stability of the zero dynamics can then be checked,
e.g. using Lyapunov’s indirect method. Local asymptotic sta-
bility requires that the linearized zero dynamics has only
eigenvalues with negative real part. If at least one eigenvalue
has a positive real part the system is unstable. If there are
both, eigenvalues with negative real part and purely imagi-
nary eigenvalues, then Lyapunov’s indirect method is incon-
clusive. In this case stability can be checked e.g. using Lya-
punov’s direct method, see e.g.Khalil (2002), or the center
manifold method, see e.g.Isidori (1995).

For a linear system it can be shown that the eigenvalues
of the zero dynamics are precisely the zeros of the trans-
fer function, seeIsidori (1995). Further details about the
close connection between the concept of zero dynamics of
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Figure 6. Eigenvalues of zero dynamics for mass on car system.

nonlinear systems and zeros of linear systems are discussed
in Isidori and Moog(1988). A linear system is called min-
imum phase, if all its zeros are in the open left half plane,
i.e. its zero dynamics is exponentially stable. This defini-
tion is also extended to nonlinear systems. In nonlinear con-
trol theory systems with asymptotical stable zero dynamics
are called asymptotically minimum phase, otherwise non-
minimum phase, seeIsidori (1995). It is important to no-
tice, that local asymptotic stability of the zero dynamics is
a necessary but not sufficient condition for stability of the
driven internal dynamics. This last step is often very com-
plex and from a practical point one restricts often to verify
local asymptotic stability of the zero dynamics.

4.1 Illustrative example 1: stability of mass on car

For the mass on car example in Sect.3 internal dynamics
remains for cases 1–3. Figure6 shows the location of the
eigenvalues of the zero dynamics for 0◦ ≤ α ≤ 90◦, i.e. case 1
and 2. The system properties are summarized in Table1. The
eigenvalues of the zero dynamics follow from the internal
dynamics (Eq.36) with ÿd = 0. The internal dynamics is in
these cases similar to a spring-mass system and is therefore
asymptotically stable for the damped case and stable for the
undamped case. Forα = 90◦ it is identical to a free damped
mass-spring system and massm2 vibrates freely in vertical
direction. Hereby, in the undamped case the eigenfrequency
of the free vibration isω = 0.25Hz. However, with the incli-
nation angleα the dynamic behavior of the internal dynamics
changes. Thus for example, forα = 5◦ andd = 0Nsm−1 the
eigenfrequency of the zero dynamics increases to 2.88Hz.
Also in the damped case the behavior changes dramatically,
and forα < 9.1◦ andd = 1Nsm−1 an over-damped behavior
occurs. Thus, due to the servo-constraint, the dynamical be-
havior of the internal dynamics can be quite different from
the dynamics of the uncontrolled underactuated multibody
system.

Table 1. Properties for mass on car system.

m1 = 1 kg m2 = 2 kg k= 5 N m−1 d = 0 Ns m−1 andd = 1 Ns m−1
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Figure 7. Rotational arm with passive joint.

4.2 Illustrative example 2: rotational manipulator arm

As simple example for an underactuated multibody system
with unstable internal dynamics a single rotational manipu-
lator arm with a passive joint is considered, see Fig.7. The
rotational arm consists of two identical homogenous links
with length l, center of masss= l/2, massm and inertia
I =ml2/12. The first link is actuated by the control torque
u= T. The second link is connected by a passive joint to
the first link, which is supported by a linear spring-damper
combination with spring constantc and damper coefficient
d. Thus, the passive joint manipulator has its elasticity par-
allel to the joint and shows very many similar properties as
manipulators with flexible links, seeSeifried et al.(2013).
In contrast, such a passive joint system is quite different to
a so-called flexible joint manipulator with drive train elas-
ticities, where the flexibility is located between a link of the
manipulator and its motor, seeDe Luca(1998).

