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Abstract. Synthesizing topologies of compliant mechanisms are based on rigid-link kinematic designs or
completely automated optimization techniques. These designs yield mechanisms that match the kinematic
specifications as a whole, but seldom yield user insight on how each constituent member contributes towards
the overall mechanism performance. This paper reviews recent developments in building block based design
of compliant mechanisms. A key aspect of such a methodology is formulating a representation of compliance
at a (i) single unique point of interest in terms of geometric quantities such as ellipses and vectors, and (ii) rel-
ative compliance between distinct input(s) and output(s) in terms of load flow. This geometric representation
provides a direct mapping between the mechanism geometry and their behavior, and is used to characterize
simple deformable members that form a library of building blocks. The design space spanned by the building
block library guides the decomposition of a given problem specification into tractable sub-problems that can
be each solved from an entry in the library. The effectiveness of this geometric representation aids user insight
in design, and enables discovery of trends and guidelines to obtain practical conceptual designs.

1 Introduction

Kinematics of conventional rigid-link mechanisms and their
systematic synthesis has been studied for almost a couple
of centuries (Erdman et al., 2001). This has resulted in a
database of a number of tried and tested mechanisms, each
adept in a specific task (Sclater and Chironis, 2007). A de-
signer can either choose an existing conceptual design from
the database, or systematically combine a number of designs
to meet a more complex specification. Once the conceptual
design is chosen, it can be refined for the application at hand
by first analyzing the various geometrical configurations that
rigid links and kinematic pairs assume, and then analyzing
forces in links to determine the amount of material required
to maintain strength and rigidity. For most applications mul-
tiple solutions can be generated, and secondary criteria such
as aesthetics and ergonomics can be used to determine the
best solution. The simplicity of this process is as a result of
the decoupling between kinematic and structural aspects of
design.

In the past couple of decades researchers are interested in
monolithic mechanisms devoid of joints and links that de-
rive their mobility on elastic deformation alone. They have
significant advantages that are well documented in literature
such as elimination of friction, backlash and reduced manu-
facturing costs by avoiding assembly (Howell, 2001). Fur-
thermore, their versatility is increased by their scalability
in various length scales. However, elastic deformation may
lead to material failure at certain regions having high stresses
thus limiting range of motion and the load carrying ability of
these mechanisms. The main design challenge for compli-
ant mechanisms is the intricate coupling between kinematics
and elasticity. In other words, the topology of a mechanism
and the size of its individual elements together determine
how the mechanism moves and the internal forces within its
members, thus precluding synthesis akin to rigid-link mech-
anisms.

As a first attempt at design, Howell and Midha used
conventional rigid-link topologies and the associated design
methodologies to first design a rigid-link mechanism that
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16 G. Krishnan et al.: Building block method

meets the kinematic specifications. Appropriate torsional
springs were placed at the joints of this mechanism to meet
the stiffness specification. The rigid links were then replaced
with beams of equivalent length to match the required kine-
matics. The cross-section of the beams were then deter-
mined based on the stiffness of the torsional springs and the
stress considerations. This technique where an equivalent
rigid link and a torsional spring is used to analyze and de-
sign monolithic elastic mechanisms is known as pseudo-rigid
body model. The designs that resulted from this methodol-
ogy, though practical yield distinct areas where flexibility is
lumped. These are also the areas where stresses are concen-
trated and thus limit lead bearing and large range of motions.

Topology optimization was developed byAnanthasuresh
(1994) that aimed at a better utilization of the design space
without restricting to conventional topologies. This proce-
dure initially lists all possible interconnections of beams or
a planar finite element mesh of the design domain, whose
widths or thickness are the design variables for optimization.
Elements with the values of design variables lower than a
specific cut-off will not be considered to contribute towards
the final topology. The optimization algorithm determines
an optimal topology that maximizes an objective function.
If the objective function defines the kinematic behavior of
the mechanism alone, without incorporating strength consid-
erations, the optimization yields mechanisms that are com-
posed of rigid members and thin flexures (Saxena and Anan-
thasuresh, 2003). Yin and Ananthasuresh(2003) andCan-
field et al. (2007) have demonstrated the use of additional
constraints that prevent large relative rotations between two
finite elements that constitute the topology in the design do-
main. Nevertheless, there is considerable complexity in in-
corporating stress considerations in topology optimization.
Furthermore, this process yields little insight on the func-
tional contribution of different elements in the topology. Fur-
thermore, the optimum connectivity may not be present in the
design parametrization, which leads to suboptimal or convo-
luted designs.

