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This paper investigates the underlying physics of a gravity car race. This work seeks to provide a
sound theoretical basis to elucidate the design considerations that maximize performance while simultaneously
dispelling false assertions that may arise from incomplete analyses. The governing equations are derived and
solved analytically to predict race times; trend analyses are then performed along with a sensitivity analysis
to ascertain the most important factors that influence performance. The inferences from a conservative energy
balance are then compared with the predictions from the full setfigrdntial equations, which include the
dissipative terms associated with air resistance and friction.

Evans(2008, Coletta and Evans used an algebraic function

to obtain an analytical expression for the time and speed as

function of the distance traveled along the track. Their analy-
Gravity car races have provided their enthusiast numerousis included the rotational energy of the wheels, rolling fric-
thrills over the years. While some of the longer-standingtion, and air resistance. In an early woBqwley et al (1989
competitions include the Soap Box Derby and the Pinewoothbtained an approximation for the race time by considering
Derby, new events, such as the Extreme Gravity Racing Sethe curved section of the track as two straight parts.
ries and the Wile Street-luge Sliders of the X-Games, have This paper seeks to provide a sound theoretical basis for
also recently emerged. Although the race vehicles from thesenaking car modifications from the derivations herein. Trends
events can drastically vary in their size, shape, and complexin the peak velocity and race time are investigated from an
ity, they also share many common challenges. For examplegnergy balance and the governing equations. In addition, we
they are all driven by the force of gravity and must minimize compare the results of our analyses to a series of experimen-
the forces that oppose the vehicle motions, such as wind reg| results that verify the trends unveiled in our analyses also
sistance and friction. occur experimentally. As a part of our theoretical investiga-

The pinewood derby is one of the more distinctive events.tions, a sensitivity analysis was performed to ascertain the

It originated as a Cub Scout competition where elementarye|ative importance of five key parameters on reducing race
school children raced a car assembled from a kit consistingjmes.
of a block of WOOd, four nails and wheels. A small indUStry The work contained in this paper is Organized as follows.
has sprung up around the pinewood derby, with countless inThe next section considers the conservative system and then
ternet sites and bOOkﬁering tipS, tricks and even enhanced performs an energy balance to derive an expression for the
car parts to the estimated 43 million children that have bU“tpeak velocity. In Sect. 3, the equation of motions are de-
pinewood derby cars since its foundin@drguilo and Gar-  rived for the two sections of the track, namely the straight
guilo, 2011, Pedigg 2002 Reinke 2010. While there are  and curved regions, taking into account the nonconservative
many who dfer advice, only a few scientific investigations forces. Analytical solutions are then derived for the govern-
have been published and it is rare to find accurate explangng equations. A sensitivity analysis is performed to deter-
tions on how certain modifications could result in faster racemine the relative importance of altering the cross sectional
times Coletta and Evans2008. In referenceColetta and
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lllustration of a car at the starting line (upper left) with the location of the center of mass markedroly. Bottom illustration
shows the car at several locations along the track and the important track geometry.

area, car mass, friction cfiient, and wheel parameters to straigth section (location two). When the system is treated as
reduce the race times. The trends from the theoretical investia rigid body, as opposed to the point mass assumptidatudt
gations are then compared with a series of experimental test®004), both translational and rotational energy terms appear
in Sect. 4. Finally, the last section provides a discussion of then the kinetic energy

combined theoretical and experimental investigations. The

discussion also explains several additional opportunities forr;_,, = }m\ﬁ + N (|W¢'52), 2)
improving performance beyond the conclusions made from 2 2
theoretical and experimental investigations. wherem is the total vehicle masy, is the velocity of the

center of mass, and is the number of wheels, with a mass
moment of intertid,,, which rotate with an angular velocity
¢. We next assume the wheels roll without slip, which allows

An energy balance often provides a useful alternative to dithe car's velocity to be written in terms of the angular ro-
rectly solving the governing fierential equations and is used fations of the wheels =rq¢, wherer, is the wheel radius.
here to elucidate how design changes can influence the vehf:fter definining the wheel mass moment of inertia in terms

cle performance. The generic form of an energy balance i€ @ radius of gyration, the change in kinetic energy can be
written as

