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Cylindrical flexures (CFs), defined as flexures with only one finite radius of curvature loaded nor-
mal to the plane of curvature, present an interesting research direction in compliant mechanisms. CFs are
constructed out of a cylindrical stock which leads to geometry, manufacturability, and compatibility advan-
tages. Synthesis rules must be developed to design these new syfiiectigedy. Current knowledge in
flexure design pertains to straight-beam flexures or curved flexures loaded along the plane of curvature. CFs
present a challenge because their mechantésrdiom those of straight beams, and although their modelling
has been researched thoroughly it has yet to be distilled into element and system creation rules. This paper
uses models and finite element analysis to demonstrate that current design rules for straight-beam flexures are
insuficient and inadequate for the design of CF systems. The presented discussion will show théite€Fs di
both at the element and systems levels, and therefore future research will focus on developing the three com-
ponents of the building block approach: (i) reworking of element mechanics models to reveal the parameters
which cause the kinematics of the curved beam fiedirom those of the straight beam, (ii) development of a
visual stithess representation, and (iii) formation of system creation rules.

to be classified as a CF. The focus of this paper is to demon-
strate: (i) the usefulness of design rules in the design pro-

Cylindrical Flexures, CFs, are defined as flexure systems(,:ess’ (ii) that current design rules for straight-beam flexures

’ - . are instficient and inadequate for the design of systems with
with elements that have only one finite radius of curvature
. curved-beam flexures, (iii) the need for future research at the
and are loaded normal to their plane of curvature. In other C
lement and systems level, to develop guidelines for the de-
words, systems composed of flexure beams that are curve
, . . . “sign of CF systems.
in a single plane. Figure 1 shows a prototype of a particu-
lar CF system. The system shown in Fig. 1 is actuated by
loading the flexures normal to their plane of curvature. This

specific loading condition is presented becausei#ére the  pact work that pertains to CFs has focused on two areas:
most challenging research aspects and it is the least studied(i) models for curved beams and (ii) analysis of specific CF
Past research has givenffdrent names to flexures that concepts. Curved beams loaded normal to their plane of cur-
fall under this definition. The most applicable definition is vature have been studied for over 80yr, leading to closed-
Smith’s “hinges of rotational symmettywhich he definesas form expressions of their mechanics and dynamics (Timo-
flexures constructed from solids of revolution (Smith, 2000). shenko, 1930; Young and Budynas, 2002; Lee, 1969). These
The flexure shown in Fig. 1 fits within Smith’s definition be- models, however, have not been distilled to provide a de-
cause of its axial symmetry. This definition is expanded tosigner with guidelines as to how to use curved beams to
allow CFs to be fractions of a cylinder. The work is scoped achieve a set of functional requirements. This work will
by constraining CFs to elements with a single finite radius.extract, from these analytical models, clear rules for both
Finally the system must have well defined distortions for it element and system design. An example of this kind of
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The quad compound-spring cylindrical flexure, CF, ex- (A) Straight-beam mechanic$; is the load on the
ample:(A) 7075Al prototype andB) FEA model depicting its ac-  peam,M, is the resulting bending momentz is the displacement
tuation. along the z-axis, and is the parasitic rotation about the x-axis.

(B) Curved-beam mechanics, highlighting the added twistand

o ) ) torque,T, and(C) Curved-beam parameteiRrepresents the radius
synthesis is the work by Kim et al. (2008), which uses curvedot curvature ¢ is the sweep angle, is the thickness of the beam in
beam building blocks (CBB) to create flexure systems. Thisthe radial direction, ant} is the thickness in the axial direction.
paper diterentiates itself from CBB in that in this case the
beams are loaded normal as opposed to parallel to the plane
of curvature. This loading condition requires the analysis ofsystems, and other applications benefiting from their cylin-
the flexures in three dimensions. drical geometry.