Thus, there is a need to understand the contributions of
each member that constitutes the design. This understanding
can yield insightful conceptual synthesis of compliant mech-
anisms, where simple deformable members are systemati-
cally combined to obtain the overall topology. Such a build-
ing block method was proposed byKim (2005); Kim et al.
(2008).

2 Overview of building block methods

Complex systems such as an automobile, aircraft and elec-
tronic gadgets are always broken down into simpler subsys-
tems that can be easily designed. For example, an automobile
consists of combustion, transmission, electrical subsystems
all working together. These subsystems are designed and fab-
ricated separately and integrated during assembly. A similar

Problem Specification
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Building Blocks

Problem Decomposition

Mechanism 
Assembly

Figure 1. Schematic of the building block method for design.

building block approach was proposed for mechanism design
by Kota and Chiou(1992) for conventional rigid link mech-
anism synthesis. The building block method is captured in
the flowchart shown in Fig.1 (Kim, 2005). Once kinematic
specifications were determined, they were compared with en-
tries in the database of existing designs. If no entry is found,
the problem specification is broken down to tractable sub-
problems, whose solutions are found in the database. The
final design is an assembly of the individual subproblems.

Building block methods are common in conceptual de-
signs where there is a functional independence between the
constituent building blocks. This means that when two build-
ing blocks are combined, one does not change the inherent
behavior of the other. For example, a slider joint remains
a slider irrespective of the number of links attached to it.
However, in domain specific design problems such as com-
pliant mechanism synthesis, the deformation behavior of a
building block is in general determined by rest of the topol-
ogy. In other words the same building block may have two
different deformation behaviors based on its loading condi-
tion. Consider a simple cantilever beam that is ubiquitous
in most compliant mechanism topologies. Its deformation
behavior can range from fixed-free to fixed-guided based on
loads acting on the free end as seen in Fig.2. In most prob-
lems this deformation behavior cannot be determined before
hand. Is it then possible to use the elements of the building
block method as shown in Fig.1 for compliant mechanism
synthesis?

The answer for the above question lies in the representa-
tion of compliance that favors building block method. Such
a representation must provide

1. Expression of compliance quantities from first princi-
ples: the representation can aid visual insight if geo-
metric quantities are used to express various aspects of
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(a) (b)

Figure 2. A beam with an end load has different deformation pro-
files when its end is(a) free, or (b) guided (constrained rotation
and axial motion). Whether it behaves as(a) or (b), or between the
two in a compliant mechanism depends on the subsequent members
attached to it.

compliance. Furthermore the representation must be
intrinsic to the topology and independent of reference
frames used to evaluate it.

2. Parametric characterization: simple deformable build-
ing blocks are characterized with changing geometric
parameters to span the design space. Use of geomet-
ric quantities enable visualization of the tractable design
space.

3. Systematic decomposition of problem into tractable
subproblems: the compliance representation must pro-
vide user insight in problem decomposition.

4. Enabling seamless assembly: the physics must enable
seamless integration of the subproblems into the final
solution.

There have been efforts in the past decade to propose var-
ious representations that permit a building block approach.
At a single point of interest the compliance matrix has been
characterized as a three dimensional ellipsoid (Kim et al.,
2008; Kim, 2005). This representation enabled designing
mechanisms with a given stiffness behavior by parallel com-
bination of curved beams and dyads (series combination of
beams). Design for single-input single output mechanisms
have been similarly proposed based on combining a num-
ber of single point mechanisms between an input and output.
Though these techniques yield conceptual designs that meet
kinematic specifications, the representation lacks mathemat-
ical rigor and thus yields limited insight in the process of
combining building blocks. This paper reviews recent ad-
vances in proposing a physically insightful, mathematically
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Figure 3. Eigen-twist and Eigen-wrench parameters for a particular
building block geometry.

robust compliance representation at a single point of interest
(Krishnan et al., 2011) and relative compliance between two
points (Krishnan et al., 2010).

