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Abstract. A novel compliant Magnetic Levitation System (MLS) for a wired miniature surgical camera robot
was designed, modeled and fabricated. The robot is composed of two main parts, head and tail, linked by
a compliant beam. The tail module embeds two magnets for anchoring and manual rough translation. The
head module incorporates two motorized donut-shaped magnets and a miniaturized vision system at the tip.
The compliant MLS can exploit the static external magnetic field to induce a smooth bending of the robotic
head (0–80◦), guaranteeing a wide span tilt motion of the point of view. A nonlinear mathematical model for
compliant beam was developed and solved analytically in order to describe and predict the trajectory behaviour
of the system for different structural parameters. The entire device is 95 mm long and 12.7 mm in diameter.
Use of such a robot in single port or standard multiport laparoscopy could enable a reduction of the number or
size of ancillary trocars, or increase the number of working devices that can be deployed, thus paving the way
for multiple view point laparoscopy.

1 Introduction

Minimally invasive surgery reduces pain in the patient and
facilitates postoperative recovery by using multiple small ab-
dominal incisions where different instruments are inserted.
In the continuous quest to limit access trauma, Single Port
Laparoscopy (SPL) is emerging from research into clinical
practice (Romanelli, 2009). SPL procedures utilize conven-
tional as well as angled and articulating instrumentation in-
troduced through a multilumen port (25–30 mm in diameter)
placed, normally, in the patient navel. In addition to the clear
cosmetic benefits, other possible advantages of SPL surgery
compared with conventional laparoscopy include less post-
operative pain, faster recovery, less adhesion formation, and
reduction of convalescence time (Raman, 2007; Rané, 2008;
Ponsky, 2008). However, SPL procedures are significantly
hampered by limited instrument triangulation capabilities
(i.e. the two surgical instruments and the endoscope are close
to each other), narrow visual field through conventional la-
paroscopes, and both internal and external tool collisions that
can considerably limit surgeon performance and jeopardize
the patient’s safety.

A softly-tethered camera system that can be steered from
the outside of the abdomen and that is able to provide a “sta-
dium” view, i.e. a view from above the surgical field as de-
fined in Swain (2010), would solve most of the open issues
of SPL. Additionally, if the camera size is compatible with
standard laparoscopic trocars, the access used for inserting
the robot can be used for a different instrument afterwards,
thus avoiding a dedicated trocar for the videoendoscope.

A number of preliminary devices have been developed
towards this goal. In particular, monocamera devices ex-
ploiting simple magnetic fixation and manual motion are re-
ported in Swain (2010), Cadeddu (2009). In order to guar-
antee a finer control, large or complex robotic camera sys-
tems with active internal degrees of freedom have been pro-
posed (Lehman, 2008; Hu, 2009). A small scale magneti-
cally driven robotic camera (12.7 mm in diameter, 32 mm in
length) has already been developed with one internal degree
of freedom (DoF), based on an innovative Magnetic Inter-
nal Mechanism (MIM) (Simi, 2010, 2012; Valdastri, 2010).
Nevertheless, large size, poor stability, reliability and, or lim-
ited manoeuvrability or motion range, remain main draw-
backs.
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Figure 1. Schematic representation of an SPL surgical scenario
using the novel camera robot based on the compliant MLS.

Compliant mechanisms offer great promise in providing
new and better solutions to many mechanical design prob-
lems, thus a surgical robotic device based on these mecha-
nisms has a number of potential advantages over traditional
and current robotic systems. The monolithic nature of com-
pliant mechanisms have the advantage of no wear debris, no
pinch points, and no need for lubrication, all of which are
critical in the sensitive internal body environment. In ad-
dition, single-piece production, reduces the manufacturing
and assembling time and cost as well as the weight, while
also the sterilization processes is simplified (Kota, 2005). Fi-
nally, from a mechanical point of view, compliant mecha-
nisms are easily miniaturized, do not have the backlash com-
mon in rigid-body mechanisms, reduce maintenance and in-
crease the reliability in harsh environments, such as abdomi-
nal cavity (Howell, 2001).