The other area of prior art pertains to the analysis of spe-

cific systems that fit within the CF definition. Smith (2000)
presents detailed analysis on the disc coupling and the ro-
tationally symmetric hinge. These types of analyses haverhis section focuses on explaining how and why CFs be-
produced useful flexure systems; however there has been lihaye diferently than straight-beam flexures. Thesfedi
tle overarching insight developed that could be used to creences make current design guidelines inadequate for the ef-
ate new CF concepts. In many cases the analysis of thesgctive creation of CF concepts. The variations from straight-
systems has relied on FEA given the lack of knowledge onpeam behavior are illustrated by looking at a curved can-
what parameters determine the system performance. Thglever beam loaded at its free end. In this case the desired

biggest knowledge gap comes in the form of understandingmotion is a displacement along the z-axis. All other displace-
how to assemble these curved elements to create predictablfents are defined as parasitic motions.

systems.
The lack of design guidelines restricts the design process.
The rapid generation of concepts is limited, since the de-
signer does not have a simple way to predict the general becurved flexures have additional complexities over straight
havior of a system composed of CF elements. In additionbeams both at the element and system levels. The curvature
optimization is tedious because there is little understandingf the beam leads to an added rotation and resulting torque.
of the dfect of diferent parameters. Figure 2 shows that for a given lod#l, the flexure will twist,
¥, which leads to a resulting torqug,, at the base. Sect. 3.1
presents the proposed process for developing element design
rules from current curved-beam models.
Cylindrical flexures present geometry, manufacturability, The curvature of the beam also leads to challenges in the
and compatibility advantages over traditional flexure sys-conceptual assembly of curved-beam flexure systems. The
tems. Their axial symmetry may be used to achieve insentraditional rules for adding elements have to be augmented to
sitivity to thermal changes, and to decrease tffects of include the fects of the added twist and torque. The four-
manufacturing and load placement errors. Monolithic sys-bar linkage and Jones et al’s (1956) compound rectilinear
tems with a variety of flexure elements can be created ouspring are used to demonstrate the need for additional system
of a single piece of round stock reducing assembly cost an@reation rules.
errors. A common flexure bearing system is the four-bar link-
CF fabrication is facilitated by the availability of accurate age, shown in Fig. 3a, where a stage is connected to ground
round stock. CFs can be manufactured at low cost by usinghrough 2 parallel straight beams or blades. Figure 3a shows
traditional machining methods. The prototype in Fig. 1 wasthat the four-bar linkage's motion can be described as the su-
machined using a 4-axis Mazak brand lathe. Other manuper position of two deflections which lead to two parasitic
facturing methods include: a waterjet with a rotary axis andmotions in addition to the desired displacement along the z-
a 5-axis mill. CF’'s most attractive quality is their compat- axis. Slocum (1992) gives the equations used to calculate the
ibility with rotating applications, laparoscopic tools, optical parasitic pitching motion of the stag&;ich, and estimate the
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(A) Straight four-bar linkage parametews,ndicates the location of, relative to ground. Figure shows the three motions
associated withF, applied onto the platform. Desired displacemaatis indicated with green, while the parasitic motioAsandéy, are
shown in blue.(B) Curved four-bar linkage parameters and displacements ufley anda, indicate the location of the force relative to
ground. The curvature results in tWgarasitic motionsj, ands,, and an additional rotation of the stage,(C) Straight compound-spring.
Nesting of the two four-bars results in cancellation of éhgarasitic motions®; and®, indicate the rotations of the stages in the nested
system.(D) Curved compound-spring. Cancellation of theotions is not straight forward.

vertical motion,éy, presented in Egs. (1) and (2). In these 9pitch:( 6(L —2a)-t2 )(A_z) "

equationsL represents the length of the flexure bedmis 3p?L - 2t2 + 6at? /\ L

the distance separating the flexurags the distance from the (A2)?

load input location to ground,s the thickness of the beams, 9~ oL - @

andAzis the desired displacement along the load direction.

