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Abstract. Model order reduction appears to be beneficial for the synthesis and simulation of compliant mech-
anisms due to computational costs. Model order reduction is an established method in many technical fields
for the approximation of large-scale linear time-invariant dynamical systems described by ordinary differential
equations. Based on system theory, underlying representations of the dynamical system are introduced from
which the general reduced order model is derived by projection. During the last years, numerous new pro-
cedures were published and investigated appropriate to simulation, optimization and control. Singular value
decomposition, condensation-based and Krylov subspace methods representing three order reduction methods
are reviewed and their advantages and disadvantages are outlined in this paper. The convenience of apply-
ing model order reduction in compliant mechanisms is quoted. Moreover, the requested attributes for order
reduction as a future research direction meeting the characteristics of compliant mechanisms are commented.

1 Introduction

A new approach to develop a feed unit of small machine tools
for small workpieces is based on the application of compliant
mechanisms. Currently, non-intuitive design and optimiza-
tion techniques are in progress as well as controlling, mea-
suring and calibration strategies. To describe the mechanical
behavior of a feed unit in an accurate way, very large and
sparse finite element models arise. This leads to numerical
simulations which require an unacceptable amount of time
and memory space and motivates the introduction and appli-
cation of model order reduction (MOR) methods. In this pa-
per, MOR approaches are reviewed taking a first step towards
its implemention in compliant mechanisms. To the authors’
knowledge, applications and investigations of MOR in CMs
are not existent.

In the present case, the feed unit consists of two major
parts: (a) the compliant mechanism (CM) is a mechanical
structure consisting of flexure hinges and rigid regions, in-
cluding piezo-electric actuators and (b) the measure and con-
trol system supplying appropriate input signals for the me-
chanical structure via the actuators. Figure1 illustrates a
prototype of a CM appropriate to novel machine tools (the
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actuators are not shown), as described byWulfsberg et al.
(2010), embedded in the mechatronic system.

The utilization of CMs assuring the trajectory of the tool
is constituted by their performance. CMs distinguish from
previous standard machine tools being potentially more ac-
curate, better scalable, cleaner, low-maintenance, less noisy
and cheaper in manufacturing which makes them particularly
suitable for small-scale applications.

2 System theoretical background

Assuming a linear time invariant system (LTI), the perfor-
mance of the compliant mechanism can be specified by
a system of second order ordinary differential equations
(ODE) derived from linear finite element discretization, see
e.g.Koutsovasilis and Beitelschmidt(2008). This system de-
scribes the reaction of the mechanical structure in answer to
inputs from the control system and can be written in the time
domain by means of the state space form in vectorial repre-
sentation as:

Meq̈(t)+Deq̇(t)+Keq(t)=Beu(t),

y(t)=Ceq(t),
(1)

whereMe ∈ Rn×n mass matrix,De ∈ Rn×n damping matrix,
Ke∈Rn×n stiffness matrix,Be∈Rn×p input matrix withu(t) ∈
Rp input vector forming an external force vector,Ce∈Rm×n
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Figure 1. Prototype of a compliant mechanism used in a feed unit
for novel machine tools as component of the mechatronic system.

output matrix selecting they(t) ∈Rm output vector of inter-
est of theq(t) ∈Rn internal state vector corresponding to the
structural characteristics of the CM. Moreover,n is the order
of the system, also referred to as state space dimension. In
casem= p= 1 and thereforeBe andCe switch over to vec-
tors as well asu(t) andy(t) to scalars, the systems is called
single input – single output (SISO) otherwise multiple input
– multiple output (MIMO).

To accurately reproduce the structural behavior, in most
instances, the set of ODEs stated in Eq. (1) reaches a nu-
merousness of degrees of freedom (DOF), stated byn in the
present case. These large scale systems entail prohibitive
computational time and memory space for calculation mak-
ing them impractical for simulation, optimization, analysis
and control. Therefore, MOR techniques are implemented
to gain a low dimensional approximation of the high order
system. MOR can be arranged in the simulation process, as
shown in Fig.2.

Depending on the reduction method, different representa-
tions of the system are required, which are illustrated below.

