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Abstract. Cylindrical flexures (CFs), defined as flexures with only one finite radius of curvature loaded nor-
mal to the plane of curvature, present an interesting research direction in compliant mechanisms. CFs are
constructed out of a cylindrical stock which leads to geometry, manufacturability, and compatibility advan-
tages. Synthesis rules must be developed to design these new systems effectively. Current knowledge in
flexure design pertains to straight-beam flexures or curved flexures loaded along the plane of curvature. CFs
present a challenge because their mechanics differ from those of straight beams, and although their modelling
has been researched thoroughly it has yet to be distilled into element and system creation rules. This paper
uses models and finite element analysis to demonstrate that current design rules for straight-beam flexures are
insufficient and inadequate for the design of CF systems. The presented discussion will show that CFs differ
both at the element and systems levels, and therefore future research will focus on developing the three com-
ponents of the building block approach: (i) reworking of element mechanics models to reveal the parameters
which cause the kinematics of the curved beam to differ from those of the straight beam, (ii) development of a
visual stiffness representation, and (iii) formation of system creation rules.

1 Introduction

Cylindrical Flexures, CFs, are defined as flexure systems
with elements that have only one finite radius of curvature
and are loaded normal to their plane of curvature. In other
words, systems composed of flexure beams that are curved
in a single plane. Figure 1 shows a prototype of a particu-
lar CF system. The system shown in Fig. 1 is actuated by
loading the flexures normal to their plane of curvature. This
specific loading condition is presented because it offers the
most challenging research aspects and it is the least studied.

Past research has given different names to flexures that
fall under this definition. The most applicable definition is
Smith’s “hinges of rotational symmetry”, which he defines as
flexures constructed from solids of revolution (Smith, 2000).
The flexure shown in Fig. 1 fits within Smith’s definition be-
cause of its axial symmetry. This definition is expanded to
allow CFs to be fractions of a cylinder. The work is scoped
by constraining CFs to elements with a single finite radius.
Finally the system must have well defined distortions for it

to be classified as a CF. The focus of this paper is to demon-
strate: (i) the usefulness of design rules in the design pro-
cess, (ii) that current design rules for straight-beam flexures
are insufficient and inadequate for the design of systems with
curved-beam flexures, (iii) the need for future research at the
element and systems level, to develop guidelines for the de-
sign of CF systems.

1.1 Prior art

Past work that pertains to CFs has focused on two areas:
(i) models for curved beams and (ii) analysis of specific CF
concepts. Curved beams loaded normal to their plane of cur-
vature have been studied for over 80 yr, leading to closed-
form expressions of their mechanics and dynamics (Timo-
shenko, 1930; Young and Budynas, 2002; Lee, 1969). These
models, however, have not been distilled to provide a de-
signer with guidelines as to how to use curved beams to
achieve a set of functional requirements. This work will
extract, from these analytical models, clear rules for both
element and system design. An example of this kind of
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Figure 1. The quad compound-spring cylindrical flexure, CF, ex-
ample:(A) 7075Al prototype and(B) FEA model depicting its ac-
tuation.

synthesis is the work by Kim et al. (2008), which uses curved
beam building blocks (CBB) to create flexure systems. This
paper differentiates itself from CBB in that in this case the
beams are loaded normal as opposed to parallel to the plane
of curvature. This loading condition requires the analysis of
the flexures in three dimensions.

The other area of prior art pertains to the analysis of spe-
cific systems that fit within the CF definition. Smith (2000)
presents detailed analysis on the disc coupling and the ro-
tationally symmetric hinge. These types of analyses have
produced useful flexure systems; however there has been lit-
tle overarching insight developed that could be used to cre-
ate new CF concepts. In many cases the analysis of these
systems has relied on FEA given the lack of knowledge on
what parameters determine the system performance. The
biggest knowledge gap comes in the form of understanding
how to assemble these curved elements to create predictable
systems.

The lack of design guidelines restricts the design process.
The rapid generation of concepts is limited, since the de-
signer does not have a simple way to predict the general be-
havior of a system composed of CF elements. In addition
optimization is tedious because there is little understanding
of the effect of different parameters.

