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Received: 27 February 2010 – Revised: 30 June 2010 – Accepted: 19 August 2010 – Published: 8 February 2011

Abstract. This paper introduces a static model of a three-degree-of-freedom underactuated finger. The model
includes all static forces, namely actuation forces, return forces and gravity. All geometric and static param-
eters can be freely changed (pulley radius, member’s mass, etc.). Hence, the model allows complete static
simulations to be performed and it can also be used for numerical optimization.
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1 Introduction

Governmental investment in prosthetic research has in-
creased significantly over the last decade, the most notable
initiative being DARPA’s Revolutionizing Prosthetics pro-
gram in the US (Belfiore, 2009).

One of the most sought and important criterion is to de-
velop a hand that looks and feels natural (Belfiore, 2009).
That is the person who wears and uses the prosthesis doesn’t
feel out of place in public. This criterion is extremely impor-
tant for that the person who is to wear the prosthesis will not
prematurely discard it to never wear it again. Therefore, a
prosthetic hand should have 5 fingers each including 3 pha-
langes.

A possible approach is to develop a hand in which each
finger joint is independently actuated. Even with simplifica-
tions such as modelling the finger’s joints as revolute joints,
this leads to a total of 15 actuators which have to be pow-
ered and controlled. The problem encountered in such an
approach is the integration of such a large number of parts,
the amount of time and effort for someone who is not likely
technically inclined to master and use this complex assembly,
the reliability and ruggedness of such an assembly and, often
the problem that will be determinant, the combined weight
and wearability of such a system.

Therefore, underactuation is a very attractive alternative.
Underactuation is the property of a mechanism that has fewer
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degrees of actuation than degrees of freedom. The control
of the degrees of freedom is achieved by mechanical intelli-
gence.

Several underactuated fingers have been proposed in the
literature (see for instanceBirglen et al., 2008) for a litera-
ture survey). Many of the proposed fingers use tendon-based
transmissions and a single degree of actuation. This principle
is studied here and a finger model is proposed.

2 The finger model

The model proposed in this article considers the following
torque vectors:τa, the actuation which makes the finger curl,
τr , the spring action which makes the finger flex (open),τ f ,
the friction forces and, an action never considered before,
τg, the gravitational forces.τa andτr cannot be completely
specified since we will impose a torque at only one joint of
the finger. On the other hand,τ f andτg can be fully specified
for a given configuration of the finger. In order to model
the behaviour of the finger, we will combine all four torque
vectors. Figure 1 shows the components of these vectors and
their position on the finger.

3 Underactuation

We begin by using, as a basis, the underactuation model pro-
posed inBirglen et al.(2008); Allen-Demers et al.(2009) and
adapt it to a typical finger used in a prosthesis. Here the only
adaptation is to realise that our finger has 3 phalanges which
are underactuated.
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Fig. 1. FINGER WITH CORRESPONDING VARIABLES.

We equate the input and output virtual powers acting on
the finger and obtain (Birglen et al., 2008):

tTωa =

3∑
i=1

ξi ◦ζi (1)

where

t =

Ta0
0

, ωa =

 θ̇1θ̇2
θ̇3

,
ξi =

ωivxi
vyi

 and ζi =

 ftifni
τi


t is the vector composed of the input torques applied on the
ith joint (i = 1,2,3). It is to be understood that joint 1 refers
to the joint of the finger linking the latter to the palm of the
hand and that joint 3 links the distal phalanx to the medial
phalanx.
ωa is the vector composed of the angular velocities of the

ith joint (i = 1,2,3). θ̇a is the angular velocity of the actuation.
ξi is the twist associated to the ith point of contact and

ζi is the corresponding wrench. They are operated with the
reciprocal product, ◦ in the plane containing the finger. For
simplicity, we assume that each phalanx is in contact with
the object being grasped and that the ith contact can be con-
sidered as a point. The twist is composed of the angular ve-
locity, ωi, the velocity components, vxi and vyi , of the ith

point of contact. These velocity components are in relation

of the local reference frame of the ith phalanx. The wrench
is composed of the forces acting at the ith contact point: a
tangential force, fti, a normal force, fni, and a torque, τi.