The rotational manipulator arm is described by the gen-
eralized coordinatesq= [α, β], wherebyqu = β denotes the
unactuated coordinate. The arm moves perpendicular to the
direction of gravity and the equations of motion are given by

l2m

[
5
3 + cosβ 1

3 +
1
2 cosβ

1
3 +

1
2 cosβ 1

3

] [
α̈
β̈

]
+[

−0,5l2mβ̇(2α̇+ β̇)sinβ
cβ+dβ̇+0,5l2mα̇2 sinβ

]
=

[
T
0

]
. (49)

The position of a pointS on the second link is described
in the body fixed coordinate system by 0< s< l, see Fig.7.
The control goal is the tracking of the position of pointS.
For smallβ the position can be described approximately by
the system output

y= α+
s

s+ l
β. (50)

This system output is a linear combination of the two gen-
eralized coordinates and can be seen as an auxiliary angley,
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see Fig.7. For example, with this auxiliary angle the position
in e2 direction is

rs2 = l sinα+ ssin(α+ β) ≈ (l + s)siny. (51)

This approximation holds for smallβ, which can be veri-
fied by computing the Jacobian linearization aroundβ = 0,
seeSeifried(2012b). It is noted, that the following computa-
tions and analysis for the exact position ofS follow the same
steps and yield the same results. However, the use of the lin-
early combined system output (Eq.50) simplifies the expres-
sions significantly and allows an easier discussion of the re-
sults. Similar linearly combined outputs are also often used
in end-effector tracking of flexible manipulators, see e.g.De
Luca(1998); Seifried et al.(2011).

For this rotational arm the servo-constraint is given by

c(q, t) = α+
s

s+ l
β− yd(t) (52)

and its Jacobian matrix is

H =
[

1 s
l+s

]
. (53)

With this matrix follows from Eq. (18)

P= HM −1B =
2l(3scosβ−2l)

ml2(l + s)(9cos(2β)−23)
. (54)

For s∗ = 2l/(3cosβ) it is P= 0, i.e. only for this cases a tan-
gential realization occurs. For small anglesβ the positions∗

approximates the center of percussion. InFliess et al.(1995)
it is shown, that for a manipulator with one passive joint the
center of percussion might yield a differentially flat system
output. In contrast, in the following the cases, s∗ is consid-
ered, i.e. the case of an orthogonal realization. Ifs= 0 then
the input and output are collocated sincey= α. In this case
an ideal orthogonal realization occurs, otherwise a non-ideal
orthogonal realization exists. From the previous discussions
it is obvious that internal dynamics remain.

To analyze the internal dynamics and the servo-constraint
problem in more detail, the coordinate transformation ap-
proach presented in Sect.2.4 is applied. The new set of co-
ordinates containing the output are chosen asq= [y, β]. The
system dynamics in new coordinates follows from evaluating
Eqs. (22)–(23). For a given output trajectoryyd the required
control inputud follows from Eq. (24). Then, the system dy-
namics of the inverse model, i.e. the internal dynamics, are
described by Eq. (25). For its analysis the zero dynamics
is derived, which follows from the internal dynamics with
y= 0, ∀t. For this example the zero dynamics turns out to be

ml2(s+ l)(2l −3scosβ) β̈
= −3ms2l2 sinββ̇2−6(s+ l)2(cβ+dβ̇).

(55)

For analysis the zero dynamics (Eq.55) is linearized around
its equilibrium pointβ = 0 yielding

ml2(2l −3s)︸        ︷︷        ︸
a2

¨̃β+6d(s+ l)︸   ︷︷   ︸
a1

β̃+6c(s+ l)︸   ︷︷   ︸
a0

˙̃β = 0. (56)

Table 2. Properties for rotational manipulator arm.
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Therebya2,a1,a0 correspond to the coefficients of the char-
acteristic polynomial. Using Stodola’s criterion the lin-
earized zero dynamics (Eq.56) of the rotational arm is only
asymptotically stable, if all coefficients a2,a1,a0 have the
same sign and are non-zero. The constantsc, d of the spring-
damper combination and the dimensionsl, s are by nature
positive, yielding positive constantsa0, a1. Thus also the co-
efficienta2 must be positive to obtain stable internal dynam-
ics. From this follows that fors/l < 2/3 the internal dynamics
is locally asymptotically stable, while fors/l > 2/3 the in-
ternal dynamics is unstable. The location of the eigenvalues
for different 0≤ s≤ 1 is shown in Fig.8. The used system
parameters are summarized in Table2. This shows clearly
that the dynamics of a servo-constraint problem, namely its
internal dynamics, might be fundamentally different from
the dynamics of the uncontrolled mechanical system. End-
effector tracking, i.e.s= l, is in robotic manipulator applica-
tions the most interesting case. The presented analysis shows
that in this example unstable internal dynamics occur in end-
effector trajectory tracking.