Several approximation methods rely on first order systems.
The transformation of Eq. (1) to a first order descriptor sys-
tem is realized by applying the state vectorx(t) = [qT | q̇T ]T

leading to the state-space dynamical system

Eẋ(t)=Ax(t)+Bu(t),

y(t)=Cx(t),
(2)

whereA ∈Rns×ns system matrix,B ∈Rns×p input matrix,C ∈
Rm×ns output matrix,E ∈Rns×ns descriptor matrix andns=2n.
Since some reduction methods are not based on the represen-
tations written in Eqs. (1) and (2), respectively, but on the
transfer function matrixH(s). Its derivation is described in
the following.
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Figure 2. Classification of model order reduction in the simulation
process of a dynamical system.

Using the Laplace transformation, the system specified in
Eq. (1) is converted from time to frequency domain resulting
in an algebraic system of equations given by

s2MeQ(s)+ sDeQ(s)+KeQ(s)=BeU(s),

Y(s)=CeQ(s),
(3)

where s is the complex-valued scalar parameter andQ(s),
U(s), Y(s) are the Laplace transformed ofq(t), u(t), y(t) and
provided that homogeneous initial conditionsq(t=0)= q̇(t=
0)=0 are existent.

The transfer function matrixH(s) of the system can be
specified by combining the two equations in Eq. (3), as

Y(s)=Ce[s
2Me+ sDe+Ke]

−1Be︸                           ︷︷                           ︸
H(s)

U(s),
(4)

alternatively for the descriptor system in Eq. (2)

H(s)=C(sE−A)−1B, (5)

where the transfer function matrixH(s) has a dimension of
(m× p) in the MIMO case and, accordingly, is a scalar in the
SISO case. The transfer functionH(s) describes the corre-
lation between inputU(s) and outputY(s), disregarding the
internal states of the system.

Due to the fact that most MOR procedures are accom-
plished by means of projection, the approach is explained by
a system represented in Eq. (2). The objective is to approx-
imate the state vectorx(t) ∈Rns to a low-dimensional sub-
space. This is achieved by the substitution

x(t)=Vxr(t)+ε(t), (6)

whereV ∈Rns×q is the transformation matrix,xr(t) ∈Rq the
reduced state vector,ε(t) the residual andq� ns. Insert-
ing the projection Eq. (6) into the linear system of ODEs in
Eq. (2) results in a low-dimensional approximation

EV ẋr(t)=AV xr(t)+BVu(t)+ε(t),

y(t)=CVxr(t).
(7)
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Table 1. Characteristics of condensation-based methods.

Advantages Disadvantages

– stability is preserved – not automatable
– invariant to system representation – unnecessarily large reduced order models
– physical information is preserved – not expandable to nonlinear systems
– independent from the number of the systems inputs and outputs – no presetting of a minimal dimension of the reduced system possible
– error estimation possible – computationally intense
– implemented in software (Matlab, ANSYS) – inappropriate for large scale systems

In general, this system is overdetermined havingq unknowns
but ns equations. To solve this problem and find a unique
solution, Eq. (7) is pre-multiplied by a second transformation
matrix W ∈Rns×q such thatWTε(t)= 0, the residual is equal
to zero and

WTEV︸  ︷︷  ︸
Er

ẋr(t)=WTAV︸ ︷︷ ︸
Ar

xr(t)+WTB︸︷︷︸
Br

u(t),

y(t)= CV︸︷︷︸
Cr

xr(t).
(8)

The system in Eq. (8) is called generalreduced order model
(ROM) by projection. The number of inputsu(t) ∈Rp and
outputsy(t) ∈Rm remains the same though the order of the
system, expressed by the dimension of the reduced system
matricesEr ∈ Rq×q,Ar ∈ Rq×q,Br ∈ Rq×p, Cr ∈ Rq×m and the
reduced state vectorxr(t) ∈Rq decreases fromns to q.

For most of the methods, the aim of model order reduc-
tion is to provide the projection matricesW andV such that
their calculation is computationally efficient as well as au-
tomatable and the systems characteristics are preserved. The
existence of a predefined error bound is desired in addition
to the applicability in large-scale systems with an order up
to a few hundred thousand. Details are specified e.g. inEid
(2009) andRudnyi and Korvink(2006).

3 Reduction methods based on condensation

The reduction of a given system using condensation methods
is the most commonly applied reduction method. Applying
the time independent transformation matricesWT andV to
the first equation in Eq. (1) gives the reduced system

M r ẍr(t)+Dr ẋr(t)+K rxr(t)=Brxr(t), (9)

with M r =WTMeV, Dr =WTDeV, K r =WTKeV and Br =

WTBe where the transformation matrices have to ensure the
conservation of the potential and kinetic energy of the sys-
tem. The reduced damping matrixDr may be modelled
as linear combination of the mass and stiffness matrices
(Rayleigh damping) withDr =αM r+βK r.