As shown in (Hunt, 1978), we can define ξi in the follow-
ing alternative form:

ξi =
i∑

k=1

θ̇k

[
1

ErOk
i

]
(2)

Here, rOk
i is a vector from Ok to the ith point of contact

and E is the transformation matrix for a cross product in the
plane:

E =

[
0 −1
1 0

]
(3)

Now, we can express the right-hand side of Eqn. 1 as follows:

3∑
i=1

ξi ◦ζi =
3∑
i=1

i∑
k=1

θ̇k

[
1

ErOk
i

]
◦ζi (4)

In this article, we make the assumption that the finger is
free of all external forces but the torques needed to obtain
static equilibrium. Therefore, the wrench is expressed as:

ζi =

 0
0
τi


And Eqn. 4 becomes:

3∑
i=1

ξi ◦ζi =
3∑
i=1

i∑
k=1

θ̇k

[
1

ErOk
i

]
◦

 0
0
τi


= τTJθ̇ (5)

where

J =

1 0 0
1 1 0
1 1 1


J is a transformation matrix which links the global torques,
τi (i=1,2,3) and the local torques, τ∗i (i=1,2,3):

τ∗T = τTJ (6)

τ∗i is important since it is the amount of torque felt at the ith

joint, i=1,2,3.
Combining Eqns 5, 6 with 1, we get:

tTωa = τTJθ̇ (7)
= τ∗T θ̇ (8)

At this point, we define T, the transmission matrix that re-
lates vector ωa to vector θ̇. Explicitly, θ̇1θ̇2

θ̇3

=

X1 X2 X3

0 1 0
0 0 1

 θ̇aθ̇2
θ̇3
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Figure 1. Finger with corresponding variables.
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J is a transformation matrix which links the global torques,
τi (i=1,2,3) and the local torques,τ∗i (i=1,2,3):

τ∗T = τTJ (6)

τ∗i is important since it is the amount of torque felt at thei-th
joint, i =1,2,3.

Combining Eqs. (5), (6) with (1), we get:

tTωa = τTJθ̇ (7)

= τ∗T θ̇ (8)

At this point, we defineT, the transmission matrix that re-
lates vectorωa to vectorθ̇. Explicitly, θ̇1

θ̇2

θ̇3

=
 X1 X2 X3

0 1 0
0 0 1


 θ̇a

θ̇2

θ̇3


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motion of the pulley

θi

Fig. 2. ISOLATED ROTATION OF A JOINT.

or

θ̇= Tωa (9)

Thus, combining Eqns 8 and 9, we obtain

tTωa = τ∗TTωa (10)

which is equivalent to writing

τ∗ = T−T t (11)

4 Calculation of the Transmission Matrix for the Actu-
ation.

In this section, we take a look at the actuation mechanism of
the finger. The mechanism consists of a string attached to
the distal phalanx. The string is pulled through a pulley net-
work which produces the joint actuation. The transmission
matrix is the mathematical tool that models the behaviour of
the joints.

As stated in the last section, the transmission matrix is the
application that transforms the actuation velocity vector, ωa,
into the time derivatives of the joints coordinates, Eqn. 9.
The main relation to solve is

θ̇1 =X1θ̇a+X2θ̇2 +X3θ̇3 (12)

First, as illustrated in Fig. 2, we notice that the isolated
rotation of each joint, in joint coordinates, results in an elon-
gation of the tendon, xi, of the order of the radius of the joint
times the rotation of the same joint:

xi = ria∆θi i= 1,2,3 (13)

In the case of tendon and pulleys, the total amount of elon-
gation of the tendon corresponds to the rotation of actuation
joint times the radius of joint 1:

x= r1a∆θa (14)