The parameters are defined in Fig. 3a. The vertical motion oEquations (1) and (2) are used by designers to estimate the

the stagegy, in conjunction with the desired displacement, parasitic motions of a straight four-bar system. These equa-

Az, will result in the stage following an arc & is applied,  tions have been derived for straight-beam flexures and must

as highlighted in Fig. 3a. be expanded in order to describe a four-bar composed of
curved beams. Figure 3b shows that for an input load nor-
mal to the plane of curvaturds,, the motion of the input
stage can be decomposed into four deflections which lead
to four parasitic motionss, ¥, y andéy. As a result of the




curvature of the flexures, the CF four-bar the stage will travelvon misses

in two arcs dictated byz, 6, andsy, and it will experience S"‘fls; (N}
two rotations about its cent#r ¥. Future research is nec- 3e7

essary in order to develop a set of equations that accuratel

predict the parasitic motions of the four-bar CF system. Py

The design of precision machines requires that the para
sitic motions are well understood and minimized to achieve|:
the desired displacement. Studies have shown that for a foul' | 5 5.7
bar linkage load placement and nesting of systems can b
used to reduce the parasitic motions. As Eq. (1) shipus
can be reduced by moving the location of the input lcad, 1.2e4
The challenge in the curved version of the four-bar linkage
is that the load location is now defined by two coordinates
ay anday, as shown in Fig. 3b. Once again the currently
available knowledge is indiicient to design a curved-beam
flexure system.

Nesting of two four-bar flexure systems, referred to as the

compound rectilinear spring, has been used to mitigate thontouring of the thickness of the flexure to be a successful

parasitic arcing motion caused by as shown in Fig. 3c. \ay to distribute stress along the length of a beam (Timo-
In the compound-spring th& motion of the input stage is  shenko, 1930).

matched by an equal and opposdteof the floating stage
resulting in a cancellation of the arcing motion of the input
stage. Th&, motions are mitigated as long as both four-bars

are constructed of identical flexure beams, therefore achievy o 14in three compliant mechanism synthesis approaches
ing the sfameXzQ@pIacement and asr? reshult the 'samef r?f‘g'are topology synthesis, pseudo-rigid modelling, and build-
hitude ofd,. It is important to note that the nesting of the ing block approach. A building block approach derived from
flexures does not remove the parasitic rotations of 'Fhe stagegynstraint-based design is proposed as the most appropriate
61 andé, but these rotgnons ardfacted by thg ne;tlng and synthesis methodology for CFs at this time (Maxwell, 1890;
are labelledd; and®; in Fig. 3c to reflect this. Figure 3d  g,4ing 1999: Hale, 1999). The plan is to first develop a
.ShOWS what hapf)pens when a comp;]ound—sprlng |shcr(falateq U%iIl understanding of the parameters théieat the element’s

ing t\.NO curved four-bars. Due to t. e curvature, the Tloating behavior. This element then becomes the building block for
and input sta_ges are Iocat_ed oﬁehent pla_nes. As a result CF systems. The next step is to develop rules for how these
the c_ancellanon of the m9t|ons IS not stre_ught fc_>rward and  pocks interact when added together. The desired outcome of
requires further research; the resultingiotions will depend 4 vegearch consists of (i) a visual representation that allows

on the magnitude oy anddy as well as the sweep angle, o gesigner to quickly understand howfeiient parameters
¢. Section 3.3 discusses the proposed research approach fofy 4 frect the behavior of an element, similar to fatiss

creating system rules that will allow the designer to manageellipsoid (Kim, 2008) and (ii) design guidelines for the gen-
the parasitic motions of CF systems.

eration of CF systems.
A constraint-based design approach has been chosen be-
cause it is intuitive for precision engineers. This synthesis