The analysis of the rotational arm shows that the stability
of the internal dynamics can depend on the choice of the sys-
tem output location. In addition, if a non-homogenous design
for the links is admitted, the stability of the internal dynam-
ics also depends on the mass distribution of the links, see the
analysis inSeifried(2012b). Then, the mass distribution can
also be designed in such a way that for end-effector trajectory
tracking stable internal dynamics remain.

The presented analysis and the discussed structural proper-
ties for this small servo-constraint system are representative
for many multibody systems with passive joints and flexible
manipulators in end-effector trajectory tracking. Analysis of
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such systems are given e.g. inSeifried(2012b) andSeifried
et al.(2011), respectively.

5 Numerical solution

In most cases the inverse model requires a numerical so-
lution, whereby the solution method depends on the previ-
ously analyzed system properties. In the following some ba-
sic numerical solution methods are summarized for differen-
tially flat systems, systems with stable internal dynamics and
systems with unstable internal dynamics. For demonstration
purpose these methods are applied to the two presented illus-
trative examples. The following presentation highlights some
solution issues and demonstrates also the effect of the differ-
ent system properties. However, it is not meant as a full in
depth investigation of numerical time integrators for servo-
constraint problems.

5.1 Differentially flat systems

For differentially flat systems, a purely algebraic inverse
model can be derived. However, this requires often a large
number of symbolic time-derivations and manipulations of
the output equation and the equations of motion. This might
be possible for small systems, such as in case 4 of the mass
on car system, but for larger systems these symbolic compu-
tations might become very burdensome. Therefore, also for
differentially flat systems a numerical solution based on the
servo-constraint approach might be useful.

Due to the tangential realization in underactuated differ-
entially flat systems the original servo-constraint formula-
tion (Eqs.8–9) has differentiation index greater 3. For the
numerical solution the use of the projection approach pre-
sented in Sect.2.3 might be advantageous, yielding a index
reduction. Then, the set of differential-algebraic Eqs. (15)–
(18) must be solved numerically. For readability these equa-
tions are summarized as

q̇ = v (57)

Av̇ = a(v,q,u) (58)

0 = b(v,q,u, ÿd) (59)

0 = c(q, yd). (60)

The solution of this set of 2f +m equations are variations
in time of them control inputsu(t) which are required for
the exact reproduction of the desired output trajectoryyd(t),
and variations of the 2f statesq(t), v(t) = q̇(t) in the specified
motion.

Since differentially flat systems can completely be inverted
algebraically, the output specifies completely the entire mo-
tion of the system and Eqs. (57)–(60) do not contain any in-
ternal dynamics. This allows the efficient use of rather simple
solution formulas. A simple numerical solution schema for
solving the DAEs can be based on the Euler backward differ-
entiation scheme, as proposed byBlajer and Kolodziejczyk
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Figure 9. Desired output trajectoryyd for massm2.

(2004). Thereby the time derivativeṡq and v̇ are approx-
imated with their backward differences (qn+1− qn)/∆t and
(vn+1− vn)/∆t, respectively. Thereby∆t is the constant inte-
gration time step, such thattn+1 = tn+∆t. With the known
valuesqn, vn at time tn, the solutionqn+1, vn+1, un+1 at time
tn+1 can be obtained from the solution to the set of nonlinear
algebraic equations

qn+1− qn−∆tvn+1 = 0 (61)

A(qn+1)[vn+1− vn] −∆ta(vn+1,qn+1,un+1) = 0 (62)

b(vn+1,qn+1,un+1, ÿd,n+1) = 0 (63)

c(qn+1, yd,n+1) = 0. (64)

This schema can also be used for systems with mixed ge-
ometric and servo-constraints as presented inBlajer and
Kolodziejczyk(2011).

This very basic solution schema is applied to the mass on
car system. Mass 2 should follow the output trajectory

yd = y0 +
[
126(

t
tf − t0

)5−420(
t

tf − t0
)6+540(

t
tf − t0

)7

− 315(
t

tf − t0
)8+70(

t
tf − t0

)9
]
(yf − y0), (65)

whereby starting pointy0 = 0.5m and finial pointyf = 2.5m
are chosen. After reaching the final point at timetf = 6s
the output is at rest. The complete simulation time is 10s.
This trajectory is designed in such a way, that also its higher
derivatives are sufficiently smooth. The trajectory is shown
in Fig. 9.

