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Abstract. This paper investigates the underlying physics of a gravity car race. This work seeks to provide a
sound theoretical basis to elucidate the design considerations that maximize performance while simultaneously
dispelling false assertions that may arise from incomplete analyses. The governing equations are derived and
solved analytically to predict race times; trend analyses are then performed along with a sensitivity analysis
to ascertain the most important factors that influence performance. The inferences from a conservative energy
balance are then compared with the predictions from the full set of differential equations, which include the
dissipative terms associated with air resistance and friction.

1 Introduction

Gravity car races have provided their enthusiast numerous
thrills over the years. While some of the longer-standing
competitions include the Soap Box Derby and the Pinewood
Derby, new events, such as the Extreme Gravity Racing Se-
ries and the Wile Street-luge Sliders of the X-Games, have
also recently emerged. Although the race vehicles from these
events can drastically vary in their size, shape, and complex-
ity, they also share many common challenges. For example,
they are all driven by the force of gravity and must minimize
the forces that oppose the vehicle motions, such as wind re-
sistance and friction.

The pinewood derby is one of the more distinctive events.
It originated as a Cub Scout competition where elementary
school children raced a car assembled from a kit consisting
of a block of wood, four nails and wheels. A small industry
has sprung up around the pinewood derby, with countless in-
ternet sites and books offering tips, tricks and even enhanced
car parts to the estimated 43 million children that have built
pinewood derby cars since its founding (Garguilo and Gar-
guilo, 2011; Pedigo, 2002; Reinke, 2010). While there are
many who offer advice, only a few scientific investigations
have been published and it is rare to find accurate explana-
tions on how certain modifications could result in faster race
times (Coletta and Evans, 2008). In referenceColetta and

Evans(2008), Coletta and Evans used an algebraic function
to obtain an analytical expression for the time and speed as
function of the distance traveled along the track. Their analy-
sis included the rotational energy of the wheels, rolling fric-
tion, and air resistance. In an early work,Cowley et al.(1989)
obtained an approximation for the race time by considering
the curved section of the track as two straight parts.

This paper seeks to provide a sound theoretical basis for
making car modifications from the derivations herein. Trends
in the peak velocity and race time are investigated from an
energy balance and the governing equations. In addition, we
compare the results of our analyses to a series of experimen-
tal results that verify the trends unveiled in our analyses also
occur experimentally. As a part of our theoretical investiga-
tions, a sensitivity analysis was performed to ascertain the
relative importance of five key parameters on reducing race
times.

The work contained in this paper is organized as follows.
The next section considers the conservative system and then
performs an energy balance to derive an expression for the
peak velocity. In Sect. 3, the equation of motions are de-
rived for the two sections of the track, namely the straight
and curved regions, taking into account the nonconservative
forces. Analytical solutions are then derived for the govern-
ing equations. A sensitivity analysis is performed to deter-
mine the relative importance of altering the cross sectional
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Figure 1. Illustration of a car at the starting line (upper left) with the location of the center of mass marked by ¯x andȳ. Bottom illustration
shows the car at several locations along the track and the important track geometry.

area, car mass, friction coefficient, and wheel parameters to
reduce the race times. The trends from the theoretical investi-
gations are then compared with a series of experimental tests
in Sect. 4. Finally, the last section provides a discussion of the
combined theoretical and experimental investigations. The
discussion also explains several additional opportunities for
improving performance beyond the conclusions made from
theoretical and experimental investigations.

2 Conservative system energy balance

An energy balance often provides a useful alternative to di-
rectly solving the governing differential equations and is used
here to elucidate how design changes can influence the vehi-
cle performance. The generic form of an energy balance is

T1→2+U1→2 =Wa−Wd, (1)

whereT1→2 is the change in kinetic energy,U1→2 is the
change in potential energy,Wa is the added work of external
forces, andWd is the work due to energy dissipation over
the time interval fromt1 to t2. Figure1 shows the car at three
locations along the track, i.e. the starting line, at the entry
into the final horizontal section, and at the finish; this sec-
tion will use these three locations to gain insight when ap-
plying an energy balance. Consider first the transition from
the starting line (location one) to the beginning of the final

straigth section (location two). When the system is treated as
a rigid body, as opposed to the point mass assumption ofJobe
(2004), both translational and rotational energy terms appear
in the kinetic energy

T1→2 =
1
2

mv2+
N
2

(
Iwφ̇

2
)
, (2)

wherem is the total vehicle mass,v is the velocity of the
center of mass, andN is the number of wheels, with a mass
moment of intertiaIw, which rotate with an angular velocity
φ̇. We next assume the wheels roll without slip, which allows
the car’s velocity to be written in terms of the angular ro-
tations of the wheelsv= roφ̇, wherero is the wheel radius.
After definining the wheel mass moment of inertia in terms
of a radius of gyration, the change in kinetic energy can be
written as