3 Single port compliance: eigen-twist and
eigen-wrench characterization

Single port compliance involves characterizing the force dis-
placement relationship at a single point of interest. This is of
importance in the design of constraints (Awtar et al., 2007),
suspensions for microsystems, and elastic vision based sen-
sors (Cappelleri, 2008). This force displacement relation-
ship is given by the compliance matrix (or its inverse stiff-
ness matrix). The dimensions of the compliance matrix in
planar two dimensional case is 3×3. The three degrees of
freedom are two translations in the plane of the geometry
and a rotation about an axis perpendicular to the plane. The
terms in the compliance matrix thus consist of both transla-
tional and rotational terms having different dimensions. To
avoid dimensional inconsistencies, it is desired that transla-
tions and rotations are dealt with separately. This is accom-
plished by shifting the point of interest from the input to a
new point where decoupling translational and rotation terms
of the compliance is possible (Lipkin and Patterson, 1992).
This point, known as the Center of Elasticity (CoE) and is al-
ways unique for a planar geometryKim (2008) and is shown
for a compliant dyad in Fig.3. This point is similar to the
remote center of compliance (RCC) in robotics, and the well
established concepts of center of stiffness or center of com-
pliance (Ciblak and Lipkin, 2003) as defined for a planar ge-
ometry. If a rigid connection is established between the CoE
and the input, then any force applied at this point yields pure
translation, and any moment applied yields a pure rotation.
Thus the translational compliance at this point can be repre-
sented by an ellipse whose semi-major and semi-minor axes
(af1 andaf2) denote the primary and secondary compliance
directions. In these directions (ef1 andef2), any force applied
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if any force is applied along the direction of the coupling vec-
tor no rotation is observed. This vector is thus named as the
coupling vector. Similar to the compliance matrix, the terms
of the stiffness matrix can be represented as a stiffness ellipse
and a stiffness coupling vector as seen in Fig. 5. Further in-
sight into this characterization can be obtained in Krishnan
et al. [11].

δ

-1500 -500 0 1000 2000
-1500

-500

0

500

1500

af1

af2

-100

0

100

β+δ

-150 -50 0 50 150

0
β+δ

rE
2/kg

rE/kg

C11 C12  C13
C12 C22  C23
C13 C23  C33

Fig. 4. Compliance ellipse and Compliance coupling vector (~cv).
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Fig. 5. Stiffness ellipse and Stiffness coupling vector (~sc).

This representation of compliance easily sets stage for
a systematic building block based synthesis method. The
first stage for the building block method after determining
the problem specification is evaluation of candidate build-
ing blocks, or developing a library of building blocks. The
most versatile building block for compliant mechanism syn-
thesis is shown to be a series combination of two beams, as
a number topologies are shown to be composed of them [8],
[12]. The eigen-twist and the eigen-wrench parameters can
be evaluated by varying the angle between the two beams
that make up the dyad and their relative lengths. Figure 6
plots np = a f2/a f1 for varying length ratios (radius of the po-
lar plot) and dyad angles α. This gives an indication of the
design space spanned by the dyad for np. Similarly other
parameters (rE , β, a f1 ) are plotted in Kirshnan et al [11].
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Fig. 6. Parametric characterization of a compliant dyad for its eigen-
twist and eigen-wrench parameters. The figure shows one such plot
adapted from [11].

Consider an example where equal biaxial (X and Y )
stiffness is required at a point without any coupling trans-
lational and rotational terms. Such a specification is required
for a vision-based force sensor [18], where external applied
force can be evaluated by measuring the deformation of a
point. Such a problem specification requires a circular com-
pliance ellipse with zero coupling vector magnitude shown in
Fig. 7a. Comparing from the database of compliant dyads no
design matches these specifications [11]. Figure 7b-c and 8
illustrate achieving these specifications using series and par-
allel combination of dyads. In series combination, the cou-
pling vectors of individual building blocks add. Thus the
zero coupling vector specification can be achieved by align-
ing equal and opposite building block specifications. Since
the degenerate shift ellipse depends on the coupling vector
orientations alone, its magnitude can be evaluated and sub-
tracted from the required ellipse to obtain a net ellipse (Fig.
7b). Two dyads are then chosen from the building block li-
brary to meet the ellipse specifications. The next step in-
volves assembly of dyads between themselves, and between
one of the dyads and the input using rigid connecters as they
donot change the compliance characteristics at the CoE of a
building block. Thus all the steps illustrated in Fig. 1 are
accomplished with geometrically intutive quantities.