In this paper, we present the design, modeling and fab-
rication of a novel compliant Magnetic Levitation System
(MLS) for a wired endoscopic surgical camera. Consider-
ing the concept known as Magnetic Anchoring and Guidance
System (MAGS) (Park, 2007; Zeltser, 2007, 2008), the small
device is intra-abdominally moved or anchored by External
Permanent Magnets (EPMs) placed on the abdominal skin.
However the main benefit stems from the robotized MLS,
that exploits a static external magnetic field to provide a fine
tilt motion of the camera. Furthermore, from a surgical point
of view, the thin flexible cable, which guarantees powering
and real time signal transmission, leaves the access port al-
most free, thus allowing the insertion of an additional tool
(Fig. 1).

The paper is structured as follows. First of all, the over-
all system principle of operation is described. A nonlinear
analytical static analysis is then performed for dimensioning

Figure 2. Schematic representation of the entire robotic endoscope
with the compliant MLS. The interaction between internal and ex-
ternal magnets and the 4 related degrees of freedom are underlined
by yellow and red arrows, respectively.

the innovative system. To this end, the compliant segment
(namely the flexible joint) is modeled mathematically, and
the governing equations are derived and solved analytically
in a nonlinear form. The results are compared to those of
finite element method (FEM). Based on the system fixed pa-
rameters and geometrical constraints, the flexible joint was
designed to provide the best tilt span. Finally the robot with
compliant MLS was fabricated, assembled and tested.

2 Concept and modeling

2.1 Principle of operation analysis

As represented in Fig. 2, the overall proposed surgical plat-
form is composed by the wired robotic endoscope based on
the compliant MLS and an external handle embedding 3 per-
manent magnets. The robotic camera is composed of two
modules, the head and the tail, connected together by the
flexible joint. The head embeds the vision system and a cou-
ple of donut-shaped and diametrically magnetized magnets
that can be rotated by an internal brushless motor. The tail
hosts two permanent magnets that, once coupled with the ex-
ternal ones, provide anchoring and stability to the robot. In
addition, the magnetic link between external and on-board
magnets allows a coarse manual manoeuvring (3 DoF). The
concept of MLS exploits the internal magnets motorized ro-
tation to generate an internal variable magnetic field, thus al-
lowing for a wide-range controlled bending of the head mod-
ule without any external magnets motion. Considering differ-
ent magnetic actuation systems (e.g. Zeltser, 2007), the MLS
guarantees a finer and more precise robotized motion, also
greatly reducing the encumbrance on the patient abdomen.
Small internal magnets rotation permits to obtain sufficient
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Figure 3. (a) Schematic representation of compliant MLS opera-
tion. In the equilibrium point (2) the magnetic force is negligible.
(b) Force analysis and distribution considering the flexible joint like
an isotropic homogeneous linear elastic beam and the head as a non-
deformable body.Lw andLm are the distances from the beam tip to
the centre of gravity and the centre of donut-shaped magnets respec-
tively. Lbeam is the elastic beam length.

forces on the head module providing a wide span tilt DOF
without altering substantially the main surrounding magnetic
field. Otherwise, relative motions between the external mag-
nets (as translation or rotation) obviously create greatly vari-
able strong magnetic fields, giving complex problem of sta-
bility, precision and controllability of the DOFs. Attractive
or repulsive magnetic forces can be exerted on the robot head
by the means of the complete rotation (360◦) of the donut-
shaped magnets. In principle, this allows to achieve a 90◦

wide tilt motion of the camera point of view, thus enabling
an effective triangulation with the two surgical instruments.
To effectively implement robot head levitation, an equilib-
rium among weight force, flexible joint stiffness and mag-
netic force must be guaranteed for the complete range of
operation. A theoretical analysis must be performed for a
proper dimensioning of the MLS and the following assump-
tions must be made to facilitate modeling.