T1→2 =
1
2

m

1+N
mo

m

(
k
ro

)2v2, (3)

wheremo is the mass andk the radius of gyration of a sin-
gle wheel. The change in potential energy between the two
locations is given by

U1→2 =mg
(
ȳ(1− cosθ)− x̄sinθ−d

)
, (4)

whered is the vertical distance to the starting position on the
track, ȳ is the vertical distance from the track to the center
of mass, ¯x is the horizontal distance from the front of the car
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Figure 2. Energy balance trends showing the trends inv2 while
varying x̄ (a), ȳ (b), m (c), and wheel parameters(d). The dotted
line in (d) represents a car with three wheels contacting the track
or N = 3. The parameters listed in Table1 and the normalization
constantsp= 0.09 m,q= 0.013 m, andu= 0.1091 Kg were used.

to the center of mass, andθ is angle of incline of the track
(see Fig.1 for geometry). Assuming no work is added or
dissipated from the system, Eqs. (3) and (4) can be inserted
into Eq. (1) to obtain an expression for the velocity

v2 =
2g

(
d+ x̄sinθ+ ȳ(cosθ−1)

)
1+N mo

m

(
k
ro

)2
. (5)

This energy balance solution alone can be used to provide
much insight into how design changes will influence the ve-
hicle velocity. More specifically,v2 will increase linearly for
linear changes in ¯x, but v2 will decrease linearly for linear
changes in ¯y; this suggests the center of mass should be
located as far back and close to the track as possible. Fo-
cusing on the denominator of Eq. (5), the combined terms

N
mo

m

(
k
ro

)2

increase the denominator to be greater than one;

thus the smaller this grouping of terms can be made, the
greater the increase inv2. Settingmo equal to zero in this
expression gives the same result as if the car was being mod-
eled as a point mass. This assumption, which is commonly
made in pinewood derby analyses, neglects the reduction in
race time that can be achieved by manipulating the combined
terms shown in Fig. 2d.

To illustrate the importance of ¯x and ȳ, along with the
terms that appear in the denominator, we have varied the dif-
ferent model parameters to ascertain their influence onv2.
For example, Fig.2 shows the trends in the car’s peak ve-
locity for changes in the location of the center of mass and
wheel parameters – at least in the absence of any dissipative
forces. In these plots, we have normalized the horizontal axes

Table 1. Parameters used for energy balance trend analysis.

Parameter Value

θ 26◦

d 1.17 (m)
x̄ 98 (mm)
ȳ 13 (mm)
N 4
g 9.81 (m s−2)
m 0.191 (Kg)
mo 2.65×10−3 (Kg)
ro 1.51 (mm)
k 10.7 (mm)
Iw 3.06×10−7 (Kg m−2)

by the parameters of an out-of-the-box pinewood derby car
and restricted the range to attainable limits. After applying
the track geometry, parameters given in Table 1, we observe
v2 to increase and decrease linearly with changes in ¯x andȳ,
respectively, with ¯x having nearly four times the impact onv2

thanȳ. However, the total mass of the car and the combined
terms that appear in the denominator dominate the expres-
sion for v2 – increasing the mass to double the out-of-box
parameter has more than 15 times the impact of doing the
same to ¯x. Thev2 trend in plot (d) highlights the benefit of
reducing themo/m ratio, which can be accomplished by ei-
ther removing mass from the wheels or by increasing the car
mass relative to the wheel mass. This plot additionally shows
that substantial increases could be achieved in the peak ve-
locity provided it were possible to reduce the mass moment
of inertia for the wheels, i.e. this is captured by a reduction
in the radius of gyrationk. Thus, we highlight that removing
material from the outer portion of the wheel would reduce
bothmo andk and should have a double effect to increase the
peak velocity.

In summary, we have presented an energy balance that
suggests ¯y should be as small as possible and ¯x andmshould
be as large as possible. However, it is important to recog-
nize certain practical and physical restrictions that also con-
strain these values; for example, locating ¯x behind the rear
axle would cause the car to tip over, so the rear axle should
be located as far back as possible and ¯x should be just in front
of the rear axle. Similarly, ¯y must provide clearance between
the car bottom and the raised center of the track. While Fig.2
also suggests that lifting one wheel off the track will increase
the car’s velocity, additional energy losses occur if the fourth
wheel is not low enough to contact the raised center of the
track, which helps to maintain alignment. The energy bal-
ance neglects dissipative forces and thereforev2 continues to
grow as mass is added to the car; this trend does not reflect
the fact that after a certain point velocity reduction due to
friction will outweigh the benefit of adding additional mass.
We therefore consider the results of this section as guide-
lines with certain limits and explore this notion even further
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in the upcoming sections. In the next section, the equations of
motion are derived with the inclusion of the nonconservative
forces.