1.2 Advantages of CFs

Cylindrical flexures present geometry, manufacturability,
and compatibility advantages over traditional flexure sys-
tems. Their axial symmetry may be used to achieve insen-
sitivity to thermal changes, and to decrease the effects of
manufacturing and load placement errors. Monolithic sys-
tems with a variety of flexure elements can be created out
of a single piece of round stock reducing assembly cost and
errors.

CF fabrication is facilitated by the availability of accurate
round stock. CFs can be manufactured at low cost by using
traditional machining methods. The prototype in Fig. 1 was
machined using a 4-axis Mazak brand lathe. Other manu-
facturing methods include: a waterjet with a rotary axis and
a 5-axis mill. CF’s most attractive quality is their compat-
ibility with rotating applications, laparoscopic tools, optical

Figure 2. (A) Straight-beam mechanics,F is the load on the
beam,Mr is the resulting bending moment,∆z is the displacement
along the z-axis, andθ is the parasitic rotation about the x-axis.
(B) Curved-beam mechanics, highlighting the added twist,ψ, and
torque,Tr and(C) Curved-beam parameters.Rrepresents the radius
of curvature,φ is the sweep angle,tr is the thickness of the beam in
the radial direction, andta is the thickness in the axial direction.

systems, and other applications benefiting from their cylin-
drical geometry.

2 Knowledge gap: need for CF research

This section focuses on explaining how and why CFs be-
have differently than straight-beam flexures. These differ-
ences make current design guidelines inadequate for the ef-
fective creation of CF concepts. The variations from straight-
beam behavior are illustrated by looking at a curved can-
tilever beam loaded at its free end. In this case the desired
motion is a displacement along the z-axis. All other displace-
ments are defined as parasitic motions.

2.1 Mechanics

Curved flexures have additional complexities over straight
beams both at the element and system levels. The curvature
of the beam leads to an added rotation and resulting torque.
Figure 2 shows that for a given load,F, the flexure will twist,
ψ, which leads to a resulting torque,Tr, at the base. Sect. 3.1
presents the proposed process for developing element design
rules from current curved-beam models.

The curvature of the beam also leads to challenges in the
conceptual assembly of curved-beam flexure systems. The
traditional rules for adding elements have to be augmented to
include the effects of the added twist and torque. The four-
bar linkage and Jones et al.’s (1956) compound rectilinear
spring are used to demonstrate the need for additional system
creation rules.

A common flexure bearing system is the four-bar link-
age, shown in Fig. 3a, where a stage is connected to ground
through 2 parallel straight beams or blades. Figure 3a shows
that the four-bar linkage’s motion can be described as the su-
per position of two deflections which lead to two parasitic
motions in addition to the desired displacement along the z-
axis. Slocum (1992) gives the equations used to calculate the
parasitic pitching motion of the stage,θpitch, and estimate the
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Figure 3. (A) Straight four-bar linkage parameters,a indicates the location ofFz relative to ground. Figure shows the three motions
associated withFz applied onto the platform. Desired displacement∆z is indicated with green, while the parasitic motions,θ andδy, are
shown in blue.(B) Curved four-bar linkage parameters and displacements underFz; ay andax indicate the location of the force relative to
ground. The curvature results in twoδ parasitic motions,δx andδy, and an additional rotation of the stage,Ψ. (C) Straight compound-spring.
Nesting of the two four-bars results in cancellation of theδ parasitic motions.Θ1 andΘ2 indicate the rotations of the stages in the nested
system.(D) Curved compound-spring. Cancellation of theδ motions is not straight forward.

vertical motion,δy, presented in Eqs. (1) and (2). In these
equationsL represents the length of the flexure beam,b is
the distance separating the flexures,a is the distance from the
load input location to ground,t is the thickness of the beams,
and∆z is the desired displacement along the load direction.
The parameters are defined in Fig. 3a. The vertical motion of
the stage,δy, in conjunction with the desired displacement,
∆z, will result in the stage following an arc asFz is applied,
as highlighted in Fig. 3a.