It is noticed that the original servo-constraint problem has
differentiation index 5, while the projection approach yields
index 3. Figure10 shows the control forcesud computed
with the projection approach and compared to the analytical
solution from Eq. (47). This shows, that this rough compu-
tational scheme is of acceptable accuracy for appropriately
small values of∆t. Here, the Euler backward schema yields
nearly identical control inputs as the analytical solution for
time sizes 1ms and 10ms. Only after increasing the time step
size to 100ms significant errors in form of a time delay are
obvious. For differentially flat systems, the inverse model is
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Figure 10. Mass on car – case 4, flat system: computed control
inputud.

completly specified by the output. Thus, it can be argued that
in this case the issue of numerical damping, which for such
a simple discretization schema normally appears, might not
pose a significant problem here.

More accurate time discretization schema can be used for
the solution of the servo-constraint problem of differentially
flat underactuated multibody systems. Therefore, in Fig.10
also the solution obtained by aRadau IIaschema is added.
This method is capable of handling index 3 DAEs, seeHairer
and Wanner(2010). Hereby an accurate solution is obtained
by using only 56 time points. This compares to 1000–10 000
points using the Euler backward schema. In literature fur-
ther solution methods have been proposed for differentially
flat servo-constraint problems.Betsch et al.(2007, 2008)
use a energy conserving schema for solving the projected
Eqs. (57)–(60), whereby redundant coordinates are used. For
a differentially flat craneFumagalli et al.(2011) propose a
solution based on backward differentiation formula.

In Fig.11the analytical solution for the desired trajectories
of the generalized coordinates and its derivatives are shown.
Since hardly any differences to the numerical solutions are
visible, the presentation of the numerical solutions are omit-
ted here. From Fig.11, as well as from the control force plot,
it is seen that the complete system is at rest aftertf = 6s, indi-
cating the final position of the output. This is due to the fact
that for this system the output trajectory specifies the com-
plete system behavior and no internal dynamics remain. This
is typical for a differentially flat system.

5.2 Systems with stable internal dynamics

Underactuated multibody systems with stable internal dy-
namics can be solved by forward time integration. There-
fore, the same numerical integrators as in the previous dis-
cussed differentially flat case might be used. This is demon-
strated using the mass on car system with an inclination an-
gle of α = 5◦, representing a non-ideal orthogonal realiza-
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Figure 11. Mass on car – case 4, flat system: computed states
qd, q̇d.

tion. Thereby the case of a strongly damped system with
d = 1Nsm−1 and the undamped system are considered.

By using the projection approach, index 1 DAEs arise for
the orthogonal realization. As numerical solution schema for
the projected servo-constraint Eqs. (15)–(18) the previously
presented Euler backward schema with time step size 1ms
and 10ms are used. In addition a numerical backward dif-
ferentiation formula is used, as implemented in the Matlab
function ode15s, seeShampine et al.(1999). This is capa-
ble of solving index 1 DAEs. Also the coordinate transfor-
mation approach is used. Hereby the internal dynamics is
given explicitly by Eq. (36) and the control input follows
from Eq. (35). For the numerical solution of the internal dy-
namics (Eq.36) the Matlabode45integrator is used, which
is an explicit Runge-Kutta formula of order 4 and 5 using the
Dormand-Prince pair.

The obtained control forces using the different solution
methods are shown for the damped and undamped case in
Fig. 12. The velocities of the generalized coordinates are
presented in Fig.13. Since differences between the solution
methods are seen best in the control force, the velocity plot
shows only the solution obtained using the coordinate trans-
formation approach.

Due to the presence of the internal dynamics the output
does not specify completely the motion of the system. Af-
ter the output reaches its final position, it remains at rest.
However, the system itself is at timetf = 6s not at rest, as
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Figure 12. Mass on car – case 2,α = 5◦: computed control inputud.
With dampingd = 1Nsm−1 (top) and without damping (bottom).

seen from the force and velocity plots. The remaining mo-
tion of the system is its zero dynamics. For the case with
d = 1Nsm−1 an overdamped internal dynamics occurs, as
also seen from the eigenvalue plot of the zero dynamics in
Fig. 6. Thus, the internal dynamics decays rapidly. In con-
trast for the undamped case strong vibrations occur. These
are best visible in the control force plot, whereby vibrations
of the internal dynamics occur during trajectory tracking as
well as after the output reaches its final position. It should
be noted, that the eigenfrequency of the internal dynamics is
much higher than the natural frequency of the uncontrolled
system, see also Fig.6.