3 Equations of motion and their analyses

This section derives the equation of motion for a prototyp-
ical pinewood derby car. The governing equations are later
used to further explore the influence of design choices and
parameter uncertainty on the race times of the vehicle. The
derivation that follows has been split into two parts with sep-
arate derivations for the curved and straight sections of the
track. To complete the analysis, it was assumed that the car
wheels would roll without slip and that the length of the car
is negligible compared to the length of the track.

3.1 Straight track sections

Consider the inclined portion of the track shown in Fig.1.
Applying notations from the previous sections, the kinetic
energy becomes

T =
1
2

m

1+N
mo

m

(
k
ro

)2 ṡ2, (6)

wheres is the distance the car’s center of mass has traveled
along a straight section of the track and ˙s= v is the vehicle’s
velocity along the flat section of the track. The potential en-
ergy of the system is given by

U =mg
(
d+ x̄sinθ+ ȳcosθ− ssinθ

)
. (7)

In addition to the conservative forces, the nonconservative
forces of air resistance and sliding friction between the
wheels and axles must be taken into account. Here, we note
sliding friction causes a moment that opposes the wheel rota-
tion. Applying Lagrange’s equation, where the nonconserva-
tive forces from drag and friction are included, results in the
following governing equation:

m

1+N
mo

m

(
k
ro

)2 s̈−mgsinθ=−
1
2
ρaACD ṡ|ṡ|−2 fA

r i

ro
−2 fB

r i

ro
, (8)

where fA is the sliding friction force on a front wheel and
fB is the sliding friction force on a back wheel,ρa is the air
density,CD the drag coefficient, andA is the projected cross-
sectional area. To derive the expression for the nonconserva-
tive forces, we note that a roll with slip condition was ap-
plied. To resolve the frictional forcesfA and fB, a Coulomb
friction law was applied to writefA = µkNA and fB = µkNB,
whereµk is the kinetic coefficient of friction andNA andNB

are the normal forces that act at the locations shown in Fig.3;
next, the moments were summed about the rear axle to obtain
expression for the normal forces

NA = (m−4mo)
(ho− ȳc)(s̈−gsinθ)+ (`B − x̄c)gcosθ

`B − `A
(9)

Figure 3. Free body diagram of the forces on(a) the assembled car,
(b) only the car body,(c) the rear wheel, and(d) the front wheel.

summing the moments about an axis throughA and solving
for NB in a similar manner gives

NB = (m−4mo)
(ȳc−ho)(s̈−gsinθ)− (`A − x̄c)gcosθ

`B − `A
(10)

where`A is the distance from the front of the car to the front
axle, `B is the distance from the front of the car to the rear
axle, and ¯xc is the center of mass location for the car body
(see Fig.1). After inserting the expressions forfA = µkNA

and fb = µkNB into Eq. (8), the governing equation takes the
form

s̈+ γṡ|ṡ| = η (11)

where the parametersγ andη are given by

γ =
ρaACD

2m
(
1+N mo

m

(
k
ro

)2
) , (12a)

η =
sinθ−2µk

r i

ro

(
1−4mo

m

)
cosθ

1+N mo

m

(
k
ro

)2
g. (12b)

Before departing this section, we note the general form of
Eq. (11) can be applied to either the horizontal (θ = 0) or in-
clined (θ , 0) sections of the track.

3.1.1 Analytical solution for the straight track sections

This section derives an exact analytical solution for the
straight sections of the track. Along the straight track the
sign of the car’s velocity is always positive therefore|ṡ| = ṡ
in Eq. (11). The analysis starts by substitutingv= ṡ into
Eq. (11) to obtain

v̇+ γv2 = η (13)
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wherev is the vehicle’s velocity. Here, we note the value of
η in Eq. (13) can be either positive or negative depending on
which part of the straight track the car is located. When the
car is on the inclined sectionη is positive, but it takes on a
negative value for the horizontal section of the track. There-
fore the solution to Eq. (13) must consider the two parts of
the straight track. In the case of the inclined track we begin
by rearranging Eq. (13) to give the following differential re-
lationship:

dv
η− γv2

= dt. (14)

After integrating this relationship and solving forv, the ana-
lytical expression for the vehicle’s velocity becomes

v=

√
η

γ
tanh

(
√
γη t+ tanh−1(

√
γ

η
v0)

)
, (15)

wherev0 = v(0) is the initial velocity on the inclined track.
To obtain the analytical expression for the car’s position,
Eq. (15) was integrated to obtain

s= so+
1
γ

ln

[
cosh

(
√
γη t+ tanh−1(

√
γ

η
v0)

)]
−

1
γ

ln

[
cosh

(
tanh−1(

√
γ

η
v0)

)]
, (16)

whereso is the initial position of the vehicle. Assuming the
car starts from rest, whereso = vo = 0, the analytical solu-
tions for the velocity and position can be simplified to

v=

√
η

γ
tanh

(√
γη t

)
, (17a)

s=
1
γ

ln
(
cosh

(√
γη t

) )
. (17b)