One of the limitations of series combination is that the
CoE always lies within the footprint of the mechanism (for
proof of this, please refer Kirshnan et al. [11]). This does
not provide an easy access of the input for interacting with
the objects in the vision based force sensor application. To
overcome this, parallel combination of building blocks are
recommended. During parallel combination, the stiffness el-
lipses and striffness coupling vectors of the building blocks
add. Two sub-mechanisms whose stiffness ellipses are cir-
cular and whose stiffness coupling vectors are aligned equal
and opposite to each other are connected together as shown
in Fig. 8. A practical realization of this involves parallel
combination of symmetric halves with some accommodation
for a rigid probe as shown in Fig 8d. The resulting input has
equal biaxial compliance and decoupled translational and ro-
tational compliance.

Figure 4. Compliance ellipse and Compliance coupling vector (cv).

yields translation along the same direction. The rotational
stiffness at this point can be represented by a scalar valuekg.
The orientation of the CoE is given by an angleβ and the
angleδ refers to the orientation of the geometry in the two
dimensional plane. These quantities are illustrated in Fig.3.
They are called eigen-twist and eigen-wrench characteriza-
tion as the parameters can be obtained by eigen value analy-
sis of the compliance matrix with selective normalization of
its twists and wrenches (Kim, 2008).

Though it is convenient to characterize compliance at the
center of elasticity as seen above, it is required to relate this
to the compliance at the input point, as this was our original
location of interest. The compliance at the input can be repre-
sented by the very same terms that characterize it at the CoE
with some additional terms as seen in Fig.4. The translation
ellipse at the CoE (af1 andaf2) is supplemented with a degen-
erate ellipse oriented perpendicular to the line jointing the
input and the CoE. Furthermore the coupling between trans-
lational rotational compliance at the input is represented by a
coupling vector (cv) whose magnitude denotes the amount of
translation obtained due to a unit moment, or the amount of
rotation obtained due to a unit force. However, if any force is
applied along the direction of the coupling vector no rotation
is observed. This vector is thus named as the coupling vector.
Similar to the compliance matrix, the terms of the stiffness
matrix can be represented as a stiffness ellipse and a stiffness
coupling vector as seen in Fig.5. Further insight into this
characterization can be obtained inKrishnan et al.(2011).

This representation of compliance easily sets stage for
a systematic building block based synthesis method. The
first stage for the building block method after determining
the problem specification is evaluation of candidate build-
ing blocks, or developing a library of building blocks. The
most versatile building block for compliant mechanism syn-
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Figure 6. Parametric characterization of a compliant dyad for its
eigen-twist and eigen-wrench parameters. The figure shows one
such plot adapted fromKrishnan et al.(2011).

thesis is shown to be a series combination of two beams, as a
number topologies are shown to be composed of them (Kim,
2005; Krishnan et al., 2010). The eigen-twist and the eigen-
wrench parameters can be evaluated by varying the angle be-
tween the two beams that make up the dyad and their relative
lengths. Figure6 plotsnp = af2/af1 for varying length ratios
(radius of the polar plot) and dyad anglesα. This gives an
indication of the design space spanned by the dyad fornp.
Similarly other parameters (rE, β, af1) are plotted inKrish-
nan et al.(2011).
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Consider an example where equal biaxial (X andY) stiff-
ness is required at a point without any coupling translational
and rotational terms. Such a specification is required for a
vision-based force sensor (Cappelleri et al., 2010), where ex-
ternal applied force can be evaluated by measuring the de-
formation of a point. Such a problem specification requires
a circular compliance ellipse with zero coupling vector mag-
nitude shown in Fig.7a. Comparing from the database of
compliant dyads no design matches these specifications (Kr-
ishnan et al., 2011). Figures7b–c and8 illustrate achieving
these specifications using series and parallel combination of
dyads. In series combination, the coupling vectors of indi-
vidual building blocks add. Thus the zero coupling vector
specification can be achieved by aligning equal and opposite
building block specifications. Since the degenerate shift el-
lipse depends on the coupling vector orientations alone, its
magnitude can be evaluated and subtracted from the required
ellipse to obtain a net ellipse (Fig.7b). Two dyads are then
chosen from the building block library to meet the ellipse
specifications. The next step involves assembly of dyads be-
tween themselves, and between one of the dyads and the in-
put using rigid connecters as they donot change the compli-
ance characteristics at the CoE of a building block. Thus all
the steps illustrated in Fig.1 are accomplished with geomet-
rically intutive quantities.