The tail frame can be considered as rigidly anchored to a
crushproof layer of tissue. Additionally, the flexible joint is
assumed to be inextensible, rigid in shear, and of constant
circular cross-section. In particular the assumption of circu-
lar cross section was made for simplicity and to define an
equal out of plane stiffness. The material is assumed to fol-
low linear elastic stress-strain behavior, homogeneous and to
be isotropic. The beam is fixed at one side and subjected to
two different forces (weightFw and magnetic forceFm) on
the other end tip. Given this, three basic configurations define
the behaviour of the MLS, i.e. as the donut-shaped magnets
rotate, the magnetic force can have either the same (Fig. 3a-
3) or the opposite (Fig. 3a-1) orientation of the weight force,
or it can be negligible (Fig. 3a-2). We refer to this last config-
uration as equilibrium point and it represents the static con-
dition defined as equilibrium between weight force and beam
stiffness. Correct operation of the MLS must always guaran-
tee sufficient magnetic attraction to lift the robot head from
the equilibrium point to the 0◦ tilt position (1), whereas the

repulsive magnetic force can give an extra deformation by
pushing down the head from the equilibrium to the maximum
tilt angle (3).

To correctly describe the flexible joint deformation be-
haviour, it is important to define other specific MLS fea-
tures. In particular, the weight force is assumed as acting
at the head module centre of gravity, while the magnetic
force acts on the donut-shaped magnets and not on the flex-
ible joint side. However, if we consider the head module as
a non-deformable body, the two forces can be supposed to
be applied at the connection between the flexible joint and
the module, providing their respective moment in the same
point (Fig. 3b). In order to maximize the camera tilt angle,
the largest bending angle for an equilibrium point must be
reached while the magnetic force still overcomes the head
module weight force (assuming the donut-shaped magnets
are oriented as in Fig. 3a-1).

Considering defined the features of the head module (Simi,
2010), the tail module and the EPMs, the only remaining
free part for maximizing the camera span was the compliant
joint. Equations (derived from the Euler-Bernoulli model)
can be applied to describe the deformation of a linear elastic
isotropic beam, providing information about the distal side
displacement and the bending angle (Wang, 2008; Belendez,
2002). The mathematical model and a direct nonlinear solu-
tion (DNS) were applied to predict the best equilibrium point
and to design the flexible joint.

2.2 Compliant joint

2.2.1 Mathematical modeling

The Bernoulli-Euler equation states that the bending moment
is proportional to the beam curvature, which reads as follows
(Gere, 1985):

M =EIΦ (1)

whereM is the bending moment,Φ is the curvature,E is
Young’s modulus,I is the moment of inertia of beam.EI is
also called the bending stiffness of the beam.

The exact expression for the curvature,Φ(s), is

Φ=
dθ
ds

(2)

and the slope,θ(s) is defined by

cos(θ)=
dx
ds

(3)

where s is the arc-coordinate along the neutral axis of the
beam from the fixed end.

For a cantilever beam under vertical end concentrated
force, P, and end moment,M0, as it is shown in Fig. 4, the
bending moment at any coordinate of beam length is

M(s)=P(L−a− x)+M0 (4)

www.mech-sci.net/3/5/2012/ Mech. Sci., 3, 5–14, 2012
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Figure 4. Flexible joint as a cantilever beam subjected to end point
load and moment.