1 my [ k 2
T152+ U120 = Wa— Wy, (1) T1o2==M[1+N—|— V2, (3)
2 m\rg
where 71,2 is the change in kinetic energ¢{i,, is the
change in potential energyy/, is the added work of external
forces, andWjy is the work due to energy dissipation over
the time interval front; to t,. Figurel shows the car at three
locations along the track, i.e. the starting line, at the entryqy, , — mg(;?(l— cosd) — Ysine—d), )
into the final horizontal section, and at the finish; this sec-
tion will use these three locations to gain insight when ap-whered is the vertical distance to the starting position on the
plying an energy balance. Consider first the transition fromtrack, y is the vertical distance from the track to the center
the starting line (location one) to the beginning of the final of massxis the horizontal distance from the front of the car

wherem, is the mass an#l the radius of gyration of a sin-
gle wheel. The change in potential energy between the two
locations is given by
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by the parameters of an out-of-the-box pinewood derby car
Energy balance trends showing the trendsAnwhile and restricted the range to attainable limits. After applying
varying X (@), ¥ (b), m (c), and wheel paramete(d). The dotted  the track geometry, parameters given in Table 1, we observe
line in (d) represents a car with three wheels contacting the trackv? to increase and decrease linearly with changesandy,
or N =3. The parameters listed in Tableand the normalization  respectively, withx having nearly four times the impact of
constantp = 0.09m,q=0.013m, andi= 0.1091Kg were used.  thany. However, the total mass of the car and the combined
terms that appear in the denominator dominate the expres-
sion for v? — increasing the mass to double the out-of-box
parameter has more than 15 times the impact of doing the
same tox. TheV? trend in plot (d) highlights the benefit of
reducing then,/m ratio, which can be accomplished by ei-
ther removing mass from the wheels or by increasing the car

to the center of mass, arttis angle of incline of the track
(see Fig.1 for geometry). Assuming no work is added or
dissipated from the system, Eq8) @nd @) can be inserted
into Eq. (L) to obtain an expression for the velocity

2a(d + Xsind + V(cos — 1 mass reIative.to Fhe wheel mass. This plgt addi_tionally shows
V2= g( v )). (5) that substantial increases could be achieved in the peak ve-
1+ND (rk)z locity provided it were possible to reduce the mass moment

of inertia for the wheels, i.e. this is captured by a reduction

This energy balance solution alone can be used to providén the radius of gyratiok. Thus, we highlight that removing
much insight into how design changes will influence the ve-material from the outer portion of the wheel would reduce
hicle velocity. More specifically? will increase linearly for  bothm, andk and should have a doubl@ect to increase the
linear changes irx, but v? will decrease linearly for linear peak velocity.
changes iny, this suggests the center of mass should be In summary, we have presented an energy balance that
located as far back and close to the track as possible. Fosuggesty should be as small as possible anahdm should
cusing on the denominator of Ecp)( the combined terms pe as large as possible. However, it is important to recog-

my [ K nize certain practical and physical restrictions that also con-
Nﬁ(r_) increase the denominator to be greater than ON€ytrain these values; for example, locatindpehind the rear
thus the smaller this grouping of terms can be made, theaxle would cause the car to tip over, so the rear axle should
greater the increase wf. Settingm, equal to zero in this be located as far back as possible asthould be just in front
expression gives the same result as if the car was being modf the rear axle. Similarlyy must provide clearance between
eled as a point mass. This assumption, which is commonlythe car bottom and the raised center of the track. WhileZFig.
made in pinewood derby analyses, neglects the reduction imlso suggests that lifting one whedl the track will increase
race time that can be achieved by manipulating the combinedhe car’s velocity, additional energy losses occur if the fourth
terms shown in Fig. 2d. wheel is not low enough to contact the raised center of the

To illustrate the importance of andy, along with the track, which helps to maintain alignment. The energy bal-
terms that appear in the denominator, we have varied the difance neglects dissipative forces and therefntinues to
ferent model parameters to ascertain their influence?on grow as mass is added to the car; this trend does not reflect
For example, Fig2 shows the trends in the car’s peak ve- the fact that after a certain point velocity reduction due to
locity for changes in the location of the center of mass andfriction will outweigh the benefit of adding additional mass.
wheel parameters — at least in the absence of any dissipativd/e therefore consider the results of this section as guide-
forces. In these plots, we have normalized the horizontal axelnes with certain limits and explore this notion even further



in the upcoming sections. In the next section, the equations of @ ) ®
(m-4m.)g
lg

motion are derived with the inclusion of the nonconservative
forces.