We next consider the horizontal section of the track and pre-
sume the car enters this section att = t1. The solution to
Eq. (13) is given by

v= −

√
−
η

γ
tan

(
√
−γη (t− t1)− tan−1(

√
−γ

η
v1)

)
, (18)

wherev1 = v(t1) is the initial velocity of the car as it enters the
horizontal section of the track. The position of the car along
the horizontal section of the track is obtained by integrating
Eq. (18), which yields the following following expression:

u= −
1
γ

ln

[
sec

(
−
√
−γη (t− t1)+ tan−1(

√
−γ

η
v1)

)]
−

1
γ

ln

[
sec

(
tan−1(

√
−γ

η
v1)

)]
, (19)

whereu is position along the horizontal section of the track.
In deriving this result, it is important note thatu(t1) = 0 was
applied to obtain Eq. (19).

3.2 Curved track equation of motion

This section derives the governing equation for the curved
section of the track and is followed by the development of an
approximate analytical solution. We first express the kinetic
energy of the system using the roll without slip condition and
a radius of gyration description for the wheel mass moment
of inertia, as in the previous expression for the kinetic energy,
to obtain the following:

T =
1
2

m

(ρ− ȳ)2+N
mo

m

(
k
ro

)2

ρ2+
IG

m

 β̇2 , (20)

whereρ is the track radius of curvature,IG is the car’s mass
moment of inertia, andβ is the angular position of the center
of mass. The potential energy of the system is given by

U =mg(ρ− ȳ) (1− cosβ) . (21)

Applying Lagrange’s equation, where the nonconservative
forces from drag and friction are included, results in the fol-
lowing governing equation:

m

(ρ− ȳ)2+N
mo

m

(
k
ro

)2

ρ2+
IG

m

 β̈+mg(ρ− ȳ)sinβ

= −
ρa

2
ACDρ̄

3β̇|β̇| −2µkρ
r i

ro
(NA +NB), (22)

To resolve the normal forcesNA andNB, the moments were
summed about the front and rear axles, which yields

NA =
m−4mo

`B − `A

[
(`B − x̄c)(gcosβ+ (ρ− ȳ)β̇2)

+(ro− ȳc)(gsinβ+ β̈)(ρ− ȳ) )
]
+

Igβ̈

`B − `A
, (23)

NB =
m−4mo

`B − `A

[
−(ro− ȳc)(gsinβ+ (ρ− ȳ)β̈)

+(x̄c− `A) ( gcosβ+ (ρ− ȳ)β̇2 ] −
IGβ̈

`B − `A
, (24)

Equations (23)–(24) can then be combined to obtain the gov-
erning equation for the curved section of the track,

β̈+ µβ̇|β̇|+αcosβ+ω2 sinβ = 0, (25)

where the parametersµ, ω2, α andm̃ are given by

µ =

[
ρa

2 ACDρ̄
2+2µkρ

r i

ro
(m−4mo)

]
(ρ− ȳ)

m̃
, (26a)

ω2 =
mg(ρ− ȳ)

m̃
, (26b)

α =
2µkρ

r i

ro
(m−4mw)g

m̃
, (26c)

m̃=m

(ρ− ȳ)2+N
m
mo

(
k
ro

)2

ρ2+
IG

m

 . (26d)
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3.2.1 Approximate solution for the curved region

In order to find an approximate solution, we Taylor expand
Eq. (25) and introduce a small parameterε which gives

β̈+ εµβ̇|β̇|+w2β+ ε c2 β
2+ c1 = 0, (27)

where

c1 = α, c2 =
−α

2
. (28)

The book-keeping parameterε will serve as a perturbation
parameter and will be set equal to unity at the end. In or-
der to find an approximate solution to Eq. (27), we use
the method of Krylov-Bogoliubov-Mitropolsky (KBM), see
Mickens(1996) andMinorsky (1962). Equation (27) can be
written as

β̈+w2β+ c1 = ε F(β, β̇), (29)

where

F(β, β̇) = −µβ̇|β̇| − c2 β
2. (30)

We assume that the solution to Eq. (27) takes the following
form

β = a cosψ−
c1

w2
+ ε u1(a,ψ)+ ε2 u2(a,ψ)+ ..., (31)

where theui(a,ψ) are periodic functions ofψ, with period 2π,
and the quantitiesa andψ are functions of time defined by
the following equations:

ȧ = ε A1(a)+ ε2 A2(a)+ ..., (32)

ψ̇ = w+ ε B1(a)+ ε2 B2(a)+ ..., (33)

The functionsui(a,ψ), Ai(a) and Bi(a) are to be chosen in
such a way that Eq. (31), after replacinga andψ by the func-
tions defined in Eqs. (32)–(33), is a solution to Eq. (27). Tak-
ing into account Eqs. (31), (32) and (33), the first derivative
of β takes the form