. . approach presents a quick way to understand why a system
In order to d_etermme the range ofa_system, both the d'SpIaC.e'reated from a set of building blocks will behave a certain
ment to a given load and the resulting stress must be consmﬁ,

ered. The curvature of the element leads to a torque on théway' It also makes the rapid concept generation phase of
o . ) e design process veryheient as the designer can use the
fixed end of the cantilever beam. This torque wiliegt the gnp yiie 9

resulting str lculation. Using ener nservation rinstiffness representations and system rules to quickly lay out
esufting stress calcuation. Using energy Conservation piiny, o qjaments to achieve a desired performance, while being

ciples it can be identified that an added torque requires tha ble to account for external constraints such as manufactur-

trﬁrr]e beﬁ? dtecre_lzlis:re] n th?horlglnal _;ezultm% g?otmtf”tt: Boft ng. The knowledge gathered through the development of
orthese aects will change the magnitude and distribution ot - <. building block rules can then be used to create argu-

the §tress along the beam. L ments for the other synthesis methods.
Figure 4 shows that a stress concentration is observed at

the base on the inner radius of the curved element. Future
work will develop guidelines that will allow the designer to

account for the new stress distribution and perhaps find a way
to distribute the stress more evenly. Previous work has shown

Finite element analysis of two cantilevered beams of the
same properties under the same loading force. The stress concen-
tration on the curved beam is highlighted.



Curvature Adjustment Factor (C) vs. Sweep Angle (o) _beam (Yof'mg and_ BUdyn_as' _2002)' The Z_'displacemt’
is the desired motion. This displacement is given by Eq. (3),
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5 mgﬂ‘w@%;;; gooo°°°L° GzE0 0 Cy o EMr=cTH whereR s the radius of the beark, is the elastic modulus,
3 08 %Ao Po00ggg is the second moment of area, ahis the sweep angle€,
; ) LT 00000, Cao, Ca3 are functions ofp andg, defined in Roark (Young
g L '“ﬂnu Tt & and Budynas, 2002). Equation (4) defiggeas the ratio of
B 0.4 Tag = elastic to shear properties of the beam, wh@giis the shear
Z U S modulus, andk is a torsional sftness constant. More details
2 0.2 swohoonte?®t? s "8 on these equations can be found in Roark (Young and Bu-
*g Ao 00099 dynas, 2002). Equations (5) and (6) from Roark are used to
3 2 T 7 T 2n] 57 calculate the two parasitic motion of the cantilever beam,
®  sweepAngie o 3 6 and¥ which are defined in Fig. 2b.
Curvature Adjustment Factor () vs. B (Normalized to {(0.5)) FR® .
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g 9 It is proposed that a morefiient way to look at Eq. (3) is
3 U5 o g Lo < to factor it into the straight-beam equation and a curvature

_ adjustment factor{,, as shown in Eq. (7). In Eq. (7) the
_ The curvature adjustment factogs,show how the be-  |ength,L, is the product oR, and¢. Equation (8) shows that
havior of the curve beam deviates from that of a straight beam as ghe curvature adjustment factor is calculated by dividing the
function of the geometry of the beam. Curvature adjustment facmrsdisplacement given by Roark in Eq. (3) by the straight-beam
are obtained from Roark’s closed-form solution. corresponds ;e coment equation. The curvature adjustment factors for

to the z-axis displacement multiplier as shown in Eq. (7), while o . o
and/y correspond to the multipliers for the two parasitic motions the parasitic motiong, andy, are similarly calculated.

6 and¥, respectively. Finallyy, and{y, represent the curvature L3

adjustment factors for the resulting moment and torque at the basdz = gzﬁ, L=R-¢p ©)
of the beam. Flexure length is held constant by varying the radius ]

of curvature.(A) Curvature adjustment factois, vs. sweep angle, ¢z =3 (Cas Sinp) — Ca9(1 - cOsfp)) — Ca3)/903 (8)

¢. The graph shows that as the sweep angle goes to zero the curvelqh. . I he desi I .
beam behaves as a straight bedmg,, {u, 9o to 1, andy andzr, IS new representation allows the designer to use all previ-

approach zero. While as the sweep angle increases the behavior 84S knowledge of straight-beam behavior and then evaluate

the curved beam deviates from that of the straight be@hCur- ~ What parameters play an additional role in the behavior of
vature adjustment factors, vs., 3 is the ratio of elastic to shear the curved beam. The added role of parameters is evaluated