2Bs

This section derives the equation of motion for a prototyp-
ical pinewood derby car. The governing equations are later
used to further explore the influence of design choices and
parameter uncertainty on the race times of the vehicle. The “

m.
derivation that follows has been split into two parts with sep- i ™9 N
arate derivations for the curved and straight sections of the ¢
track. To complete the analysis, it was assumed that the car BN As ™\
wheels would roll without slip and that the length of the car e
is negligible compared to the length of the track. N

Free body diagram of the forces (a) the assembled car,
(b) only the car body(c) the rear wheel, an@) the front wheel.
Consider the inclined portion of the track shown in Flg.
Applying notations from the previous sections, the kinetic
energy becomes

T = %m(1+ N%(%)z)s{ (6)

summing the moments about an axis throdgand solving
for Ng in a similar manner gives

(Ve — o) (8- gsing) — (¢ — X)gcosy
ts — A

wheresis the distance the car’s center of mass has tra\’ele‘\ijzvhereé’A is the distance from the front of the car to the front
along a straight section of the track asd Vis the vehicle’s 4.6 /s the distance from the front of the car to the rear

velocity along the flat section of the track. The potential €N-axle, andx; is the center of mass location for the car body

Ng = (m-4m,) (10)

ergy of the system is given by (see Fig.1). After inserting the expressions fd = uxNa
o= qu 4 Xsing + Jicosh - ssin@). ) z)nr(:nfb = uxNg into Eq. @), the governing equation takes the

In addition to the conservative forces, the nonconservatlve

forces of air resistance and sliding friction between the® +y88 =1 (11)
wheels and axles must be taken into account. Here, we Not& 1 ore the parametegsands are given by

sliding friction causes a moment that opposes the wheel rota-

tion. Applying Lagrange’s equation, where the nonconserva- paACp (123)

tive forces from drag and friction are included, results in the” = oml1s N™ (X 2\’
following governing equation: m( + (r_) )

2
m 1+N@(5)
mir

o

. . sing — Zyk 1-4%)cosd

N . 1 .. ri ri

s—mgsm@:—épaACDs|s4—2fA——2fB—, (8) n= > g. (12b)
fo. To 1+ N% ()

where fp is the sliding friction force on a front wheel and ) _ )
fg is the sliding friction force on a back whegl, is the air ~ Before departing this section, we note the general form of
density,Cp the drag cofficient, andA is the projected cross- EQ- (11) can be applied to either the horizonta0) or in-
sectional area. To derive the expression for the nonconservalined @ # 0) sections of the track.

tive forces, we note that a roll with slip condition was ap-
plied. To resolve the frictional forcef and fg, a Coulomb
friction law was applied to writefa = uxNa and fg = uxNg,
whereyy is the kinetic co#ficient of friction andNa andNg

are the normal forces that act at the locations shown inFrig.
next, the moments were summed about the rear axle to obtai
expression for the normal forces

This section derives an exact analytical solution for the
straight sections of the track. Along the straight track the
ﬁlgn of the car’s velocity is always positive therefdse= §

g. (11). The analysis starts by substituting= § into
Eq. (11) to obtain

ho — ¥c)(5-gsi - X
NA:(m_émj)( Ye)(8 gsg:fi){;(t’a Xc)gcosy ©  yeptep (13)




wherev is the vehicle’s velocity. Here, we note the value of
in Eq. (L3) can be either positive or negative depending on__, . . . . .
i a. L3 b 9 b g This section derives the governing equation for the curved

which part of the straight track the car is located. When the " .

car is on the inclined sectiopis positive, but it takes on a sectlon' of the track gnd IS fOI!OWEd by'the development.of an

negative value for the horizontal section of the track. There-"’u:)pm)('m"’lte analytical solutlon. we .f'rSt express th_g kinetic

fore the solution to Eq.13) must consider the two parts of energy of the sys_tem using the roll without slip condition and
a radius of gyration description for the wheel mass moment

the straight track. In the case of the inclined track we begin finerti i th . ion for the kineti
by rearranging Eq.1(3) to give the following dfferential re- otinertia, asin the previous expression for the kinetic energy,
to obtain the following:

lationship:
2
dv I R CIVLLY LS LY P 2

U_Wfdt. as 7 Zm[(p Y +N— o L= G (20)
After integrating this relationship and solving farthe ana- ~ Wherep is the track radius of curvaturé; is the car's mass
lytical expression for the vehicle’s velocity becomes moment of inertia, ang is the angular position of the center

of mass. The potential energy of the system is given by
V= \/g tanl‘( Vynt +tanh( %vo)), (15) U =mg(o-Y)(1-cosB). (21)