And because we assume that the tendon is rigid, the total
amount of elongation is the sum of the elongation for each
joint rotation:

x=x1 +x2 +x3

and by combining Eqns 13 and 14, we obtain

r1a∆θa = r1a∆θ1 +r3a∆θ2 +r5a∆θ3 (15)

Now, we differentiate Eqn. 15 with respect to time, which
gives us

r1aθ̇a = r1aθ̇1 +r3aθ̇2 +r5aθ̇3

and reorganize in a form similar to Eqn. 12:

r1aθ̇1 = r1aθ̇a−r3aθ̇2−r5aθ̇3

or

θ̇1 = θ̇a−
r3a
r1a

θ̇2−
r5a
r1a

θ̇3 (16)

So, from Eqn. 16, we can define our transmission matrix
for the actuation as the following:

Ta =

1 − r3a

r1a
− r5a

r1a

0 1 0
0 0 1

 (17)

5 Calculation of the Transmission Matrix for the Re-
turn.

We now turn our attention to the return mechanism. Similarly
to the actuation mechanism, the return mechanism consists of
a string attached to the distal phalanx and passed through a
system of pulleys. However, the string is attached to a linear
spring a the base of the finger thus providing the return force.

As in the case of the actuation, we notice in Fig. 3, that
the isolated rotation of each joint, in articulation coordinates,
results in an elongation of the tendon, xi, of the order of the
radius of the joint times the rotation of the same joint:

xi = rib∆θi i= 1,2,3 (18)

In the case of tendon and pulleys, the total amount of elon-
gation of the tendon corresponds to the rotation of actuation
joint times the radius of joint 1:

x= r1b∆θa (19)

And because we assume that the tendon is rigid, the total
amount of elongation is the sum of the elongation for each
joint rotation:

x=x1 +x2 +x3

Figure 2. Isolated rotation of a joint.
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 (17)

5 Calculation of the transmission matrix for
the return

We now turn our attention to the return mechanism. Similarly
to the actuation mechanism, the return mechanism consists of
a string attached to the distal phalanx and passed through a
system of pulleys. However, the string is attached to a linear
spring a the base of the finger thus providing the return force.

As in the case of the actuation, we notice in Fig.3, that
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results in an elongation of the tendon,xi , of the order of the
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change in orientation

of the phalanx

θi

Fig. 3. ISOLATED ROTATION OF A JOINT FOR THE RETURN
MECHANISM.

and by combining Eqns 18 and 19, we obtain

r1b∆θa = r1b∆θ1 +r3b∆θ2 +r5b∆θ3 (20)

Now, we differentiate Eqn. 20, which gives us

r1bθ̇a = r1bθ̇1 +r3bθ̇2 +r5bθ̇3

and reorganize in a form similar to Eqn. 12:

r1bθ̇1 = r1bθ̇a−r3bθ̇2−r5bθ̇3

or

θ̇1 = θ̇a−
r3b
r1b

θ̇2−
r5b
r1b

θ̇3 (21)

So, from Eqn. 21, we can define our transmission matrix
for the return as the following:

Tr =

1 − r3b

r1b
− r5b

r1b

0 1 0
0 0 1

 (22)

The transmission matrix for the return mechanism is very
similar to Ta found for the actuation. However, the pulleys
in the return mechanism do not have to be of the same di-
mensions used for the pulleys in the actuation mechanism.
Therefore, we use here the notation ’b’ to designate a return
pulley.

6 Torques from Actuation and Return

In order to find torques due to the underactuated mechanisms,
we have found expressions for the transmission matrices.
Now we need an expression for the vector t as defined for
the use of said vector in Eqn. 1. In the actuation process, its
expression is straightforward as ta is defined as

ta =

Ta0
0

 (23)

where the torque, Ta is the cross product of the tension
put by the user on the string and the radius of the actuation
pulley, r1a. The amplitude is expressed as

Ta =Far1a (24)

Using Eqn. 11, we now can get an analytical expression
for the torque vector due to the actuation of the finger. This
expression is the vector

τa =

Far1aFar3a
Far5a

 (25)

We see with Eqn. 25 that this design has achieved one
of its objectives. The actuation torque at each joint is pro-
portional to the tension given to the string and the actuation
torques are not a function of the finger’s configuration, i.e.,
they do not depend on θi, i=1,2,3.