One of the limitations of series combination is that the
CoE always lies within the footprint of the mechanism (for
proof of this, please referKrishnan et al., 2011). This does
not provide an easy access of the input for interacting with
the objects in the vision based force sensor application. To
overcome this, parallel combination of building blocks are
recommended. During parallel combination, the stiffness el-
lipses and striffness coupling vectors of the building blocks
add. Two sub-mechanisms whose stiffness ellipses are cir-
cular and whose stiffness coupling vectors are aligned equal
and opposite to each other are connected together as shown
in Fig.8. A practical realization of this involves parallel com-
bination of symmetric halves with some accommodation for
a rigid probe as shown in Fig.8d. The resulting input has
equal biaxial compliance and decoupled translational and ro-
tational compliance.

Thus, it is shown how compliance representation in the
form of eigen-twist and eigen-wrench parameters enables a
systematic and insightful building block method to synthe-
size single-port compliant mechanisms.

4 Multi-port compliance: load flow analogy

In the previous section we dealt with compliance where de-
formation was directly actuated by an applied force at the
required point. There are a number of transmission prob-
lems such as grasping objects and amplifying, where force
applied is spatially separated from the required output de-
formation. The challenge for the building block method is
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formulating a representation for relative compliance between
any two points in a continuum that can facilitate a building
block method. In other words, it must enable representation
of problem specification that can easily be decomposed into
tractable subproblems. In this section, we present a load flow
based analogy of relative compliance representation.

Between two points in a continuum, the relation between
the applied forces and deformation is obtained from the ex-
tended form of the compliance matrix as shown below.[

uin

uout

]
=

[
Cin Cin-out

CT
in-out Cout

][
f in

fout

]
(1)
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Figure 8. Parallel Combination(a) Two symmetric halves(b) Ad-
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lipses(d) Final mechanism with a rigid probe.

whereuin andf in are the displacements and applied load re-
spectively at the input, anduout andfout are the displacements
and applied load respectively at the output. Load transfer be-
tween the two ports is defined as an equivalent applied load
at the output that produces the same output displacement as
a unit input load. Load transfer can be thus defined as the
output load that would cause the same output deformation
as an applied input load as shown in Fig.9. This is similar
to the notion of transferred forces defined inHarasaki and
Arora (2001). The relation between this transferred load and
the applied load is given by the LT matrix given by Eq. (2).

f̃tr =C−1
outC

T
in-outf in

TL =C−1
outC

T
in-out (2)

whereTL is the Load Transfer (LT) matrix that relates the
transferred load and the input loadf in. The detailed deriva-
tion of the Eq. (2) is shown inKrishnan et al.(2010). Further-
more, it must be noted that the transferred force in Eq. (2) is
not the same as an applied output load in Eq. (1). The impli-
cation of defining transferred load is that a two-port problem
between the input and the output is converted into a single
port problem where the transferred force acting at the output
produces the required output displacement.

Input

Output

fin uin

uout

fin= 0

uout
fout= 0

fout

~

(a) (b)

Figure 9. Deriving the Load Transfer matrix for Complaint Mecha-
nisms (Krishnan et al., 2010). (a) Output displacement is evaluated
for an applied input load(b) Output reaction load is evaluated by
enforcing the output displacement from(a) with no input load. This
reaction load is the transferred load.

While this characterization captures the relative compli-
ance between two ports, its usefulness for a systematic syn-
thesis is captured through an important property that enables
modularity. Consider the two geometries and their deformed
profiles in Fig.10a and b. These geometries are composed of
a beam that acts as an input constraint in series with a beam
that connects the input and output. The output in Fig.10a is
constrained by a third beam which is absent in Fig.10b. It is
found that the transferred load evaluated at the output for the
two different geometries is exactly equal, implying its inde-
pendence on the output constraint. This property is true for
all geometries consisting of a general input constraint in se-
ries with a general transmitter element between the input and
the output. The detailed proof of the property is presented
in Krishnan et al.(2010). Thus, the fundamental building
block for load transfer between two points is identified as a
Load-Transmitter Constraint (LTC) set. The implication of
this property in a mechanism composed of a number of LTC
sets is that the transferred load in each LTC set can be inde-
pendently evaluated of succeeding ones. This enables mod-
ularity in analysis and design of two-port compliant mecha-
nisms. One other observation is that the transferred load is
independent of the deformation profile of the transmitter. For
example, the transmitter in Fig.10a is almost fixed-guided
(like Fig. 2b), while the transmitter in Fig.10b deforms as a
rigid body.