Applying Lagrange’s equation, where the nonconservative
forces from drag and friction are included, results in the fol-
"lowing governing equation:

wherevy = v(0) is the initial velocity on the inclined track.
To obtain the analytical expression for the car’s position
Eqg. (L5 was integrated to obtain

kK\2 . gl _
s= so+%ln cos!‘( Vynt+tanh( %Vo))] _% {(P NP +N= (ro) oo+ E},B+ mg(p — y) sing
__Pa oo n
In [cosk(tanhl( %vo))], (16) =-5ACop BII Zﬂkpro(NA +Ng), (22)

To resolve the normal forcddy andNg, the moments were
wheres, is the initial position of the vehicle. Assuming the summed about the front and rear axles, which yields
car starts from rest, wherg, = v, = 0, the analytical solu-
tions for the velocity and position can be simplified to

m-4m, _ .
Na = 722 [(¢a = X)(gcoss + (0~ 1)87)
- \/gtanh( NTT) (17a) o i
) +Hro=Yogsing+B)p =)+ ==~ (23)
s==In(cosh(yy7t)). (17b)
Y m-—4m,
We next consider the horizontal section of the track and pre-N& = o —ln [—(ro = Ye)(gSing + (0 - Y)B)
sume the car enters this sectiontatt;. The solution to G,B
Eq. (13) is given by +(% — £a) (gcoB+ (0 - V)B% ] - (24)
__[n — B 1 Equations 23)—(24) can then be combmed to obtain the gov-
V= \ ¥ tan( V=yn (t=t) - tan( Vl)) (18) erning equation for the curved section of the track,

wherev; = v(t;) is the initial velocity of the car as it enters the 8+ uBIBl + @ CosB + w?sing = 0, (25)
horizontal section of the track. The position of the car along

5 ~ .
the horizontal section of the track is obtained by integratingWhere the parametess w*, & andrfiare given by

Eq. (18), which yields the following following expression: [%‘ACDEZ + 2up i (m— 4mo)] 0-V)
= fo (26a)
:__|n[sec( V=yn(t—ti) +tanm’( ))} "
1 W e mg(ﬁ] y) (26b)
- I [sec(tan ( Vl)) (19) o 2up i (nj 4m~)9’ (26¢)

m
whereu is position along the horizontal section of the track. K

2
In deriving this result, it is important note thaft;) = 0 was M= m[(p -2+ N2 (—) P2+ le . (26d)
applied to obtain Eq.19). Mo \To



In order to find an approximate solution, we Taylor expand

Eq. 25) and introduce a small parametewhich gives

B+ euBlBl+WPB+eCr B2+ =0, (27)
where
Ci=a, C= _—Za (28)

The book-keeping parameterwill serve as a perturbation

parameter and will be set equal to unity at the end. In or-

der to find an approximate solution to EQR7, we use
the method of Krylov-Bogoliubov-Mitropolsky (KBM), see
Mickens (1996 andMinorsky (1962. Equation 27) can be
written as

B+WPB+cy =€ F(B,p), (29)
where
F(B.8) = —uBIBl - c2 B2 (30)

We assume that the solution to EQ7) takes the following
form

ﬁzacosw—\%lz+<su1(a,xp)+e2 () + ..., (31)

where thauy;(a,¢) are periodic functions af, with period 2r,
and the quantitiea andy are functions of time defined by
the following equations:

e A(a) + €2 A(@) + ...,
W+ € By(a) + €2 By(@) + ...,

a =
v
The functionsu;(a,y), Ai(a) and Bj(a) are to be chosen in
such a way that Eq3(), after replacing andy by the func-
tions defined in Eqs3@)—(33), is a solution to Eq.47). Tak-

ing into account Eqs.3Q), (32) and @3), the first derivative
of g takes the form

(32)
(33)

B=-awsiny +e (Alcoa//—aBlsin¢+w Z—l;/l)

ouy ouyg oup

(AQCOS/I a52$|nl//+ Aq 6_ + Blw +WwW w)
On the other hand, the right-side of EQ9) can be rewritten
to the form:

. (34)

eF(8,B) = eF(acosy — v% —awsiny) + €2 [ulFﬁ(acoa// - \%2 —awsiny)
. ou C .
+ (A1 cosy —aB; siny +w 6—1;) F;(acosy — leZ —awsmw)] . (35)

Substituting Egs.31)—(35) into Eq. 9), collecting the

terms with like powers o€, and setting them to zero, gives
%uy
6zp2 +U; = Fo(a,y) + 2A; siny + 2aB; cosy, (36)
62