In the return process, the vector tr is defined in the same
fashion as

t =

Tr0
0

 (26)

where the torque, Tr is the cross product of the tension put
by the spring on the string and the radius of the return pulley,
r1b. The amplitude is expressed as

Tr =Frr1b (27)

Contrary to the case of actuation, the return force, Fr, is
a straightforward and arbitrary value. To express the return
force, we must use Hooke’s law:

Fr =−Ky

where K is the spring’s stiffness and y, its elongation. Since
we use preload in this design, an initial extension y0 must be
included in the value of y. The rest of the value of y is taken
into account by the elongation caused by the mouvement of
the finger which can be described by using Eqn. 20:

y−y0 = r1bθ1 +r3bθ2 +r5bθ3

Figure 3. Isolated rotation of a joint for the return mechanism.
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The transmission matrix for the return mechanism is very
similar to Ta found for the actuation. However, the pulleys
in the return mechanism do not have to be of the same di-
mensions used for the pulleys in the actuation mechanism.
Therefore, we use here the notation “b” to designate a return
pulley.

6 Torques from actuation and return

In order to find torques due to the underactuated mechanisms,
we have found expressions for the transmission matrices.
Now we need an expression for the vectort as defined for

the use of said vector in Eq. (1). In the actuation process, its
expression is straightforward asta is defined as

ta=

 Ta

0
0

 (23)

where the torque,Ta is the cross product of the tension put by
the user on the string and the radius of the actuation pulley,
r1a. The amplitude is expressed as

Ta= Far1a (24)

Using Eq. (11), we now can get an analytical expression for
the torque vector due to the actuation of the finger. This ex-
pression is the vector

τa=

 Far1a

Far3a

Far5a

 (25)

We see with Eq. (25) that this design has achieved one of its
objectives. The actuation torque at each joint is proportional
to the tension given to the string and the actuation torques are
not a function of the finger’s configuration, i.e., they do not
depend onθi , i =1,2,3.

In the return process, the vectortr is defined in the same
fashion as

t =

 Tr

0
0

 (26)

where the torque,Tr is the cross product of the tension put
by the spring on the string and the radius of the return pulley,
r1b. The amplitude is expressed as

Tr = Fr r1b (27)

Contrary to the case of actuation, the return force,Fr , is a
straightforward and arbitrary value. To express the return
force, we must use Hooke’s law:

Fr =−Ky

whereK is the spring’s stiffness and y, its elongation. Since
we use preload in this design, an initial extensiony0 must be
included in the value ofy. The rest of the value ofy is taken
into account by the elongation caused by the mouvement of
the finger which can be described by using Eq. (20):

y−y0= r1bθ1+ r3bθ2+ r5bθ3

Combining these two expressions, we get a useful expression
for the return force:

Fr =−K(y0+ r1bθ1+ r3bθ2+ r5bθ3) (28)

We notice that the negative sign in Eq. (28) accounts for the
counter-motion characteristic of the return action.
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Fig. 4. GRAVITY FORCES DIAGRAM FOR THE PROXIMAL
JOINT.

Combining these two expressions, we get a useful expression
for the return force:

Fr =−K(y0 +r1bθ1 +r3bθ2 +r5bθ3) (28)

We notice that the negative sign in Eqn. 28 accounts for
the counter-motion characteristic of the return action.