The simplest of the LTC sets is a compliant dyad as seen in
Fig.10b. It has a beam for a constraint and a beam for a trans-
mitter. Irrespective of the direction of the input force applied
the transferred force is always oriented along the axis of the
transmitter. If a unit input force is applied perpendicular to
the orientation of the input constraint,the output transferred
force is given by
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straint. (c) The output displacement depends on the orientation of
the output constraint. In general any direction of the output dis-
placement is permitted±90◦ with respect to the direction of trans-
ferred force.

f̃tr =
finy

sin(α)
(3)

whereα is the inclination of the transmitter with respect to
the constraint. Applying an input moment changes the direc-
tion of the transferred force along with inducing transferred
moment. The transferred force evaluated will then yield

f̃trx = cot(α) fin−
3(l22normcos(α)+b3

r )mi

2l1(l2norm+b3
r )l2normsin(α)

f̃try = fin−
3l2normmi

2l1(b3
r + l2norm)

m̃tr =−
b3

r mi

2(b3
r + l2norm)

(4)

wherel2norm is the ratio of the transmitter beam length to the
input constraint beam length,l1 is the length of input con-
straint beam length,br is the ratio of the transmitter beam
thickness (in-plane) to the input constraint beam thickness.
The output transferred forces (f̃ox and f̃oy) depends upon the
input force and input moment. However, the output trans-
ferred moment ( ˜mo) is dependent on the input moment alone
and its direction is opposite to the input moment. Further-
more, from the above equation, the magnitude of the trans-
ferred moment is lower than the applied moment.

Though output constraints do not affect the transferred
force, they determine the magnitude and direction of output
displacement. Shown in Fig.10c is a semicircular band±90◦

with respect to the transferred load. From the positive def-
initeness of the stiffness or compliance matrix, the output
displacement is constrained within this band. Its actual di-
rection is dependent on the output constraint. For example
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Figure 11. Steps involved in the load flow based conceptual syn-
thesis of two-port compliant mechanisms.(a) Kinematic problem
specification and the inability of a single load path to solve the prob-
lem, (b) two load paths with the appropriate load flow directions
that meet the kinematic specifications,(c) constraints that enforce
the load flow directions must be oriented along a truncated band,
and(d) final mechanism topology and the deformed configuration.

the output constraint beam in Fig.10a constrains the output
to move along the direction determined by the intersection of
its degree of freedom with the semicircular band.

So far, we have formulated a representation for relative
compliance between two distinct points, identified its unique
properties that permit modular analysis and characterized a
simple building block, namely a dyad. We will present a
simple example of how this technique can be used for sys-
tematic synthesis. Consider a problem specification shown
in Fig. 11a where force applied at the input is at point “1”
in the y-direction and the required displacement is at point
“2” at an angle of−45◦. This is a nontrivial problem be-
cause no direct connection between the input and output will
yield the required kinematic specification. This is apparent
from the figure as the direction of load flow in the transmit-
ter does not intersect with any of the semicircular band di-
rections at the output. To enable intersection, the problem
is decomposed into two load paths, and the direction of load
flow in the transmitters is determined. The mechanism topol-
ogy (i.e. the constraints) will be designed such that the pre-
determined load flow directions are imposed. The constraints
at input point “1” must enable y-direction displacement. A
beam shown in Fig.11c thus acts as the input constraint. The
constraint at point “3” must be oriented such that load flow
directions are preserved. This can be ensured if the degree of
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Figure 12. Steps involved in generating conceptual solutions hav-
ing multiple load paths.(a) Kinematic problem specification and
planning two parallel load paths between input and output,(b) trun-
cated bands at each node,(c) constraints that enforce the load flow
directions, and(d) final mechanism topology and the deformed con-
figuration with widths of transmitters and constraints optimized so
that the required deformation is achieved.

freedom direction of the constraint is along a truncated band
obtained by the intersection of the bands at points “2” and
“3” as shown in Fig.11c. Furthermore the output constraint
at point “2” is a beam that constraints it to move at an angle
of −45◦. The deformed configuration is shown in Fig.11d.