+ Uz = F1(a, ) + 2A; sing + 2aB, cosy. (37)

2

The functionsA;(a), Bi(a), andu(a,) can be found by
first expandingd=;(a,) andui(a,y) into a Fourier series:

Fi=00()+ Y [gjn costw) + hjn sin(w)], (38)
n=1
U(@y) = pio+ ) [Pin COSOY) +Gin sinW)], (39)
n=1
where
2n
Qjn= % f Fi(acosy — %,—awsinw) cosfwy) dy, (40)

Jn_

>x||—\

2n
fF,(acoa//—%,—awsinz//) sin(ny) dy, (42)
0

and then equating the harmonics of the same order. It should
be noted that the integration above is broken into two parts-
one with the limits 0 anet and the other with the limits and

2r. For example,

g
ho,1=7—1r fFo(acos//— %,—awsinlp) sin@) dy
0

2
:}f—,u(—awsinzp)|awsinw'sinw—cz(a cosﬁ—\%z)zsinzp dy
0

T
0f5|n31// dy — fsm31// dz//}

After doing the above calculations we found

azw2 azw2

(42)

cica  2cica
12_ 142 COSQﬁ—
w4 3wA

8ua? z
cosab—g—: stﬁ—% sin3y

G
4wt

C1
ﬁzacoap—ﬁ+e[

Awua®

cosy + Q1ce8 siny
wa

16ua®
71'

B=—-awsing +e |-

3¢
4w

sin2y + sin3y — ——

4c1c2a
3w

2

cosy — /“% cos 30)} , (43)

where

4w 2 [ 14;uC1C2

. 4/,[C2
a= a’e+a’ 15708

9w (44)

2
i a| e
S0k 4u Wa2 €1yl 2
VEWS s 6+[ 52 2(3vv5 2w7)}
Figure4 shows a comparison of the analytical solutions for

the inclined, curved and the horizontal sections, E4S)«
(19) and Egs.43)—(45), with the numerical results, Eq4.3)

(45)



Comparison of the analytical solutions (solid line) for
the inclined, curved, and horizontal sections of the track with the

numerical simulation (dashed line).

Parameters used for the analysis of a prototypica

pinewood derby car.

Parameter Value

6 26°

d 1.17 (m)
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N 4
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B 26
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Theoretical trends iv? with the dissipative forces in-
cluded; results show thefects of varying«(a), y (b), m(c), and the
wheel parameter@) with parameters given in Tab®and the nor-
| malization constantp = 0.09 m,q=0.013m, andu = 0.1091 Kg.

A conservative energy balance was used in Sect. 2 to ex-
plore trends in the car’s peak velocity as key parameters, or
groups of parameters, were changed. In this section, we have
included the dissipative forces that appear in the governing
equations, see Eqsly) and @5), to generate trend studies
and highlight some additional behavior of interest. While the
studies shown in this section were obtained from numerical
simulation, we have also validated their accuracy with the
analytical solutions, as shown previously in Hg.

The first series of results are shown in Fglt is interest-
ing that the trends of Fich are very similar to those presented
previously in Fig.2, results that were obtained by ignoring
the dissipation. For example, trendsvihdue to changes in
X, ¥, and the wheel parameters are nearly identical. Similarly,
both figures show regions wherécan dramatically increase
for changes irm and other regions where the peak velocity
changes very little for increases in However, the results
from Figs.2 and5 are not identical and certain important
differences do appear. In particular, the dissipative forces are
shown to significantly decrease the peak velocity.

Figure 6 further examines thefiect of increasing mass
with plots of the car displacement and velocity. It is shown

From the figure it is clear that the analytical and numericalthat the car with highest mass is the fastest one, i.e. the first
results are in agreement. In the next section, the derived thesne to reach the end of the track, see Bg-b. While the
oretical results are used to study trends in the velocity anceak velocity has already been shown to increase with mass
race time for hypothetical changes in the car’s physical pain Fig. 5, the additional insight from Fig is that the veloc-

rameters.

ity is also larger on other sections of the track. It should be
noted that we have chosen two substantialljedent mass
values for the purposes of illustration, i.e. this causes more
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t(s) Displacement and velocity for two values of the car mass
m= 0.02 Kg (dashed)n = 0.2 Kg (solid) and with parameters given
in Table 2 and ux = 0.2. The heavier (solid) car stops before the

lighter car when the track is fiiciently long.