Again, using Eqns. 26, 27 and 28, we now can get an
analytical expression for the torque vector due to the return
action of the finger. This expression is the vector

τr =

−Kr1b(y0 +r1bθ1 +r3bθ2 +r5bθ3)
−Kr3b(y0 +r1bθ1 +r3bθ2 +r5bθ3)
−Kr5b(y0 +r1bθ1 +r3bθ2 +r5bθ3)

 (29)

7 Gravity

In order to describe the effect of gravity, we must include the
spatial orientation of the hand. For this purpose, we will use
the Tait-Bryan angles which are a specific convention of Eu-
ler angles. These angles correspond to the XY Z convention
where ϕ is the rotation angle around the X-axis, θ is the ro-
tation angle around the Y -axis and, ψ is the rotation angle
around the Z-axis.

We assume that the hand is palm up and along the Y-axis.
The origin of the global coordinate system is at the wrist.
This leads to:

– θ0 expresses the angle formed by the palm and the
Y-axis;

– θ1 expresses the angle formed by the proximal phalanx
and the extension of the palm;

– θ2 expresses the angle formed by the medial phalanx
and the extension of the proximal phalanx;

– θ3 expresses the angle formed by the distal phalanx
and the extension of the medial phalanx;

– ϕ expresses the “roll” of the hand (side-to-side rota-
tion).

Now that the hand is spatially oriented, we use the free
body diagram technique to calculate the torques.

We begin to look at the distal phalanx. It is elementary
to see that the resulting torque on the distal joint is the cross
product of the lever arm from the joint to the centre of mass
and the gravity force, the amplitude being

τg3 = cos(ϕ)(m3gcg3cos(θ0 +θ1 +θ2 +θ3)) (30)

where g is the gravitational acceleration andmi is the mass
of the ith phalanx. As for the medial joint, the resulting
torque is the sum of the cross products of, on one hand, the
arm created by its centre of mass and the gravity force due
to the mass of the medial phalanx and, on the other hand, the
arm created by its centre of mass and the gravity force due to
the mass of the distal phalanx. The amplitude is

τg2 = cos(ϕ)([m2gcg2cos(θ0 +θ1 +θ2)]

+ [m3g(cg3cos(θ0 +θ1 +θ2 +θ3)

+ l2cos(θ0 +θ1 +θ2))]) (31)

Finally, for the proximal joint, the resulting torque is the
sum of the cross products of: the arm created by its centre of
mass and the gravity force due to the mass of the proximal
phalanx, the arm created by its centre of mass and the gravity
force due to the mass of the medial phalanx and, the arm
created by its centre of mass and the gravity force due to the
mass of the distal phalanx. The amplitude is

τg1 = cos(ϕ)([m1gcg1cos(θ0 +θ1)]

+ [m2g(cg2cos(θ0 +θ1 +θ2)+ l1cos(θ0 +θ1))]

+ [m3g(cg3cos(θ0 +θ1 +θ2 +θ3)+ l2cos(θ0 +θ1 +θ2)

+ l1cos(θ0 +θ1))]) (32)

In summary, the action of gravity can be modeled by

τg = gCLmcosϕ (33)

where,

C =

 cos(θ0 +θ1) cos(θ0 +θ1 +θ2) cos(θ0 +θ1 +θ2 +θ3)
0 cos(θ0 +θ1 +θ2) cos(θ0 +θ1 +θ2 +θ3)
0 0 cos(θ0 +θ1 +θ2 +θ3)



Figure 4. Gravity forces diagram for the proximal joint.

Again, using Eqs. (26), (27) and (28), we now can get an
analytical expression for the torque vector due to the return
action of the finger. This expression is the vector

τr =

 −Kr1b(y0+ r1bθ1+ r3bθ2+ r5bθ3)
−Kr3b(y0+ r1bθ1+ r3bθ2+ r5bθ3)
−Kr5b(y0+ r1bθ1+ r3bθ2+ r5bθ3)

 (29)

7 Gravity

In order to describe the effect of gravity, we must include
the spatial orientation of the hand. For this purpose, we will
use the Tait-Bryan angles which are a specific convention of
Euler angles. These angles correspond to theXYZ conven-
tion whereϕ is the rotation angle around the x-axis,θ is the
rotation angle around the y-axis and,ψ is the rotation angle
around the z-axis.