Once differentiating Eq. (4) respect tos and substituting
Eq. (3), the equilibrium between the internal bending mo-
ment,M(s), and end point load,P is found in the following
form

dM
ds
+Pcos(θ)=0 (5)

Defining the dimensionless force,α, dimensionless end mo-
ment,β, and dimensionless length,ξ, as follows:

α=
PL2

EI
, β=

M0L
EI

and ξ =
s
L

(6)

and substituting the moment curvature relation Eq. (1) and
the curvature relation from Eq. (2) into equilibrium equation
Eq. (5) results in the following governing equation:

d2θ

dξ2
+αcos(θ)=0 (7)

where the boundary conditions are

θ|ξ=0=0 and
dθ
ds

∣∣∣∣∣
ξ=1
= β (8)

2.2.2 Direct nonlinear solution

Since the flexible member undergoes large deflection, lin-
earized beam equations are no longer valid. Nonlinear equa-
tions must be used that account for the geometric nonlineari-
ties caused by large deflections. In fact, if the deflections are
large, the flexible cantilever beam with constant cross sec-
tion and linear material properties may be out of the range
of linearized beam deflection equations, and elliptic integral
solutions or non linear finite element analysis are used to per-
form the analysis. Large deflection elliptic-integral equations
show that for a flexible cantilever beam with a force at the
free end, the free end follows a nearly circular path, with
some radius of curvature along the beam’s length.

The DNS (Morsch, 2009) for the large deflection analy-
sis of an initially curved cantilever beam under end point
loads (Fig. 4) was selected. Homotopy perturbation method

(HPM) (He, 1999) is used as to obtain the semi-exact solu-
tion of rotation angle of any coordinate of beam length and
the corresponding trajectory position, after a simple integra-
tion in a close form parametric expression (Morsch, 2009).
For verification, the results obtained from this section are
compared to those of FEM as will be presented and discussed
in Sect. 4.

To solve the high order nonlinear Eq. (7), without the lin-
ear assumption of cos(θ)= 1, the Taylor series expansion of
cos(θ) has been considered and the HPM (Morsch, 2009) has
been applied. Applying the HPM to Eq. (7), we construct a
homotopy in the following form:

H(θ;p)= (1− p)

[
d2θ

dξ2

]
+ p

{
d2θ

dξ2
+α

[
1−
θ2

2!
+
θ4

4!

]}
(9)

wherep is representing homotopy parameter. According to
the homotopy-perturbation method, we assume that the solu-
tion of Eq. (7) can be expressed in a series ofp as below:

θ(ξ;p)= θ0(ξ)+
∞∑

m=1

θm(ξ)pm (10)

Substitutingθ from Eq. (10) into Eq. (9) and rearranging
based on power series ofp, we have an equation system in-
cludingm+1 equation to be simultaneously solved;m is the
order ofp in Eq. (10). For an accurate result (error not greater
that 5 %) and at the same time minimizing the computational
time,m=2 has been considered (Tolou, 2012) as follows:

p0 :
d2θ0

dξ2
=0 (11a)

p1 : p

{
d2θ1

dξ2
+α
[
1−0.500β2ξ2+0.417e−1β4ξ4

]}
=0 (11b)

p2 : p


d2θ2

dξ2
+α2



β7
(
0.139e−2ξ4−0.232e−3ξ9

)
+β5
(
0.835e−2ξ7−0.279e

−1ξ4−0.834e−2ξ2
)

+β3
(
0.167ξ2+0.167ξ4

−0.125ξ5
)
+β
(
0.500ξ3−ξ2

)




=0 (11c)

Solving system of Eq. (11) subsequently with the effective
boundary conditions results inθ’s

θ0(s)= βξ (12a)

θ1(ξ)=αξ
(
−0.139e−2β4ξ5+0.417e−1β2ξ3

−0.500ξ+0.834e−2β4−0.167β2+1
)

(12b)

θ2(ξ)=α2ξ


β7
(
0.211e−5ξ10−0.463e−4ξ5+0.255e

−3)+β5(−0.116e−3ξ8+0.695e−3ξ3

+0.930e−3ξ5−0.732e−2)+β3(0.298e
−2ξ6−0.557e−2ξ5−0.139ξ3+0.682e−1)
+β(0.833e−1ξ3−0.250e−1ξ4−0.208)


(12c)
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and the final result is built up with theθ’s, using the following
equation

θfinal= lim
p→1

θ0+ +∞∑
m=1

pmθm

 (13)