Displacement and velocity plots for two values of the
car masan= 0.05Kg (dashed)m= 0.35Kg (solid) and with the
remaining parameters given in Talfe The horizontal line in(a)
and(b) represents the finish line. The car with highest mass is the

first one to reach the end of the track. L .

nearly insignificant dference on the race time. In contrast,
the results of Figrb show the race time only changes linearly
with x.

é e Given the evidence presented thus far, it might seem rea-
33 ¢ 1 sonable to conclude a car with a larger mass will always fin-
© % 1 ish the first. However, this is not the case and one example
i1 1 where this is not the case is shown in FggFor this exam-

“w 25f 1 ple, the heavier car actually stops before the lighter car when
= ‘ the track is stficiently long. While this might seem like an

0 05 s 25 obvious case, since the heavier car stopped, other cases also
o m/u exist where neither car stops, as shown in Big. These
g 24 trends were further explored by generating the 3-D plot of the
5 238 race time as function of both the mass and the frictiorffcoe
§ 236 cient, shown in Fig9b, and it can be seen that@sbecomes
G larger the race time increases with the mass, as opposed to
o234 decreasing as originally expected. This is significant because
= 232 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ the conservative energy balance analyses completely misses

02 04 06 08 f}p 12 14 16 18 this behavior. The disadvantages of adding mass to the car

are only revealed when using the full set offtdiential equa-

The race time of the car as a function of the car nfays ~ 1ONS-

and the x-direction location for the car center of mésy with
parameters given in Tabl2 and the normalization constangs=
0.09m, andu =0.1091 Kg. Beyond a certain mass value the race

time barely changes whit increased mass (a). For nearly any design exercise it is important to consider

which factors or design parameters influence performance

the most. To gain insight into this question, we performed
noticeable dierences in the distance and the velocity time a sensitivity analysis on the car race time as a function of
histories shown in Fig6. Since the race time and not the several key parameters. In the results that follow, we show re-
displacement and velocity is the typical quantity of interest, sults from a normalized sensitivity analysis and plots of the
Fig. 7 shows the trends in race time for variations in the carUMFs (uncertainty magnification factors), which were de-
mass andk. Focusing on the results of Figa, one can see termined analytically Coleman and Steeld999 Frey and
regions where altering the mass can either make a large dratil, Hamby, 1994. The general form for thé-th UMF
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The uncertainty magnification factor as we change the
normalized cross section area (dashed line), mass (stars), friction
codficient (circles), outer wheel radius (dotted) and inner wheel ra-
dius (solid line) with parameters given in Taldle

The race time of the car as a function of the car mass with
parameters given in Table 2 apd= 0.35 (a). The race time of the
car as a function of both the car mass and thefament friction uy
with parameters given in Tab and the normalization constants
u=0.1091Kg(b).

factor can be expressed as follows: This section describes the experimental investigations per-

X ot formed to validate the trends described in the earlier the-

UMF; = T X (46)  oretical sections of the paper. We first describe the experi-
|

mental track and vehicles used in the experimental trials then
. . t . i proceed to discussing the parameter identification methods.

where the sensitivity cdﬁmenta—xi is the ratio of the change 156 sections are followed by a discussion of the trends ob-

in output, in our case the race time, to the change in inputserved in the experimental trials.

while all other parameters are held fixed. The quotién’ts

introduced to normalize the cfiiwient by removing the af-

fects of units. Therefore a large value of UMF for a certain

parameter means that the parameter has more influence dhpicture of the experimental track is shown in Fig. As in

the race time than a parameter with a small UMF value. Inthe theoretical studies, the geometry for the aluminum track

Fig. 10, the UMF factor for diferent parameters is shown for ¢an be divided into three distinct regions; the initial inclined

the case of the inclined track, Eq&26), (12b) and (L7b). We ~ egion is connected to a relatively short curved section that

Consider five parametersy name|y the projected area Of the C& then fO"OWed by a ﬁnal Straight SeCtion that iS horizontal.

A, the total car mass), the kinetic cofficient of frictiony, ~ The gravity car begins the race at the starting position on the

the wheel radius,, and the inner radius. In Fig. 10the pa-  inclined section. The car is held in place by a spring-loaded

rametersX; are divided by the parameters considered in ourP€g that protrudes from the track center and is withdrawn

experiment and it can be seen that the dependence of UM initiate the race. The car then travels down the inclined,
on the parametera, w andr; is linear while it is nonlinear curved, and horizontal sections of the track until it reaches

in the case ofm andr,. Also, it can be deduced from the fig- the finish line where an automatic timer records the elapsed
ure that overall the radius of the wheglhas more influence ~time. The timer is triggered at the start of the race by a mi-
on the race time compared to the other parameters, while throswitch attached to the start gate. The finish of the race
projected area of the cérhas less influence. For the param- 1S determined when the car breaks an infrared beam of light

eters considered in our experiment, the race time is sensitivéhat is shone down from the timer onto the sensors in the
in a decreasing order 1@, u, i, m, andA. track. While the car is traveling down the length of the track

In the next section, experimental investigations are per-t also occasionally makes contact with a raised center por-
formed and compared to the analytical results. tion which acts to recenter the vehicle.