θpitch =

(
6(L−2a) · t2

3b2L−2t2+6at2

)(
∆z
L

)
, (1)

δy ≈
(∆z)2

2L
. (2)

Equations (1) and (2) are used by designers to estimate the
parasitic motions of a straight four-bar system. These equa-
tions have been derived for straight-beam flexures and must
be expanded in order to describe a four-bar composed of
curved beams. Figure 3b shows that for an input load nor-
mal to the plane of curvature,Fz, the motion of the input
stage can be decomposed into four deflections which lead
to four parasitic motions:θ, Ψ, δy andδx. As a result of the
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curvature of the flexures, the CF four-bar the stage will travel
in two arcs dictated by∆z, δy andδx, and it will experience
two rotations about its centerθ, Ψ. Future research is nec-
essary in order to develop a set of equations that accurately
predict the parasitic motions of the four-bar CF system.

The design of precision machines requires that the para-
sitic motions are well understood and minimized to achieve
the desired displacement. Studies have shown that for a four-
bar linkage load placement and nesting of systems can be
used to reduce the parasitic motions. As Eq. (1) showsθpitch

can be reduced by moving the location of the input load,a.
The challenge in the curved version of the four-bar linkage
is that the load location is now defined by two coordinates
ax and ay, as shown in Fig. 3b. Once again the currently
available knowledge is insufficient to design a curved-beam
flexure system.

Nesting of two four-bar flexure systems, referred to as the
compound rectilinear spring, has been used to mitigate the
parasitic arcing motion caused byδy as shown in Fig. 3c.
In the compound-spring theδy motion of the input stage is
matched by an equal and oppositeδy of the floating stage
resulting in a cancellation of the arcing motion of the input
stage. Theδy motions are mitigated as long as both four-bars
are constructed of identical flexure beams, therefore achiev-
ing the same∆z displacement and as a result the same mag-
nitude ofδy. It is important to note that the nesting of the
flexures does not remove the parasitic rotations of the stages,
θ1 andθ2, but these rotations are affected by the nesting and
are labelledΘ1 andΘ2 in Fig. 3c to reflect this. Figure 3d
shows what happens when a compound-spring is created us-
ing two curved four-bars. Due to the curvature, the floating
and input stages are located on different planes. As a result
the cancellation of theδ motions is not straight forward and
requires further research; the resultingδmotions will depend
on the magnitude ofδy andδx as well as the sweep angle,
φ. Section 3.3 discusses the proposed research approach for
creating system rules that will allow the designer to manage
the parasitic motions of CF systems.

2.2 Stress

In order to determine the range of a system, both the displace-
ment to a given load and the resulting stress must be consid-
ered. The curvature of the element leads to a torque on the
fixed end of the cantilever beam. This torque will affect the
resulting stress calculation. Using energy conservation prin-
ciples it can be identified that an added torque requires that
there be a decrease in the original resulting moment. Both
of these effects will change the magnitude and distribution of
the stress along the beam.

Figure 4 shows that a stress concentration is observed at
the base on the inner radius of the curved element. Future
work will develop guidelines that will allow the designer to
account for the new stress distribution and perhaps find a way
to distribute the stress more evenly. Previous work has shown

Figure 4. Finite element analysis of two cantilevered beams of the
same properties under the same loading force. The stress concen-
tration on the curved beam is highlighted.

contouring of the thickness of the flexure to be a successful
way to distribute stress along the length of a beam (Timo-
shenko, 1930).

3 Research approach and impact

The main three compliant mechanism synthesis approaches
are topology synthesis, pseudo-rigid modelling, and build-
ing block approach. A building block approach derived from
constraint-based design is proposed as the most appropriate
synthesis methodology for CFs at this time (Maxwell, 1890;
Blanding, 1999; Hale, 1999). The plan is to first develop a
full understanding of the parameters that affect the element’s
behavior. This element then becomes the building block for
CF systems. The next step is to develop rules for how these
blocks interact when added together. The desired outcome of
the research consists of (i) a visual representation that allows
the designer to quickly understand how different parameters
will affect the behavior of an element, similar to a stiffness
ellipsoid (Kim, 2008) and (ii) design guidelines for the gen-
eration of CF systems.