An increase inm improves the accuracy in Eq. (10) withθ
obtained from Eq. (13), the non-dimensional trajectory can
be calculated directly using the following equations (Morsch,
2009):

uy(ξ)=

ξ∫
0

sin(θ)dξ (14a)

ux(ξ)=

ξ∫
0

cos(θ)dξ (14b)

2.2.3 FEM evaluation

In order to provide a basis for evaluation of the accuracy of
presented approach, finite element modeling (FEM) of the
discussed problem was performed. The stresses, strains and
displacements were analyzed using a commercially available
FEM package, ANSYS™ 11.0 (ANSYS Inc. Manual, 2008).
Because of large deflections, a non-linear static analysis has
been performed. All the 1000 elements were created using
the BEAM 188 element. This uni-axial element gives the
shortest computation time while the actual 3-D properties can
also be provided using the beam section defining capability
of ANSYS. This two node element has finite strain and has
six degrees of freedom at each node with tension, compres-
sion, and bending capabilities. The material is assumed to
follow linear elastic stress-strain behavior and to be isotropic.
The beam is fully clamped at one end and end point load and
moment has been applied on free end node.

3 Dimensional design and fabrication

3.1 External permanent magnets

Because the EPMs must be easily handled by the medical
doctors, three off-the-shelf (KJ Magnetics, Jamison US), cu-
bic (25.5 mm×25.5 mm×25.5 mm) magnets (NdFeB, N52)
were selected as the best compromise between high magnetic
field and size to generate the external magnetic field both for
the MAGS and the MLS.

3.2 Head module

Considering the endoscopic camera robot described in
Simi (2010), a very similar prototype was fabricated as head
module of the new robot. An improvement regarded orien-
tation of the camera view direction assembled with an angle
of 10◦. The head module (Fig. 5) consists of a small and

Figure 5. Threedimensional model of the designed prototype. The
head module embeds ring magnets, a motor with gears and a vision
system; the tail module embeds only two magnets for the system
anchoring and external rough motion. The device results 12.7 mm
in diameter and 95 mm in length.

light plastic cylinder (12.7 mm in diameter, 34 mm in length
and 7.5 g in weight, fabricated by rapid prototyping) that em-
beds two donut-shaped magnets (6.3 mm and 1.6 mm in ex-
ternal and internal diameter respectively and 3.2 mm in thick-
ness) diametrically magnetized (NdFeB, N52) and linked by
means of two gears (worm and helical gears) to a brush-
less motor (SBL04-0829-PG337 Namiki Precision Jewel Co.
Ltd., Tokyo, Japan). It also includes a vision system com-
posed of a thin CCD camera (MO-B802-105 Misumi Elec-
tronics Corp., Taiwan) and a set of high efficiency white
LEDs (NESW007BT, Nichia Corp., Tokushima, Japan) for
illumination. An external push-button console was used for
activating the internal motor and defining the rotation of the
donut-shaped magnets.

3.3 Tail module

The tail module is 11 mm in diameter, 40 mm in length and
10.5 g in weight (see Fig. 5). Given the geometry and the
properties of the EPMs, considering the average human ab-
dominal wall thickness as 30 mm (Song, 2006) and in order
to satisfy the MAGS main technical requirements (Cahill,
2009), two commercially available (KJ Magnetics, Jamison
US) cylindrical (6.35 mm in diameter and 12.7 mm in length)
magnets (NdFeB, N52) were embedded in the tail. A long
longitudinal hole in the frame body allowed the wires to run
through the module.

3.4 Flexible joint

The flexible joint is the last part to dimension in order to
obtain optimal MLS functionality, guaranteeing a sufficient
magnetic force to lift the head from the equilibrium point
while also maximizing the camera tilt span angle.