We assume that the hand is palm up and along the Y-axis.
The origin of the global coordinate system is at the wrist.
This leads to:

– θ0 expresses the angle formed by the palm and the y-
axis;

– θ1 expresses the angle formed by the proximal phalanx
and the extension of the palm;

– θ2 expresses the angle formed by the medial phalanx
and the extension of the proximal phalanx;

– θ3 expresses the angle formed by the distal phalanx and
the extension of the medial phalanx;

– ϕ expresses the “roll” of the hand (side-to-side rotation).

Now that the hand is spatially oriented, we use the free
body diagram technique to calculate the torques.

We begin to look at the distal phalanx. It is elementary
to see that the resulting torque on the distal joint is the cross
product of the lever arm from the joint to the centre of mass
and the gravity force, the amplitude being

τg3 = cos(ϕ)(m3gcg3cos(θ0+θ1+θ2+θ3)) (30)

whereg is the gravitational acceleration andmi is the mass of
the i-th phalanx. As for the medial joint, the resulting torque
is the sum of the cross products of, on one hand, the arm
created by its centre of mass and the gravity force due to the
mass of the medial phalanx and, on the other hand, the arm
created by its centre of mass and the gravity force due to the
mass of the distal phalanx. The amplitude is

τg2 = cos(ϕ)([m2gcg2cos(θ0+θ1+θ2)]

+ [m3g(cg3cos(θ0+θ1+θ2+θ3)

+ l2cos(θ0+θ1+θ2))]) (31)

Finally, Fig. 4 shows that for the proximal joint, the result-
ing torque is the sum of the cross products of: the arm created
by its centre of mass and the gravity force due to the mass of
the proximal phalanx, the arm created by its centre of mass
and the gravity force due to the mass of the medial phalanx
and, the arm created by its centre of mass and the gravity
force due to the mass of the distal phalanx. The amplitude is

τg1 = cos(ϕ)([m1gcg1cos(θ0+θ1)]

+ [m2g(cg2cos(θ0+θ1+θ2)+ l1cos(θ0+θ1))]

+ [m3g(cg3cos(θ0+θ1+θ2+θ3)+ l2cos(θ0+θ1+θ2)

+ l1cos(θ0+θ1))]) (32)

In summary, the action of gravity can be modeled by

τg=gCLm cosϕ (33)

where,

C=

 cos(θ0+θ1) cos(θ0+θ1+θ2) cos(θ0+θ1+θ2+θ3)
0 cos(θ0+θ1+θ2) cos(θ0+θ1+θ2+θ3)
0 0 cos(θ0+θ1+θ2+θ3)


is the matrix of the finger’s configuration. And,

L =

 cg1 l1 l1
0 cg2 l2
0 0 cg3


is the matrix of geometric parameters. And,

m=

 m1

m2

m3


is the vector of the phalanx masses. The orientation of the
palm is simply determined by the sign of the constantg. As
a convention,g is negative for palm up, positive for palm
down. We can also eliminate the effect of gravity by setting
the gravitational acceleration to 0.
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Table 1. Prototype physical parameters.

i r ia r ib l i mi cgi

Proximal 1 6 2.95 45 0.87 21.65
Medial 2 2.75 2.75 25 0.5 9.19
Distal 3 1.5 2 n/a 0.45 10.85

8 The Model

We now have all the pieces of the puzzle. After the develop-
ment above, it is natural to conclude that the vector represent-
ing the total torque at each joint of the finger is the sum of the
expressions given in Eqs. (25), (29) and (33). Allen-Demers
et al.(2009) shows a similar result.