properties of a curved beam as defined by Eq. (4). by identifying their éfect onZ,. If £, does not depend on the
parameter then that parameter does not have an additional ef-
fect, relative to its ffect on a straight beam’s mechanics. If
{7 is a function of that parameter then the parameter plays
an additional role. Analysing the parameters in Eq. (1) it is
The first step in the building block approach is to understandfound that,, ¢4, andZy depend only o ands.
the flexure element mechanics. The goal is to identify what The next step is to understand how these two parameters
parametersféect the element’s performance. Roark’s equa-affect the mechanics of the beam. Figure 5a shows how as
tions for curved beams loaded normal to their plane of cur-¢ approaches zero the curved beam behaves like a straight
vature are used to understand the kinematics of the curvegleam. Then ag increases the behavior deviates. Figure 5b
beam and to find the parameters that play an additional role ighows the curvature adjustment factor for each of the mo-
the motion of the curved beam (Young and Budynas, 2002)tions ¢,, ¢, andy, vs. 8. The value ofg for a given ge-
Cantilever beams loaded at their free end are first examinetbmetry varies only a small amount withfidgirent materials
Future work will explore the ect of load location. because the elastic and shear modulus are related by the Pois-
Figure 2c shows the flerent parameters that define the son ratio, which is close to 0.3 for common flexure materials.
curved flexure element. Roark presents equations for the did-laving identified the two additional parameters necessary to
placements resulting from a loaH, at the free end of the describe the kinematic behavior of the curved beam, future
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Comparison of the FEA and closed-form equation calcu-
= ‘ - lations of the curved beam displacements vs. sweep angler a
ditions. K1 corresponds to a cantilever beag® represents a fixed cantilever beami 1. Max error between models is 7 %2 repre-
end-slope cqnstralned peam, aig corresponds to a fixed end- sents the desired motion along the z-axis of the beam as indicated
slope and twist constrained beam. Flexure length is held constanf, £ op, g andW correspond to the two parasitic rotations of the
by varying the radius of curvature. beam under a load normal to the plane of curvature. Flexure length
is held constant by varying the radius of curvature.

Az-stiftness vs. sweep anglg, for three constraint con-

research will analyse how the sweep angleandg affect

common flexure performance metrics. IE Ax (mm) Ax (mm)
8.0e-2 4.7e-2
ol <« o
. ' — 2.7e-2 E 1.6e-2
Once the mechanics are understood, fir&tss representa- | -
tion can be developed. This representation will allow the ﬁ ,
designer to quickly identify how the elements will behave. | 2702 i -1-6e-2
This can be done using eitherfitiess or compliance ellip- < I K
soids (Kim et al., 2008). A diiness ellipsoid visually shows -8.0e-2 ; o I-4.7e-2
the relative magnitude of the ftiesses of a beam. The- [— B —
. . e 101 e 10mm
stiffthess of the beam depends on the loading conditions an mm t

element constraints. The previous analysis focused on can-
tilevered beams; however, flexures are usually constraine
m. §ystems. Therefpre, the?fect of diferent constraint con- result of the four-bar twist dfiness K,,, being larger than the stage
ditions on theAzstiffness is explored. The change Az- Stiffness.

stiffness withy is evaluated, because sweep angle is the dom-

inant parameter.

Figure 6 shows thé\zstiffthess vsg for three diferent  from both models. The next step will be to compare these
constraint conditions: (i) cantilever beak, (ii) slope con-  models to experimental results. Future research will expand
strained,K2, and (iii) slope and twist constrained3. The  on the kinematic analysis by assembling the & stiffness
length of the flexures is held constant in this analysis by vary-matrix for a curved beam.
ing the radius of curvature. The graph for K1 corresponds to
the cantilever beam analysed in Fig. 5. From the mechan-
ics analysisK1 is expected to increase wiih) given Az de-
creases withp. K2 decreases withh because botihz and  The system creation guidelines will focus on the interaction
6 decrease withp. This decrease in slope translates to abetween the element building blocks. With these rules the de-
smaller moment being applied at the free end to achieve thgigner will be able to assemble the blocks together to achieve
zero slope condition. Finalll{3 increases witky. This same  a desired system performance. Three main system creation
analysis will be carried out for all sfnesses leading to the research areas have been identified so far: (i) ffeceof
creation of the sfiness ellipsoids. element separation, (ii) the importance of the sweep angle,

The presented equations of motion for the curved can-which leads to the ground and stage of the flexure system to
tilever beam analysed in Figs. 5 and 6 are corroborated usbe located on two dlierent planes, and (iii) thefect of load
ing FEA models. Figure 7 plots the predicted displacementdocation.