In order to keep fabrication and assembling of the en-
tire camera easy and due to the need for wired connections

www.mech-sci.net/3/5/2012/ Mech. Sci., 3, 5–14, 2012
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Figure 6. Slope along beam length of the flexible joint subject to different load cases (LC) from presented method. LC:β = 0.663 [−],
α=1.137 [−] corresponds toFw =73.5 mN; Lw =14 mm;I =2.5×10−13 mm4; E=150 MPa.

Figure 7. Trajectory position of the flexible joint subject to different load cases (LC) from presented method. LC:β= 0.663 [−], α= 1.137
[−] corresponds toFw =73.5 mN; Lw =14 mm;I =2.5×10−13 mm4; E=150 MPa.

between the two robotic modules (tail and head) for power
supply and data transmission, an elastic polytetrafluoroethy-
lene (PTFE) tubular sheath (1.5 mm in diameter) completely
filled with 9 electric wires was used directly as flexible joint.
A circular section was defined and the flexible joint compos-
ite material Young’s modulus (E) was then experimentally
measured equal to 150 MPa assuming negligible hysteresis.

Given the geometry, weight and magnetic content of the
head module, the external magnets and also the joint, we re-
late the compliant MLS behaviour to different joint length.
Due to the magnetic force between external magnet and
donut-shaped magnets changes with the beam free tip dis-
placement as function of joint deflection and length, only the
equilibrium condition was analyzed and satisfied, then the
maximum angle span was evaluated.

Based on the known parameters (Fw = 73.5 mN; Lw =

14 mm; I = 2.5× 10−13 mm4; E = 150 MPa) namely load
case (LC), and the DNS, the trend lines of the beam equi-
librium point (magnetic force neglected), in terms of non-
dimensional deflection of the beam, the relative bending an-
gle and the displacement of the free tip were obtained (Figs. 6
and 7). Considering the load that acts on the beam free tip as
a composition of force and moment defined only by the head
features, in our case (LC), the obtained plots describe also
the compliant joint behaviour under a fraction of the LC.

After the beam deflection analysis some discrete FEM
with COMSOL Multiphysics 3.4 (COMSOL Inc., Sweden)
were used to evaluate the magnetic field trend and especially
the vertical magnetic attraction force between the donut-
shaped magnets and the external magnet. Considering Fig. 7,
the two donut-shaped magnets were positioned as a function

Mech. Sci., 3, 5–14, 2012 www.mech-sci.net/3/5/2012/
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Figure 8. FEM analysis of the magnetic interaction between donut-
shaped magnets and the external magnet in order to evaluate mag-
netic force components (Fm) for different equilibrium points. All
the internal and external magnets were considered. The mesh con-
sisted of about 1 350 000 elements with a minimum quality ratio of
0.3. In this screenshot is showed the magnetic attraction force eval-
uation in the equilibrium point for a defined beam length of 24 mm.

Figure 9. Trend line of the vertical magnetic attraction force be-
tween the MLS external and donut-shaped magnets in equilibrium
point (Fig. 2a-2). The dots represent the discrete FEM analysis re-
sults. The red circle highlights theFm equal toFw for a 24 mm
Lbeam.

of the specific beam tip equilibrium point (but assumed ori-
ented as in Fig. 3a-1) related to beam length in a range
between 15 mm and 35 mm (with aLbeam step of 1 mm)
(Fig. 8). The magnetic attraction force trend line was then
represented in Fig. 9.

Figure 10. Evaluation of the tilt span.(a) Bench test scenario.
(b) The maximum attraction force keeps the robot head near the ab-
dominal wall. (c) Equilibrium point: Fm is negligible and the head
tilt angle is 60◦. (d) The repulsive magnetic force pushes down the
head that reaches a final angle of 80◦.

4 Results and discussion

Based on the collected data (Fig. 9) a beam length of 24 mm
results in the highest bending angle that still guarantees a
magnetic force (Fm= 77 mN) sufficient to lift the head mod-
ule from the equilibrium point to the 0◦ tilt configuration
(Fig. 3a-1). Considering Fig. 6, an angle of 60◦ (1.05 rad)
was reached in the equilibrium point due to the weight force
of the head and the elastic joint properties.