For the damped case the numerical solutions using the dif-
ferent methods widely coincide, which is seen in the upper
plot of Fig.12. In contrast, for the undamped case some clear
differences are observed, see the lower plot of Fig.12. Here
vibrations occur whose frequency is over 10 times higher
than in the uncontrolled case. These high frequency vibra-
tions of the internal dynamics are numerically damped using
the Euler backward schema. This yields less accurate con-
trol inputs, deteriorating the performance of the feedforward
control. However, using the more sophisticated methods, the
control inputs computed with the projection approach and the
coordinate transformation approach coincide.
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Figure 13. Mass on car – case 2,α = 5◦: generalized velocitieṡqd.
With dampingd = 1Nsm−1 (top) and without damping (bottom).

5.3 Systems with unstable internal dynamics

Forward time integration of systems with unstable internal
dynamics yield unbounded states and thus unbounded con-
trol inputsud. This does not provide a feasible feedforward
control. Therefore the previously presented solution schema
for differentially flat systems and systems with stable internal
dynamics cannot be used. Compared to the previous cases,
there are much less approaches for the solution of inverse
models with unstable internal dynamics.

In the following the so-called stable inversion approach
is briefly presented, which is due toDevasia et al.(1996).
This approach has been so far applied for solving the in-
ternal dynamics given as ODE, such as Eq. (25) for the or-
thogonal realization. Examples are the feedforward control
design of flexible manipulators, seeSeifried et al.(2011).
With this approach bounded trajectoriesqu, q̇u of the inter-
nal dynamics (Eq.25) and thus bounded control inputsud

are obtained. However, the solution might be non-causal, i.e.
the trajectories depend on future states providing a so-called
pre-actuation phase.

In stable inversion it is assumed that the starting and end-
ing point of the desired system output trajectoryyd are equi-
librium points of the multibody system. Further, it is required
that the corresponding equilibrium points of the internal dy-
namics are hyperbolic such that stable manifoldWs and un-
stable manifoldWu exist at each equilibrium point,Sastry
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Figure 14. Desired output trajectoryyd for rotational manipulator.

(1999). Any trajectory starting on the stable manifoldWs

converges to the equilibrium point as timet→∞ and any
trajectory starting on the unstable manifoldWu converges to
the equilibrium point as timet→−∞. The solution of the
stable inversion is then formulated as a two-sided bound-
ary value problem. The boundary conditions are described
by the unstable and stable eigenspacesEu

0,E
s
f at the corre-

sponding equilibrium points, which are local approximations
of the unstable manifoldWu

0 and stable manifoldWs
f , respec-

tively, Sastry(1999). This yields for the internal dynamics
bounded trajectoriesqu, q̇u which start at timet0 on the unsta-
ble manifoldWu

0 and reach the stable manifoldWs
f at timetf .

Thus, the initial conditionsqu0
, q̇u0

at timet0 cannot exactly
be pre-designated. Therefore, a pre-actuation phase is neces-
sary which drives the system along the unstable manifold to
a particular initial conditionqu(t0), q̇u(t0), while maintaining
the constant outputyd = yd(t0). Also a post-actuation phase
is necessary to drive the internal dynamics along the stable
manifold close to its resting position. The two-sided bound-
ary value problem must be solved numerically, e.g. by a finite
difference method as proposed byTaylor and Li(2002).

This stable inversion approach is applied to the rotational
manipulator example. Thereby, the system outputy should
follow the trajectory shown in Fig.14. The system output
should be at rest fort < t0 = 1s andt > tf = 3s. For 1s≤ t ≤ 3s
the output should move form 0◦ to 270◦, whereby the trajec-
tory has the same form as Eq. (65).

For the model inversion the internal dynamics is derived
using the coordinate transformation approach, and is given
by Eq. (25). Thus for the internal dynamics a second or-
der differential equation forβ arises, which is the unactuated
coordinate of this manipulator arm. The numerical solution
of the stable inversion problem is computed in Matlab us-
ing the general boundary value solverbvp5c, seeKierzenka
and Shampine(2008). In Fig.15 the obtained control torque
ud = T is shown. Figure16presents the trajectory for the un-
actuated coordinateβ. It is clearly seen that the obtained so-
lution for the inverse model is bounded. However, it turns
out, that the computed solution is non-causal, i.e. trajectories
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Figure 15. Rotational manipulator arm: computed control inputud.
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actuated coordinateβ.

for β as well as the control torqueT start beforet = 1s, which
indicates the start of the output trajectory. This is best seen
in the enlargement ofβ aroundt = 1s, which is also shown in
Fig. 16.