A constraint-based design approach has been chosen be-
cause it is intuitive for precision engineers. This synthesis
approach presents a quick way to understand why a system
created from a set of building blocks will behave a certain
way. It also makes the rapid concept generation phase of
the design process very efficient as the designer can use the
stiffness representations and system rules to quickly lay out
the elements to achieve a desired performance, while being
able to account for external constraints such as manufactur-
ing. The knowledge gathered through the development of
these building block rules can then be used to create argu-
ments for the other synthesis methods.
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Figure 5. The curvature adjustment factors,ζ, show how the be-
havior of the curve beam deviates from that of a straight beam as a
function of the geometry of the beam. Curvature adjustment factors
are obtained from Roark’s closed-form solutions.ζz corresponds
to the z-axis displacement multiplier as shown in Eq. (7), whileζθ
andζΨ correspond to the multipliers for the two parasitic motions
θ andΨ, respectively. FinallyζMr andζTr represent the curvature
adjustment factors for the resulting moment and torque at the base
of the beam. Flexure length is held constant by varying the radius
of curvature.(A) Curvature adjustment factors,ζ, vs. sweep angle,
φ. The graph shows that as the sweep angle goes to zero the curved
beam behaves as a straight beam,ζz, ζθ, ζMr go to 1, andζΨ andζTr

approach zero. While as the sweep angle increases the behavior of
the curved beam deviates from that of the straight beam.(B) Cur-
vature adjustment factors,ζ, vs.β, β is the ratio of elastic to shear
properties of a curved beam as defined by Eq. (4).

3.1 Element mechanics

The first step in the building block approach is to understand
the flexure element mechanics. The goal is to identify what
parameters affect the element’s performance. Roark’s equa-
tions for curved beams loaded normal to their plane of cur-
vature are used to understand the kinematics of the curved
beam and to find the parameters that play an additional role in
the motion of the curved beam (Young and Budynas, 2002).
Cantilever beams loaded at their free end are first examined.
Future work will explore the effect of load location.

Figure 2c shows the different parameters that define the
curved flexure element. Roark presents equations for the dis-
placements resulting from a load,F, at the free end of the

beam (Young and Budynas, 2002). The z-displacement,∆z,
is the desired motion. This displacement is given by Eq. (3),
whereR is the radius of the beam,E is the elastic modulus,I ,
is the second moment of area, andφ is the sweep angle.Ca6,
Ca9, Ca3 are functions ofφ andβ, defined in Roark (Young
and Budynas, 2002). Equation (4) definesβ as the ratio of
elastic to shear properties of the beam, whereG is the shear
modulus, andk is a torsional stiffness constant. More details
on these equations can be found in Roark (Young and Bu-
dynas, 2002). Equations (5) and (6) from Roark are used to
calculate the two parasitic motion of the cantilever beam,θ
andΨ which are defined in Fig. 2b.

∆z=
FR3

EI
· (Ca6 sin(ϕ)−Ca9(1− cos(ϕ))−Ca3), (3)

β =
E · I
G · k

. (4)

θ =
F ·R2

E · I
(Ca6 cos(ϕ)−Ca9 sin(ϕ)) (5)

Ψ =
F ·R2

E · I
(Ca9 cos(ϕ)+Ca6 sin(ϕ)) (6)

It is proposed that a more efficient way to look at Eq. (3) is
to factor it into the straight-beam equation and a curvature
adjustment factor,ζz, as shown in Eq. (7). In Eq. (7) the
length,L, is the product ofR, andφ. Equation (8) shows that
the curvature adjustment factor is calculated by dividing the
displacement given by Roark in Eq. (3) by the straight-beam
displacement equation. The curvature adjustment factors for
the parasitic motions,ζθ andζΨ, are similarly calculated.