Timer was obtained from the expression

Fina! Straight M d
- Section IG — gz _ Ip _ md2 (47)
" w

whereM is the total mass of the car and pendulum platform,

d is the perpendicular distance from the pivot point to the car

center of masg] is the perpendicular distance from the pivot

point to the combined car-pendulum center of mass, Ilgnd

is the mass moment of inertia for the pendulum platform. In-

strumented wheel spin tests were used to estimate the radius

of gyration for the wheels and the wheel-axle friction coef-

ficient. In these tests, the average angular deceleration was

determined from time betweeamcomplete rotations of the

wheel; a laser tachometer was used to detect full tire rota-

Starting Line tions and monitor the time between successive rotations. If
we lett; be a reference timé, ben revolutions into the fu-
ture, and; denoter revolutions into the future, the following

Experimental track and car body used during the ex- €xpression gives the angular deceleration
perimental investigations. The outer shell of the car is removable to

allow for trials with diferent masses and centers of mass. a= 4n r.__n (48)
tr_tn tr_tl tn_t]_ ’

Curved
Section

Inclined
Section

which can be related to the friction déieient and tire mass
moment of inertia through a summation of forces and mo-

The gravity car is comprised of a base made from a stanments. More specifically, the following was obtained by sum-
dard pinewood derby kit that has been modified to be fittedMing moments about the axle
magnetically with four plastic shells whichftgr in shape. LMogi

The base is hollow and weights can be placed inside to var = —————
the car’s center of mass. Four nails act as axles which slide
into grooves on the bottom face. A standard base with in-To solve foru, andl, indenpendently, a special attachment
terchangeable shells was created to isolate fileets of dif-  was dfixed to the wheels and the spin test was repeated; the
ferent car bodies on race times by eliminating uncertaintysecond set of experiments that allowed the unkngwrend

due to variable wheel alignments, friction ¢ideients, etc. It |, to be identified.

is common in the pinewood derby to use graphite to reduce

friction between the axles and the wheels, but we did not use

graphite in our experiment because spills and variability of _ .
application would cause inconsistent results. Two tests are performed to validate the theoretical trends for

car mass and horizontal center of mass discussed in earlier
sections. The first holds all of the car parameters constant
while varying the car mass. As mass was added between tri-
als, a constant center of mass was maintained by changing
Several parameters had to be experimentally identified durthe locations of magnetic weights in the hollowed out car
ing the course of our investigations. In particular, separate exbody. These tests used the block shell shown at the bottom
periments were required to obtain the radius of gyration forright of Fig. 11. The second series of tests changed the hor-
the wheels, the mass moment of inertia for the car, and thézonta | center of mass by moving a weight along the length
friction codficient between each wheel and axle. An instru- of the car.
mented pendulum apparatus was constructed to obtain the The experimental mass plot (a) verifies the theoretical ad-
vehicle’s mass moment of inertia. The procedure consisted/iantage of increasing the car’'s mass seen in both the energy
of attaching the car to a pendulum platform, measuring thebalance and the numerical simulation of the car’s equation of
car-pendulum system oscillations, and then using the periognotion, Egs. (12) and (22). The plot also highlights the di-
between oscillationd = 2n , where/ is the damping min@shing returns. of addipg mass as the' overall mass of the
w \/1__42 car increases. This trend is exaggerated in the energy balance
ratio obtained via logarithmic decrement ands the linear  balance plot (Fig2) because it does not take into account the
natural frequency of the car-pendulum system, to exitact energy lost due to non-conservative forces. The energy bal-
Using the parallel axis theorem, the mass moment of inertiaance plot shows the race time levels out at around half of the

(49)

lo



2.35

(a)
“ 23 . Experiments showed that increasing the car’s mass results
2 in a faster race time, a result that is consistent with theoret-
S 205t . ical studies of the energy balance and the numerical simu-
lation of the equation of motion. However, when the car’s
22— w ‘ ‘ ‘ ‘ mass exceeds a certain limit, it actually leads to a reduction