Alternative methods for solving model inversion for sys-
tems with unstable internal dynamics have been recently pro-
posed for the original servo-constraint formulation (Eqs.8–
9). In Seifried et al.(2013) the problem is projected numeri-
cally into the unconstrained subspace, from which the inter-
nal dynamics as ODE arises. This is then solved using the
previously described stable inversion method. This approach
has been applied to the feedforward control of a flexible

www.mech-sci.net/4/113/2013/ Mech. Sci., 4, 113–129, 2013



128 R. Seifried and W. Blajer: Analysis of servo-constraint problems for underactuated multibody systems

multibody system with a kinematic loop, featuring 18 unac-
tuated elastic degrees of freedom which represent the internal
dynamics. Other solution approaches have been proposed,
where the servo-constraint problem is reformulated into opti-
mization problems, seeMoberg and Hanssen(2009); Bastos
et al.(2011). For example, inBastos et al.(2011) the solution
of the servo-constraint problem is stated as optimal control
problem, where the objective function is the minimization of
the trajectories of internal dynamics. Thus a bounded solu-
tion can be obtained. The stated problem is then solved by
standard optimal control algorithms using a direct colloca-
tion method.

6 Conclusions

The servo-constraint approach is an efficient and straight-
forward way for deriving inverse models of underactuated
multibody systems, yielding firstly a set of DAEs. In the
servo-constraint approach the control inputs are used to meet
the imposed servo-constraints. In the case of an orthogonal
realization the control forces can directly regulate the con-
straint manifold, which is defined by the servo constraint.
This provides a DAE system with differentiation index 3.
In contrast for a tangential realization the control forces can
only regulate the constraint manifold indirectly, yielding in-
dex larger 3. For the orthogonal realization of underactuated
multibody systems internal dynamics remain in the inverse
model. For a tangential realization, depending on the system
parameters, internal dynamics might or might not exist. In
the latter case the complete motion of the system is specified
by the system output and a finite number of its derivatives.
Such a system is called differentially flat. In this paper it is
demonstrated that these different system properties, i.e. the
existence of internal dynamics, might be changed by alter-
ing some system parameters. For the presented mass-spring-
damper system on a car these system parameters are the in-
clination angle and the damping parameter.

In order to obtain a meaningful solution these different
system properties must be investigated. Especially the inter-
nal dynamics might be very different form the dynamics of
the system without servo-constraint. In the extreme case the
internal dynamics might be unstable. The stability of the in-
ternal dynamics depends on physical system parameters and
the selected system output. For example, the presented case
of a passive joint manipulator shows, that the stability of the
internal dynamics changes, if the output location is altered.
Here, using the end-effector position of the manipulator as
system output yields unstable internal dynamics. This can
also be observed for many manipulators with flexible links.

In this paper two formulations have been presented for the
analysis and solution of servo-constraint problems. The first
approach is a projection approach which yields a DAE for-
mulation with reduced differentiation index. The second ap-
proach is a coordinate transformation approach which yields,

at least for the orthogonal realization, an ODE formulation.
This coordinate transformation approach is inspired by non-
linear control theory. It is especially useful if the servo-
constraint equations can be solved analytically. For the nu-
merical solution of inverse models time integration schemas
can be used for differentially flat systems or systems with sta-
ble internal dynamics. Hereby a variety of time-integration
schema for DAEs or ODEs can be used. For the projection
approach a simple Euler-backwards differentiation schema
might be used. This provides accurate results for flat systems.
In contrast, it might provide only rough accuracy for systems
with internal dynamics, which is due to errors induced by nu-
merical damping. In this case more sophisticated numerical
methods must be used.

For systems with unstable internal dynamics forward time
integration cannot be used to compute a meaningful feed-
forward control. Therefore, the problem can be reformulate
into a boundary value problem, which must be solved offline.
This provides then a bounded but non-causal solution for the
control inputs and the trajectories of all states.
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