β̇ = −a w sinψ+ ε

(
A1 cosψ−aB1 sinψ+w

∂u1

∂ψ

)
+ε2

(
A2 cosψ−aB2 sinψ+A1

∂u1

∂a
+ B1

∂u1

∂ψ
+w

∂u2

∂ψ

)
+ ..., (34)

On the other hand, the right-side of Eq. (29) can be rewritten
to the form:

εF(β, β̇) = εF(acosψ−
c1

w2
,−awsinψ)+ ε2

[
u1Fβ(acosψ−

c1

w2
,−awsinψ)

+

(
A1 cosψ−aB1 sinψ+w

∂u1

∂ψ

)
Fθ̇(acosψ−

c1

w2
,−awsinψ)

]
. (35)

Substituting Eqs. (31)–(35) into Eq. (29), collecting the
terms with like powers ofε, and setting them to zero, gives

∂2u1

∂ψ2
+u1 = F0(a,ψ)+2A1 sinψ+2aB1 cosψ, (36)

∂2u2

∂ψ2
+u2 = F1(a,ψ)+2A2 sinψ+2aB2 cosψ. (37)

The functionsAi(a), Bi(a), andui(a,ψ) can be found by
first expandingF j(a,ψ) andui(a,ψ) into a Fourier series:

F j = g j,0(a)+
∞∑

n=1

[g j,n cos(nψ)+h j,n sin(nψ)] , (38)

ui(a,ψ) = pi,0+

∞∑
n=1

[pi,n cos(nψ)+qi,n sin(nψ)], (39)

where

g j,n =
1
π

2π∫
0

F j(acosψ−
c1

w2
,−awsinψ) cos(nψ) dψ, (40)

h j,n =
1
π

2π∫
0

F j(acosψ−
c1

w2
,−awsinψ) sin(nψ) dψ, (41)

and then equating the harmonics of the same order. It should
be noted that the integration above is broken into two parts-
one with the limits 0 andπ and the other with the limitsπ and
2π. For example,

h0,1=
1
π

2π∫
0

F0(acosψ−
c1

w2
,−awsinψ) sin(ψ) dψ

=
1
π

2π∫
0

−µ(−awsinψ)
∣∣∣awsinψ

∣∣∣sinψ−c2(a cosψ−
c1

w2
)2 sinψ dψ

=
a2w2

π

[ π∫
0

sin3ψ dψ−

2π∫
π

sin3ψ dψ

]
=

8a2w2

3π
. (42)

After doing the above calculations we found

β = a cosψ−
c1

w2
+ ε [

c1c2a
w4
−

2c1c2a
3w4

cos2ψ−
c1c2

4w4

cos3ψ−
8µa2

9π
sin2ψ−

µa2

3π
sin3ψ

]
β̇ = −aw sinψ+ ε

[
−

4wµa2

3π
cosψ+

c1c2a
w3

sinψ

+w

(
4c1c2a

3w4
sin2ψ+

3c1c2

4w4
sin3ψ−

16µa2

9π

cos2ψ−
µa2

π
cos3ψ

)]
, (43)

where

ȧ= −
4wµ
3π

a2 ε +a2

[
14µc1c2

15πw3
−

4µc2

9πw
a

]
ε2, (44)

ψ̇ = w−
c1c2

w3
ε +

[
4µ2wa2

5π2
+ c1c2

2(
2a

3w5
−

c1

2w7
)

]
ε2. (45)

Figure4 shows a comparison of the analytical solutions for
the inclined, curved and the horizontal sections, Eqs. (15)–
(19) and Eqs. (43)–(45), with the numerical results, Eqs. (13)
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Figure 4. Comparison of the analytical solutions (solid line) for
the inclined, curved, and horizontal sections of the track with the
numerical simulation (dashed line).

Table 2. Parameters used for the analysis of a prototypical
pinewood derby car.

Parameter Value

θ 26◦

d 1.17 (m)
x̄ 0.098 (m)
ȳ 0.013 (m)
N 4
g 9.81 (m s−2)
m 0.191 (Kg)
mo 2.65×10−3 (Kg)
ro 0.0151 (m)
r i 2.54×10−3 (m)
k 0.0107 (m)
` f 4.21 (m)
`s 2.16 (m)
β1 26
βo 34.3
µk 0.167
CD 1.1
A 0.00146
ρa 1.2041
Iw 3.06×10−7 (Kg m−2)
IG 2.5205×10−4 (Kg m−2)

and (27), for the parameters given in Table2 and forε = 0.01.
From the figure it is clear that the analytical and numerical
results are in agreement. In the next section, the derived the-
oretical results are used to study trends in the velocity and
race time for hypothetical changes in the car’s physical pa-
rameters.
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Figure 5. Theoretical trends inv2 with the dissipative forces in-
cluded; results show the effects of varying ¯x (a), ȳ (b), m (c), and the
wheel parameters(d) with parameters given in Table2 and the nor-
malization constantsp= 0.09 m,q= 0.013 m, andu= 0.1091 Kg.