Once the flexible joint was modeled and dimensioned, it
was assembled with the other two modules (head and tail)
and the MLS was tested. The tilt angles were measured
through lateral views of the robot placed against a millimeter-
scaled background. Without external magnet (absence of
magnetic force) the head reaches the equilibrium point with
an angle of 60◦ in relation to the horizontal wall, as predicted.
Replacing the external magnet on the wall and rotating the
donut-shaped magnets, the robot head can levitate with a to-
tal smooth and fine tilt span ranging from 0◦ up to 80◦ as
showed in Fig. 10. During the span between 0–60◦ the mag-
netic force compensates the weight force until the equilib-
rium point, whereas from 60 to 80◦ the repulsive magnetic
force pushes down the head.

The experimental results are fully comparable with model
predictions. The entire design procedure is consistent, cor-
rect and reliable to easily dimension a compliant MLS.
Thanks to the model presented in this paper, further adjust-
ments of system performances can be easily implemented in
future prototypes or used to develop similar devices.

Regarding the mathematical flexible joint deflection anal-
ysis, the DNS not only overcomes the inaccuracy problem
of a linear solution, also eliminates some shortcomings in

www.mech-sci.net/3/5/2012/ Mech. Sci., 3, 5–14, 2012



12 M. Simi et al.: Modeling of a compliant joint in a MLS

Table 1. Comparison of dimensionless deflections,x [−] andy [−], and slope,θ [rad], of free end tip from FEM and DNS as the absolute
values and relative errors∗ for the case study; load case (LC)= β = 0.663 [−], α = 1.137 [−] corresponds toFw = 73.5 mN; Lw = 14 mm;
I =2.5×10−13 mm4; E=150 MPa.

Load FEM DNS Error [%]

x y θ x y θ x y θ

0.25 LC 0.019 0.174 0.305 0.019 0.174 0.305 1.302 0.130 0.144
0.5 LC 0.071 0.328 0.588 0.072 0.329 0.593 2.126 0.381 0.811
0.75 LC 0.140 0.451 0.840 0.143 0.453 0.848 2.124 0.485 0.956
1 LC 0.216 0.544 1.059 0.217 0.541 1.061 0.585 0.577 0.217
1.25 LC 0.290 0.613 1.248 0.281 0.598 1.226 3.215 2.448 1.784
1.5 LC 0.360 0.663 1.414 0.328 0.632 1.348 8.976 4.706 4.651
1.75 LC 0.425 0.700 1.560 0.356 0.651 1.431 16.145 6.940 8.256
2 LC 0.483 0.726 1.690 0.363 0.662 1.493 24.811 8.773 11.664

∗ FEM results have been the references values.

conventional numerical methods like elliptic integrals, such
as implementation difficulties and accuracy problems due
to table look-up. Residuals from the presented method are
significantly less than from the linear solution. Practically,
they can be considered negligible. This gives us a reason
to claim that the presented method is remarkably accurate.
We have successfully utilized DNS to handle the geomet-
ric nonlinearity caused by large deflection of the cantilever
beam. It is evident that the method is very powerful and ef-
ficient for solving this kind of problems arising in compliant
mechanisms and other mechanical systems, and presents a
rapid convergence for the solutions. The parametric solu-
tion from Eqs. (12), (14) (with parameters of loads and co-
ordinate along the neutral axis of the beam) can give rise to
physical understanding the problem and better optimization
performance in terms of computational time and minimizing
objective functions. It was found that the maximum inac-
curacy for proposed solutions occurs at the free end point
and amounts to less than 1 % as compared to FEM (Table 1).
However, for higher loads than the design load case, inaccu-
racy increase which can be compensated by increasing the
number of iterations in Eq. (10). As shown in this table, the
trajectory,x andy, are mainly of higher inaccuracy relative
to slope which is due to Taylor series assumption for the first
three terms of the sin and cos functions in Eq. (14). This
also brings some irregular trends in accuracy fory from high
nonlinearity of the parameters during the manipulation. The
slope of any coordinates along the neutral axis of the beam
and the trajectory of the free end tip for load cases specified
in Table 1 are shown in Figs. 6 and 7, respectively. As shown
in these figures, with an increase in the load case, the deflec-
tion becomes larger and more nonlinear. The larger nonlin-
earity of trajectory (Fig. 7) compared to slope (Fig. 6) can
be explained mathematically from Eq. (14) due to nonlinear
sin and cos functions. The von Misses stress from FEM has
found 11.7 MPa for the maximum LC considered in Table 1,
Figs. 6 and 7 which was far below the yield stress.