∆z= ζz
FL3

3EI
, L = R·ϕ (7)

ζz = 3 · (Ca6 sin(ϕ)−Ca9(1− cos(ϕ))−Ca3)
/
ϕ3 (8)

This new representation allows the designer to use all previ-
ous knowledge of straight-beam behavior and then evaluate
what parameters play an additional role in the behavior of
the curved beam. The added role of parameters is evaluated
by identifying their effect onζz. If ζz does not depend on the
parameter then that parameter does not have an additional ef-
fect, relative to its effect on a straight beam’s mechanics. If
ζz is a function of that parameter then the parameter plays
an additional role. Analysing the parameters in Eq. (1) it is
found thatζz, ζθ, andζΨ depend only onφ andβ.

The next step is to understand how these two parameters
affect the mechanics of the beam. Figure 5a shows how as
φ approaches zero the curved beam behaves like a straight
beam. Then asφ increases the behavior deviates. Figure 5b
shows the curvature adjustment factor for each of the mo-
tions ζz, ζθ and ζΨ, vs. β. The value ofβ for a given ge-
ometry varies only a small amount with different materials
because the elastic and shear modulus are related by the Pois-
son ratio, which is close to 0.3 for common flexure materials.
Having identified the two additional parameters necessary to
describe the kinematic behavior of the curved beam, future
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Figure 6. ∆z-stiffness vs. sweep angle,φ, for three constraint con-
ditions. K1 corresponds to a cantilever beam,K2 represents a fixed
end-slope constrained beam, andK3 corresponds to a fixed end-
slope and twist constrained beam. Flexure length is held constant
by varying the radius of curvature.

research will analyse how the sweep angle,φ, andβ affect
common flexure performance metrics.

3.2 Stiffness representation

Once the mechanics are understood, a stiffness representa-
tion can be developed. This representation will allow the
designer to quickly identify how the elements will behave.
This can be done using either stiffness or compliance ellip-
soids (Kim et al., 2008). A stiffness ellipsoid visually shows
the relative magnitude of the stiffnesses of a beam. The∆z-
stiffness of the beam depends on the loading conditions and
element constraints. The previous analysis focused on can-
tilevered beams; however, flexures are usually constrained
in systems. Therefore, the effect of different constraint con-
ditions on the∆z-stiffness is explored. The change in∆z-
stiffness withφ is evaluated, because sweep angle is the dom-
inant parameter.

Figure 6 shows the∆z-stiffness vs.φ for three different
constraint conditions: (i) cantilever beam,K1, (ii) slope con-
strained,K2, and (iii) slope and twist constrained,K3. The
length of the flexures is held constant in this analysis by vary-
ing the radius of curvature. The graph for K1 corresponds to
the cantilever beam analysed in Fig. 5. From the mechan-
ics analysisK1 is expected to increase withφ, given∆z de-
creases withφ. K2 decreases withφ because both∆z and
θ decrease withφ. This decrease in slope translates to a
smaller moment being applied at the free end to achieve the
zero slope condition. FinallyK3 increases withφ. This same
analysis will be carried out for all stiffnesses leading to the
creation of the stiffness ellipsoids.

The presented equations of motion for the curved can-
tilever beam analysed in Figs. 5 and 6 are corroborated us-
ing FEA models. Figure 7 plots the predicted displacements

Figure 7. Comparison of the FEA and closed-form equation calcu-
lations of the curved beam displacements vs. sweep angle,φ, for a
cantilever beam,K1. Max error between models is 7 %.∆z repre-
sents the desired motion along the z-axis of the beam as indicated
in Fig. 2b. θ andΨ correspond to the two parasitic rotations of the
beam under a load normal to the plane of curvature. Flexure length
is held constant by varying the radius of curvature.

Figure 8. FEA of a curved compound-spring under a 10 N load
(A) No deformation of input stage(B) Deformed input stage as a
result of the four-bar twist stiffness,Kψ, being larger than the stage
stiffness.

from both models. The next step will be to compare these
models to experimental results. Future research will expand
on the kinematic analysis by assembling the 6×6 stiffness
matrix for a curved beam.