3.3 Trend studies

A conservative energy balance was used in Sect. 2 to ex-
plore trends in the car’s peak velocity as key parameters, or
groups of parameters, were changed. In this section, we have
included the dissipative forces that appear in the governing
equations, see Eqs. (13) and (25), to generate trend studies
and highlight some additional behavior of interest. While the
studies shown in this section were obtained from numerical
simulation, we have also validated their accuracy with the
analytical solutions, as shown previously in Fig.4.

The first series of results are shown in Fig.5. It is interest-
ing that the trends of Fig.5 are very similar to those presented
previously in Fig.2, results that were obtained by ignoring
the dissipation. For example, trends inv2 due to changes in
x̄, ȳ, and the wheel parameters are nearly identical. Similarly,
both figures show regions wherev2 can dramatically increase
for changes inm and other regions where the peak velocity
changes very little for increases inm. However, the results
from Figs.2 and 5 are not identical and certain important
differences do appear. In particular, the dissipative forces are
shown to significantly decrease the peak velocity.

Figure 6 further examines the effect of increasing mass
with plots of the car displacement and velocity. It is shown
that the car with highest mass is the fastest one, i.e. the first
one to reach the end of the track, see Fig.6a–b. While the
peak velocity has already been shown to increase with mass
in Fig. 5, the additional insight from Fig.6 is that the veloc-
ity is also larger on other sections of the track. It should be
noted that we have chosen two substantially different mass
values for the purposes of illustration, i.e. this causes more
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Figure 6. Displacement and velocity plots for two values of the
car massm= 0.05 Kg (dashed),m= 0.35 Kg (solid) and with the
remaining parameters given in Table2. The horizontal line in(a)
and(b) represents the finish line. The car with highest mass is the
first one to reach the end of the track.
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Figure 7. The race time of the car as a function of the car mass(a)
and the x-direction location for the car center of mass(b) with
parameters given in Table2 and the normalization constantsp=
0.09 m, andu= 0.1091 Kg. Beyond a certain mass value the race
time barely changes whit increased mass (a).

noticeable differences in the distance and the velocity time
histories shown in Fig.6. Since the race time and not the
displacement and velocity is the typical quantity of interest,
Fig. 7 shows the trends in race time for variations in the car
mass and ¯x. Focusing on the results of Fig.7a, one can see
regions where altering the mass can either make a large or
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Figure 8. Displacement and velocity for two values of the car mass
m= 0.02 Kg (dashed),m= 0.2 Kg (solid) and with parameters given
in Table 2 and µk = 0.2. The heavier (solid) car stops before the
lighter car when the track is sufficiently long.

nearly insignificant difference on the race time. In contrast,
the results of Fig.7b show the race time only changes linearly
with x̄.

Given the evidence presented thus far, it might seem rea-
sonable to conclude a car with a larger mass will always fin-
ish the first. However, this is not the case and one example
where this is not the case is shown in Fig.8. For this exam-
ple, the heavier car actually stops before the lighter car when
the track is sufficiently long. While this might seem like an
obvious case, since the heavier car stopped, other cases also
exist where neither car stops, as shown in Fig.9a. These
trends were further explored by generating the 3-D plot of the
race time as function of both the mass and the friction coeffi-
cient, shown in Fig.9b, and it can be seen that asµk becomes
larger the race time increases with the mass, as opposed to
decreasing as originally expected. This is significant because
the conservative energy balance analyses completely misses
this behavior. The disadvantages of adding mass to the car
are only revealed when using the full set of differential equa-
tions.

3.4 Sensitivity analysis

For nearly any design exercise it is important to consider
which factors or design parameters influence performance
the most. To gain insight into this question, we performed
a sensitivity analysis on the car race time as a function of
several key parameters. In the results that follow, we show re-
sults from a normalized sensitivity analysis and plots of the
UMFs (uncertainty magnification factors), which were de-
termined analytically (Coleman and Steele, 1999; Frey and
Patil; Hamby, 1994). The general form for thei-th UMF
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Figure 9. The race time of the car as a function of the car mass with
parameters given in Table 2 andµk = 0.35 (a). The race time of the
car as a function of both the car mass and the coefficient frictionµk

with parameters given in Table2 and the normalization constants
u= 0.1091 Kg(b).

factor can be expressed as follows:

UMFi =
Xi

t
∂t
∂Xi

(46)

where the sensitivity coefficient
∂t
∂Xi

is the ratio of the change

in output, in our case the race time, to the change in input
while all other parameters are held fixed. The quotientXi

t is
introduced to normalize the coefficient by removing the af-
fects of units. Therefore a large value of UMF for a certain
parameter means that the parameter has more influence on
the race time than a parameter with a small UMF value. In
Fig. 10, the UMF factor for different parameters is shown for
the case of the inclined track, Eqs. (12a), (12b) and (17b). We
consider five parameters, namely the projected area of the car
A, the total car massm, the kinetic coefficient of frictionµk,
the wheel radiusro, and the inner radiusr i . In Fig.10 the pa-
rametersXi are divided by the parameters considered in our
experiment and it can be seen that the dependence of UMF
on the parametersA, µk andr i is linear while it is nonlinear
in the case ofm andr0. Also, it can be deduced from the fig-
ure that overall the radius of the wheelro has more influence
on the race time compared to the other parameters, while the
projected area of the carA has less influence. For the param-
eters considered in our experiment, the race time is sensitive
in a decreasing order toro, µk, r i , m, andA.