5 Conclusions

The compliant MLS represents a novel concept to obtain an
internal DoF for a robotic camera device immersed in a mag-
netic field. A nonlinear mathematical modeling and para-
metric direct nonlinear solution were successfully presented
to predict the trajectory of compliant joint for different load
cases. This leads to a successful parametric design for a
successful and straightforward dimensioning and may be ap-
plied to similar or more complex problems. Based on the
modeling we designed and fabricated a MLS working pro-
totype for an endoscopic camera. It is 12.7 mm in diameter,
95 mm in length and 18 g in weight. It is composed of two
robotic modules (tail and head) linked by an elastic flexible
joint. Under the set of conditions, detailed above, when the
embedded motor is activated, the robot head module can lev-
itate with a span ranging from 0 to 80◦, thus guaranteeing a
high motion of the point of view (10–90◦). Finally, use such
MLS permits to actuate a DOF having all the benefits of a
compliant joint as discussed in the introduction.

The small robotic endoscope can be inserted through a
conventional trocar and fixed on the abdominal wall. Space
in the access port is only taken by thin cables (1.5 mm), thus
leaving free space for the access of additional instrumen-
tation. A rough position along the abdominal wall can be
achieved by dragging the robot with the motion of the EPMs.
Once positioned, a fine tilt orientation of the camera can be
obtained by exploiting only the MLS. Additionally, since the
tilting motion is not manual as in Cadeddu (2009), but mo-
torized, image stability and motion resolution can be greatly
enhanced. Accordingly, the novel robotic endoscope has the
potential to restore triangulation for the surgeon and to re-
duce both instrument collision and procedure invasiveness.
In laparoscopy, use of this innovative approach would re-
duce the number of external incisions, since a devoted access
for the camera would no longer be required. Considering an
SPL scenario, all the ports can be used to insert instruments,
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thus facilitating the tasks for the surgeon and also eliminating
the potential conflict with the endoscopist. Some recent in
vivo tests (Simi, 2011) demonstrate that tools motion (in par-
ticular insertion and retrieve), exerting sometimes relevant
forces, can cause abdominal wall deformation, generating
head vibration. Deflections and vibrations outside xy-plane
also occurred, especially when the robot is not anchored par-
allelly to the floor. In this case, a gravity force component
deflects the camera head out of the xy-plane. Concerning pa-
tient’s breathing, no vibration were observed. Abdomen wall
upon insufflations results stiff and not deformable reducing
markedly breathing motions.

Further improvement will be performed to completely en-
hance system performance. In order to reduce head vibra-
tions but also improve control of the next prototype a dedi-
cated eigenfrequency study of the beam will be performed in
the future also choosing new materials and section shapes.

A better and complete analysis of magnetic interaction
forces (attraction-repulsion) along the free tip trend line, dur-
ing joint deflection, will be evaluated as function of length. A
dedicated control algorithm will be implemented to precisely
relate the donut-shaped magnets rotation to the head-camera
tilt angle. In fact, optimizing modeling and prototype design
but also embedding sensors, we could finally implement po-
sition control or auto-adjustment for vibration compensation
to achieve better stability for the entire system.
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