3.3 System analysis

The system creation guidelines will focus on the interaction
between the element building blocks. With these rules the de-
signer will be able to assemble the blocks together to achieve
a desired system performance. Three main system creation
research areas have been identified so far: (i) the effect of
element separation, (ii) the importance of the sweep angle,
which leads to the ground and stage of the flexure system to
be located on two different planes, and (iii) the effect of load
location.

Mech. Sci., 3, 25–32, 2012 www.mech-sci.net/3/25/2012/



M. J. Telleria and M. L. Culpepper: Drivers for design rules for cylindrical flexures 31

Figure 9. (A) Double curved compound-spring.(B) Stage driven by two separate double curved compound-springs, the quad compound-
spring CF design.

Table 1. Main stage tip and tilt angle in microradians per millimeter
of z-axis displacement for the different compound-spring iterations
(flexure length is constant for all iterations).

Tilt angleθ Tip angleΨ
µrad mm−1 µrad mm−1

Flat straight compound 58.5 0.00
90◦ curved compound 321 101
Double curved compound 0.00 211
Two double curved compound 0.00 5.04

Element spacing plays a critical role in system creation.
It is well-established that parasitic rotations of a shaft de-
crease with the distance between the bearings,b, squared.
Equation (1) shows that the pitching motion of a four-bar de-
creases withb2 and Eq. (9) presents that the twist stiffness,
Kψ, of a straight four-bar increases withb2 (Smith, 2000).

Kψ =
EI
b2L

, (9)

For straight-beam systems both parasitic motions decrease
with b2. Using only this information may lead the designer
to maximize the spacing between the flexure beams. This is
not only a problem in terms of weight and volume. It is also
found that since the parasitic motions have not been miti-
gated, when the four-bar’s spacing is large enough,Kψ is
greater than the stiffness of the stages and the stages begin
to deform, as shown in Fig. 8. Increasing the spacing be-
tween the beams is not a complete solution for reducing the
parasitic motions.

Load location has been shown to play a critical role in
reducing the parasitic motions of a system (Slocum, 1992;
Hopkins, 2010). Therefore, future research must establish
rules and equations that describe the effect of the load lo-
cation on the parasitic motions of a curved system. The re-

search approach proposed is to first establish the optimal load
location for a curved-beam element and how this position
changes with sweep angle. Then to determine how to use
center of stiffness rules to find the best actuation point of a
CF system.

Section 2.1 showed that a curved four-bar system has four
parasitic motions and postulated that in a curved compound-
spring theδ motions of the stage are not mitigated through
the nesting because they occur on two different planes and
have differentδx andδy magnitudes. The question then be-
comes how do to deal with the additional parasitic motions
and the fact that they are occurring on two different planes.
The following example is used as a way to demonstrate some
of the challenges of CF system creation. The goal of the pre-
sented system is to translate a stage along the CF’s central-
axis with minimal tip and tilt error. To do this the parasitic
θ andΨ motions of the flexure system have to be minimized
and the∆z displacement maximized. Precision engineering
applications require high accuracy flexure systems; microns
of parasitic motion can cause a design to fail.

To improve the performance of the curved version, a dou-
ble compound-spring is used, as shown in Fig. 9. This
design removes the tilt angle,θ, of the input stage by us-
ing symmetry without severely over-constraining, given the
side/floating stages are free to pitch and tilt. Symmetry can
be used once again to reduce the tip angle,Ψ, by driving a
stage with two double curved compound-springs as shown in
Fig. 9. The displacements of the different iterations are com-
pared to the compound rectilinear spring in Table 1. Finally
the side stages have to be connected to achieve a full cylinder
in order to have a monolithic system. The challenge is to en-
sure that the side stages are able to continue to move relative
to each other. The stages can be connected through a flexure
spring that allows for this relative motion.
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4 Conclusions and future work

This paper uses analysis of common flexure mechanisms to
demonstrate that current design rules for straight-beam flex-
ures are insufficient for designing effective CFs. The insights
that this research has already generated guided the correc-
tion of a CF design achieving a 20× reduction in parasitic
errors. The result is a new CF concept that is compatible
with cylindrical geometries. Continuing research in this area
will develop a full set of design insights and a stiffness rep-
resentation that will enable a designer to create CF systems
effectively.
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