In the next section, experimental investigations are per-
formed and compared to the analytical results.
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Figure 10. The uncertainty magnification factor as we change the
normalized cross section area (dashed line), mass (stars), friction
coefficient (circles), outer wheel radius (dotted) and inner wheel ra-
dius (solid line) with parameters given in Table2.

4 Experimental investigations

This section describes the experimental investigations per-
formed to validate the trends described in the earlier the-
oretical sections of the paper. We first describe the experi-
mental track and vehicles used in the experimental trials then
proceed to discussing the parameter identification methods.
These sections are followed by a discussion of the trends ob-
served in the experimental trials.

4.1 Track description

A picture of the experimental track is shown in Fig.11. As in
the theoretical studies, the geometry for the aluminum track
can be divided into three distinct regions; the initial inclined
region is connected to a relatively short curved section that
is then followed by a final straight section that is horizontal.
The gravity car begins the race at the starting position on the
inclined section. The car is held in place by a spring-loaded
peg that protrudes from the track center and is withdrawn
to initiate the race. The car then travels down the inclined,
curved, and horizontal sections of the track until it reaches
the finish line where an automatic timer records the elapsed
time. The timer is triggered at the start of the race by a mi-
croswitch attached to the start gate. The finish of the race
is determined when the car breaks an infrared beam of light
that is shone down from the timer onto the sensors in the
track. While the car is traveling down the length of the track
it also occasionally makes contact with a raised center por-
tion which acts to recenter the vehicle.
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Figure 11. Experimental track and car body used during the ex-
perimental investigations. The outer shell of the car is removable to
allow for trials with different masses and centers of mass.

4.2 Gravity car description

The gravity car is comprised of a base made from a stan-
dard pinewood derby kit that has been modified to be fitted
magnetically with four plastic shells which differ in shape.
The base is hollow and weights can be placed inside to vary
the car’s center of mass. Four nails act as axles which slide
into grooves on the bottom face. A standard base with in-
terchangeable shells was created to isolate the effects of dif-
ferent car bodies on race times by eliminating uncertainty
due to variable wheel alignments, friction coefficients, etc. It
is common in the pinewood derby to use graphite to reduce
friction between the axles and the wheels, but we did not use
graphite in our experiment because spills and variability of
application would cause inconsistent results.

4.3 Identification of car parameters

Several parameters had to be experimentally identified dur-
ing the course of our investigations. In particular, separate ex-
periments were required to obtain the radius of gyration for
the wheels, the mass moment of inertia for the car, and the
friction coefficient between each wheel and axle. An instru-
mented pendulum apparatus was constructed to obtain the
vehicle’s mass moment of inertia. The procedure consisted
of attaching the car to a pendulum platform, measuring the
car-pendulum system oscillations, and then using the period

between oscillationsT =
2π

ω
√

1− ζ2
, whereζ is the damping

ratio obtained via logarithmic decrement andω is the linear
natural frequency of the car-pendulum system, to extractω.
Using the parallel axis theorem, the mass moment of inertia

was obtained from the expression

IG =
Mgd̄
ω2
− Ip−md2 (47)

whereM is the total mass of the car and pendulum platform,
d is the perpendicular distance from the pivot point to the car
center of mass,̄d is the perpendicular distance from the pivot
point to the combined car-pendulum center of mass, andIp

is the mass moment of inertia for the pendulum platform. In-
strumented wheel spin tests were used to estimate the radius
of gyration for the wheels and the wheel-axle friction coef-
ficient. In these tests, the average angular deceleration was
determined from time betweenn complete rotations of the
wheel; a laser tachometer was used to detect full tire rota-
tions and monitor the time between successive rotations. If
we let t1 be a reference time,tn ben revolutions into the fu-
ture, andtr denoter revolutions into the future, the following
expression gives the angular deceleration

α =
4π

tr − tn

(
r

tr − t1
−

n
tn− t1

)
, (48)

which can be related to the friction coefficient and tire mass
moment of inertia through a summation of forces and mo-
ments. More specifically, the following was obtained by sum-
ming moments about the axle

α = −
µkmogri

Io
. (49)

To solve forµk and Io indenpendently, a special attachment
was affixed to the wheels and the spin test was repeated; the
second set of experiments that allowed the unknownsµk and
Io to be identified.