The torque vector composed of the torque at each joint is
expressed as

τ∗ = τa+τr +τg (34)

If the reader refers to the beginning of this section, there
is one component missing from Eq. (34), namely the torque
due to friction. Eq. (34) can be used to simulate the overall
behaviour of the finger since friction is negligeable for our
purposes. But manufacturing affects the amount of friction
in the systems, so the torque due to friction must be obtained
empirically. So a corrected model can be written as

τ∗ = τa+τr +τg+τ f (35)

9 Numerical simulations

Equation (34) allows the simulation of the behaviour of the
finger under arbitrary physical parameters. One can study
the behaviour of the finger, more precisely the closing se-
quence, according to the stiffness of the return spring, to the
imposed preload, to the orientation of the finger (i.e. palm up
or down). Another effect of a physical parameter that needs
to be studied is the combination of pulleys of different radii
and how it affects the closing sequence and ultimately, the
grasping force that can be provided.

The numerical software, Matlab, is used to perform nu-
merical simulations. Equation (34) is programmed and the
physical parameters of the prototype of the finger are in-
serted, as shown in Table1. The routine sets the configu-
ration of the finger as being flat, i.e., all angles to be zero.
An arbitrary and progressively increasing cable tension is ap-
plied and once one of the joints’ torque becomes positive, the
variableθi is progressively incremented until the joint angle
is 90◦ from its initial position.

Figure5 shows the result of this numerical simulation. We
first notice that initially, the torques are negative for all three
joints. There is no movement since the joints are designed

Figure 5. Closing sequence for the finger prototype.

such that they only move in a positive range of angles. Physi-
cally, the range in which the torques are negative corresponds
to the situation where the actuation does not overcome the
return forces, in this case provided by the return spring and
gravity.

We also see that the torque for each joint becomes pos-
itive at three distinct points. Furthermore, the torques be-
come positive in numerical order such that joint 1 moves be-
fore joint 2 which moves before joint 3. This shows that the
design attained another of its objectives which is its closing
sequence. We have here a closing sequence where the prox-
imal joint moves fully through its range of motion then the
medial joint moves through its range of motion and then the
distal joint moves through its range of motion, all seperately.
This simulation is consistent with the physical motion of the
prototype whose paramters were used for the simulation.

Figure 6 shows the simulation with a small preload,
smaller than 10. We see the same general features that were
observed in Fig.5. However, the negative tension zone is
much smaller. This is no surprise since a smaller preload
leads to a smaller return force and so a smaller actuation
force is needed to overcome the former forces.

Also, we observe that the joint torques still become pos-
itive in numerical order. However, the crossing points are
very close to each other which suggests a closing sequence
that will not follow that crossing order. Multiple joints will
move at the same time and so the closing sequence will be
uncontrolled.

Finally, Fig. 7 shows a simulation where there is no re-
turn. This simulation shows that the closing sequence does
not correspond to the design goal. Since there are no return
forces and so only gravity forces oppose the actuation, we
can see that the distal joint will close first since it is lighter.
The proximal joint will be last since it is opposed to the fin-
ger’s total mass.
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Figure 6. Closing sequence with small preload.

Figure 7. Closing sequence with no return.

10 Conclusions

The model presented in this paper is simple and flexible. It
expands the work inBirglen et al.(2008); Allen-Demers et
al. (2009) by adapting the equations to the specific case of
human-like fingers. It also completes said work by adding
the effect of physical forces such as gravity and that, in any
spatial orientation of the hand. Furthermore, each force can
be easily isolated. Each joint can be also isolated. Hence,
the influence of the type of force on a specific joint can be
simulated to study its effect along the full range of motion.
Each physical parameter is also easily isolated. The effect of
combinations of pulley ratios can be easily studied.

This leads to a better understanding and characterisation of
the intelligence of the mechanism or of the effect of the return
force. Such characterisations can help with the optimisation
of the design.

Even though this model was focusing on the internal
torques acting on the individual joint, it can be easily ex-
tended to external forces. A stability characterisation is
needed to see the adaptability of the design.
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