FEA of a curved compound-spring under a 10N load
?A) No deformation of input stagéB) Deformed input stage as a
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(A) Double curved compound-sprin@B) Stage driven by two separate double curved compound-springs, the quad compound-

spring CF design.

Main stage tip and tilt angle in microradians per millimeter search approach proposed is to first establish the optimal load
of z-axis displacement for theffizrent compound-spring iterations |ocation for a curved-beam element and how this position

(flexure length is constant for all iterations). changes with sweep angle. Then to determine how to use
center of stiftness rules to find the best actuation point of a
Tiltangle6  Tip angle¥ CF system.
wradmnt*  urad mnt* Section 2.1 showed that a curved four-bar system has four
Flat straight compound 58.5 0.00 parasitic motions and postulated that in a curved compound-
9C° curved compound 321 101 spring thes motions of the stage are not mitigated through
Double curved compound 0.00 211 the nesting because they occur on twffatient planes and
Two double curved compound  0.00 5.04 have diterents, ands, magnitudes. The question then be-

comes how do to deal with the additional parasitic motions
and the fact that they are occurring on twdfelient planes.
Element spacing plays a critical role in system creation.The following example is used as a way to demonstrate some
It is well-established that parasitic rotations of a shaft de-of the challenges of CF system creation. The goal of the pre-
crease with the distance between the bearibgsquared. Sented system is to translate a stage along the CF’s central-
Equation (1) shows that the pitching motion of a four-bar de-axis with minimal tip and tilt error. To do this the parasitic
creases witth? and Eq. (9) presents that the twistfistess, ¢ and'¥ motions of the flexure system have to be minimized

K,, of a straight four-bar increases with (Smith, 2000). and theAz displacement maximized. Precision engineering
applications require high accuracy flexure systems; microns
K. = El ©) of parasitic motion can cause a design to fail.
YT el To improve the performance of the curved version, a dou-

. . . ble compound-spring is used, as shown in Fig. 9. This
For straight-beam systems both parasitic motions decreas(tjzesign removes the tilt anglé, of the input stage by us-

o . . . ;
)[N'th b : l_Jsmtgr;] only th.'s |rl13fotrvr;1atlort1hm:y lead ;he deSI_Ig_Q_e r_ing symmetry without severely over-constraining, given the
0 maximize the spacing between the fiexure beams. 1his I%ide’floa‘ting stages are free to pitch and tilt. Symmetry can

not only a problem in terms of weight and volume. It is also be used once again to reduce the tip angleby driving a

found that since the para,3|t|c motions have not beef‘ mItI'stage with two double curved compound-springs as shown in
gated, when the four-bar's spacing is large enough,is

than the sfi f the st dth bedi Fig. 9. The displacements of theff@irent iterations are com-
greater than the stness of the stages and the stages eglrbared to the compound rectilinear spring in Table 1. Finally

to deform, as sho_wn n Fig. 8. Increasmg the spacing be'the side stages have to be connected to achieve a full cylinder
tween the beams is not a complete solution for reducing th

I . §n order to have a monolithic system. The challenge is to en-
parasitic mot|-ons. . . sure that the side stages are able to continue to move relative
Loqd location ha.s. been. shown to play a critical role in to each other. The stages can be connected through a flexure
reduqlng the parasitic motions of a system (Slocum, 199,2'spring that allows for this relative motion.
Hopkins, 2010). Therefore, future research must establish
rules and equations that describe tlitee of the load lo-

cation on the parasitic motions of a curved system. The re-
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