4.4 Experimental trends

Two tests are performed to validate the theoretical trends for
car mass and horizontal center of mass discussed in earlier
sections. The first holds all of the car parameters constant
while varying the car mass. As mass was added between tri-
als, a constant center of mass was maintained by changing
the locations of magnetic weights in the hollowed out car
body. These tests used the block shell shown at the bottom
right of Fig. 11. The second series of tests changed the hor-
izonta l center of mass by moving a weight along the length
of the car.

The experimental mass plot (a) verifies the theoretical ad-
vantage of increasing the car’s mass seen in both the energy
balance and the numerical simulation of the car’s equation of
motion, Eqs. (12) and (22). The plot also highlights the di-
minishing returns of adding mass as the overall mass of the
car increases. This trend is exaggerated in the energy balance
balance plot (Fig.2) because it does not take into account the
energy lost due to non-conservative forces. The energy bal-
ance plot shows the race time levels out at around half of the
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Figure 12. Experimental results of race times for cars with varying
mass(a) and varying the horizontal center of mass(b). The mass is
normalized by the out-of-the-box car mass ofu= 0.1091 kg and ¯x
is normalized by the out-of-the-box center of massp= 0.09 m.

mass of an out-of-the-box car. The plot of race times result-
ing from the numerical simulation of the car’s equations of
motion (Fig.5) portrays a more accurate representation of the
relationship between mass and race time. This plot shows the
advantage of adding mass starting to level out at around two
times the out-of-the-box car mass, which is consistent with
the experimental data presented in Fig.12. As mass is added
to the car, it increases the normal force acting on all four
wheels, as seen in Eqs. (11a) and (11b). Higher magnitude
normal forces correspond to more friction between the axle
and the wheel which slows the car down, a phenomena which
is not reflected in the energy balance plot. The horizontal cen-
ter of mass trends found experimentally also comply with
both theoretical and simulated results. The simulated results
and experimental plots indicate that changing ¯x between 1
and 1.5 times the out of the box parameter lowers race times
at a faster rate. Increasing ¯x moves the center of mass farther
from the starting line, which allows the car to continue accel-
erating along the straight section of the track for longer than
a car with a center of mass closer to the front wheels. The
advantage gained by a longer acceleration time corresponds
to a faster race time. One downside to moving the center of
mass to the extremities of the car, one that is not accounted
for in the mathematical model, is a higher instance of wheel
impacts with the center track partition. Moving the center of
mass to either extreme – the front or the rear – causes the car
to wobble along the track. It should be noted, however, that in
the experimental results, the advantages gained by increasing
the center of mass offset the unfavorable wobbling condition.

5 Discussion

Experiments showed that increasing the car’s mass results
in a faster race time, a result that is consistent with theoret-
ical studies of the energy balance and the numerical simu-
lation of the equation of motion. However, when the car’s
mass exceeds a certain limit, it actually leads to a reduction
in race time because of the increased friction caused by a
larger mass. This phenomena is not accounted for in the sim-
ple energy balance, but comes to light through theoretical in-
vestigations. Experimental findings also showed increasing
the horizontal center of mass will decrease the race time, a
result that validates theoretical findings.

In addition to making the modifications suggested by
our theoretical and experimental results, the following tech-
niques can be employed to further reduce race times. Polish-
ing the axles with progression of coarse to fine sandpaper is
an effective way to reduce friction and improve race times.
Reducing the radius of gyration by removing mass from the
outer portion of the wheels is another modification that can
effectively reduces race times. If given the freedom to mod-
ify the wheel significantly, our sensitivity analysis showed
that changing the outer radius of the wheels has one of the
largest effects on reducing race time; one could alternatively
decrease the inner radius of the wheel or implement a vari-
ety of techniques to reduced the friction between the wheels
and their axle. Race times were the least sensitive to the cross
sectional area of the car. This finding suggests that the signifi-
cant amount of time and resources put into creating sleek car
bodies would be better used to change parameters that the
sensitivity analysis found to have a greater impact on race
time. If the rules of a given pinewood derby race do not per-
mit wheel alterations, the most efficient parameter to manip-
ulate is the friction between the wheel and the axle.

Another modification that decreases race times involves
attaching a long thin object to the front of the car. This tech-
nique that takes advantage of the starting mechanism of the
racetrack. The car begins to move as soon as the extension
loses contact with the retractable pin, which rotates out of
the way at the start of the race, essentially giving the modi-
fied car a running start. In summary, our findings add to the
existing body of knowledge about how to modify gravity cars
to reduce race times and offers a ranked order of importance
for these modification based on a sensitivity analysis.

Beyond the specific problem studied herein, we believe
some of the research findings are generic and could provide
insights in other application areas where the relationship be-
tween aerodynamics, gravity, and friction alter performance,
e.g. skateboarding, rollerblading, and snowboarding. For ex-
ample, the energy balance expression could also be used to
predict trends in peak velocity for a skateboarder.
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