The example illustrates the generality of the methodology
involving a single load path from input to the output. The
same example can be used to demonstrate the use of multiple
load paths between the input and the output. This is illus-
trated in Fig.12. The required direction of transferred load
at point 1 can be obtained by a combination of load paths
1-3-2 and 1-4-2. The net load transferred due to each path
add in proportion to the stiffness of the individual paths. For
example, if stiffness of path 1-3-2 is greater than 1-4-2 then
the former would dominate. If the stiffness of each load path
is tuned so that they are equal, then the net load transferred is
a vector combination of the individual paths. The constraints
are designed in Fig.12c such that they correspond to one of
the truncated band directions. The widths of the constraints
and transmitters are optimized such that the output in point 2
moves along a 45◦ angle.

Thus, a number of conceptual solutions can be gener-
ated by planning load paths and constraints using the above
method. Comparison of each conceptual solution in terms of
stress distribution, stiffness and mechanical efficiency is re-

quired to choose the best solution for a given problem speci-
fication.

5 Contributions and future research directions

This article shows how building block methods can be used
to generate conceptual designs for compliant mechanisms.
The ease with which kinematic specifications are met by
systematic combination of simple deformable members, and
the ability to quickly obtain alternate solutions highlights the
usefulness of this method. Furthermore the lack of numeri-
cal complexity and the emphasis on user insight makes this
technique excellent for classroom education. It is the rep-
resentation of compliance that enables this user insight into
systematic synthesis. In this article, such a representation and
synthesis methodology is reviewed for single port problems,
where force displacement relationship is characterized at a
single point of interest, and for multi-port problems where
relative compliance between two or more ports are charac-
terized.

5.1 Contributions

Representing compliance at a single point is accomplished by
decoupling translational and rotational terms thus preserving
dimensional consistency. Ability to represent translational
compliance as an ellipse and the coupling between transla-
tions and rotations as vectors enables insightful quantifica-
tion of the compliance characteristics. Series and parallel
combination of any deformable member is explained as a ge-
ometric combination of their individual ellipses and vectors.
Thus solving for a given compliance characteristics, which
was so far remotely accomplished through optimization is
now possible through systematic, yet intuitive methods.

Synthesis of two-port mechanisms have always been con-
sidered non-intuitive as the contributions of each member to-
wards the overall mechanism behavior is hard to understand.
This is the first attempt towards identifying the functions of
each member as a transmitter and a constraint. Representing
deformation behavior as load flow enables identifying and
thus determining feasible load paths that meets a given kine-
matic specification. Such a representation enables load path
to act as a skeleton for the overall mechanism geometry. As
seen in the examples, it is possible to synthesize single con-
tinuous load path and multiple parallel load paths for any ap-
plication with relative ease. This insight and ability to obtain
alternate solutions with ease highlights the usefulness of this
method.

To summarize, building block method with geometrically
insightful compliance representation is a novel synthesis
method from first principles. Though this article focused on
designing for kinematic specifications alone, the versatility
of the method may show promise in designing for strength
based considerations and manufacturing limitations.
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5.2 Future research directions

The main challenge of compliant mechanism design is ob-
taining distribution of stresses evenly within all its con-
stituent members. While meeting kinematic specifications
alone leads to multiple solutions, it is necessary to evalu-
ate which of these solutions lead towards distributed com-
pliance. Secondly, the effects of large deformations on com-
pliance representations must be studied. In single-port de-
sign this translates towards determining the change of the
eigen-twist and eigen-wrench parameters with deformation.
In two-ports the changes of load flow direction and magni-
tude must be determined for large deformations. Thus, the
future directions in building block methods is towards under-
standing what constitutes distributed compliance, and formu-
lating strategies in achieving them.

While planar examples were alone presented in this paper,
the ideas proposed are as relevant to spatial mechanisms.
The development of screw theory based methods (Hopkins
and Culpepper, 2010a,b) in designing mechanisms with
predetermined degrees of freedom and constraint can be
considered as a spatial extension of the single port problem.
However in mechanisms with relative deformation between
two or more ports that are not in general connected by a
rigid body, a combination of screw theory and load flow can
be envisioned.
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