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

in race time because of the increased friction caused by a
larger mass. This phenomena is not accounted for in the sim-
ple energy balance, but comes to light through theoretical in-
vestigations. Experimental findings also showed increasing
the horizontal center of mass will decrease the race time, a
result that validates theoretical findings.
215 i In addition to making the modifications suggested by
a ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ our theoretical and experimental results, the following tech-
o708 09 vt e e nigues can be employed to further reduce race times. Polish-
ing the axles with progression of coarse to fine sandpaper is
Experimental results of race times for cars with varying an efective way to reduce friction and improve race times.
massg(a) and varying the horizontal center of mgb$. The mass ii Reducing the radius of gyration by removing mass from the
normalized by the out-of-the-box car massuof 0.1091kg andk— qter portion of the wheels is another modification that can
is normalized by the out-of-the-box center of mass 0.09 m. effectively reduces race times. If given the freedom to mod-
ify the wheel significantly, our sensitivity analysis showed

mass of an out-of-the-box car. The plot of race times result{N&t changing the outer radius of the wheels has one of the

ing from the numerical simulation of the car's equations of largest éects on reducing race time; one could alternatively

motion (Fig.5) portrays a more accurate representation of thedecrease th'e inner radius of the Wheel or implement a vari-
ty of techniques to reduced the friction between the wheels

relationship between mass and race time. This plot shows th& i . .
nd their axle. Race times were the least sensitive to the cross

advantage of adding mass starting to level out at around w9 e R
times the out-of-the-box car mass, which is consistent Withsectlonal area of the car. This finding suggests that the signifi-

the experimental data presented in Hig. As mass is added EazF amounlt doLtm:je ;nd res%utrceshput Into creatn:[\g Sl?ﬁ kt(f;r
to the car, it increases the normal force acting on all four odies would be better used 1o change parameters that the

wheels, as seen in Egs. (11a) and (11b). Higher magnitudéens't'v'ty analysis found to have a greater impact on race

normal forces correspond to more friction between the axlet'me' If the rules of a given pinewood derby race do not per-

and the wheel which slows the car down, a phenomena whiclqnl'ttwheter: a:ctf_er?UorE)s,tthe m?r?mlre]nt Iparz(ajr?ﬁter t? manip-

is not reflected in the energy balance plot. The horizontal centhate Is the riction between the wheel and the axie. -

ter of mass trends found experimentally also comply with Ano_ther modn‘lc_at|0n_that decreases race times |_nvoIves

both theoretical and simulated results. The simulated resultgf[taChmg along thin object to the front 9f the car. T.h'S tech-
nigue that takes advantage of the starting mechanism of the

and experimental plots indicate that changingetween 1 track. Th bedins t h tensi
and 1.5 times the out of the box parameter lowers race time%ﬁlCe rack. 1he car begins 1o move as soon as the extension
oses contact with the retractable pin, which rotates out of

at a faster rate. Increasingmoves the center of mass farther h t the start of th tally giving th di
from the starting line, which allows the car to continue accel- . € way at the start of fhe race, essentially giving the modi-
fied car a running start. In summary, our findings add to the

erating along the straight section of the track for longer than =" . .
a car with a center of mass closer to the front wheels. TheeX'StIng body of knowledge about how to modify gravity cars

advantage gained by a longer acceleration time correspono;g rtehduce ra(zje_f_tlmtgs agldferj a ranked (_)t_rd_?r of |r|np<_)rtance
to a faster race time. One downside to moving the center o or these modification based on a Sensitivity analysis.

mass to the extremities of the car, one that is not accounted Beyo?(tjhthe spemEc}. p(;(_)blem studied .here:jn, W(Tdbehe\_/g
for in the mathematical model, is a higher instance of whee[POM€ OF the research Tindings are geéneric and could provice

impacts with the center track partition. Moving the center of insights in other application areas where the relationship be-

mass to either extreme — the front or the rear — causes the Cé\‘yeen aerodyngmics, gravity,_and friction alter pe_rformance,
to wobble along the track. It should be noted, however, that inc9: skateboarding, rollerblading, and snowboarding. For ex-

the experimental results, the advantages gained by increasing{“zl.ej[ tthe :n(_argy b:lilanlc € .t;-_\x?ressmkn tCEUId aalso be used to
the center of masdiset the unfavorable wobbling condition. edict trends in peak velocily Tor a skateboarder.
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