The construction of the transformation matrixV is carried
out either by static, modal or mixed condensation which are
explained briefly below, seeSiedl(2008), Gasch and Knothe

(1989), Bennini (2005) and Gugel (2009). In Table1, the
main advantages and disadvantages are listed for MOR using
condensation-based reduction methods.

3.1 Static condensation

Static condensation is based on the partition of the systems
degrees of freedom into dependent (MDOF – master degree
of freedom, index m) and independent (SDOF – slave degree
of freedom, index s) ones in a physical expedient way. This
procedure is also the basis for sub-structure modeling and
the generation of super elements. For the static case,q̈(t) =
q̇(t) = 0, an external force vector is introduced byBeu(t) =
F(t). The aforementioned partition into MDOF and SDOF
applied to Eq. (1) results in[
Kmm Kms

K sm K ss

][
qm(t)
qs(t)

]
=

[
Fm(t)
Fs(t)

]
. (10)

The second row in Eq. (10) provides the so called static cor-
relation between the MDOF and SDOF given by

qs(t)=−K−1
ss K smqm(t)+K−1

ss Fs(t). (11)

One obtains the reduced system by substitutingqs(t) in the
first row of Eq. (10) by Eq. (11). Rearranging ensues

K redqm(t)= Fred, (12)

where K red = [Kmm − KmsK−1
ss K−1

sm] and Fred = Fm(t) −
KmsK−1

ss Fs(t). Therewith, the transformation matrices in
Eq. (8) have the following structure

V =
[

I
−K−1

ss K sm

]
,W =

[
I

−KmsK−1
ss

]
, (13)

whereI is the identity matrix. The identification ofK red in
this way is exact. In case of approximately reducing the mass
matrix Me and damping matrixDe also with the transforma-
tion matrices in Eq. (13) from the static approach, the proce-
dure is called Guyan reduction, as stated byStelzmann et al.
(2002) andLienemann(2006).

3.2 Modal condensation

Using modal condensation, only a selected number of eigen-
modes is taken into account. The involved reduction is based
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Table 2. Characteristics of Krylov subspace methods.

Advantages Disadvantages

– iterative method – no support in Matlab
– easy to implement – no global error bound
– suitable for very large scale systems – order depends on number of inputs/outputs
– computational efficient – result may depend on systems representation
– stationary exact – no guarantee for preserving stability
– robust calculation – expansion point required

on the limitation of the explorative frequency range. Resolv-
ing the eigenvalue problem, neglecting damping and external
forces, results in the modal matrixΦ assembled by the eigen-
vectorsϕi

Φ=
[
ϕ1, ϕ2, ··· , ϕl

]
(14)

whereΦ ∈ Rl×l is getting downsized by choosing a minor
frequency range resulting in the reduced modal matrixΦr ∈

Rl×k. Using an orthogonal projectionW =V as mentioned by
Rickelt-Rolf (2009), the transformation matrices are chosen
such that

W =V =Φr. (15)

3.3 Mixed condensation

Mixed condensation, known as reduction byCraig and
Bampton(1968), combines static and modal reduction meth-
ods. In a first step, the system in Eq. (9) is similarly re-sorted
with respect to SDOF and MDOF as described before. Sec-
ondly, the MDOF are blocked out by settingqm=0 resulting
in an auxiliary system

M ssq̈s(t)+K ssqs(t)=0, (16)

of which the eigenmodesϕi are calculated subsequently.
Analogue to the modal condensation, the reduced modal ma-
trix Φr is established by selecting certain eigenmodes as de-
scribed bySiedl (2008). The SDOF is again linked to the
MDOF via the static correlation and the transformation ma-
trices are complemented to

W =V =
[
Φr Φs

0 I

]
(17)

with Φs=−K−1
ss K sm andΦr =

[
ϕ1, ϕ2, ··· , ϕk

]
as men-

tioned in Sect.3.1and Sect.3.2, respectively.

4 Krylov subspace methods

Originally, Krylov subspace methods were developed
for iteratively solving large and sparse linear sys-
tems of equations. Multiple methods are available,

Calculate projection
 matrices

Choose numerical 
algorithm providing
projection matrices

Select appropriate
Krylov subspace(s)

Apply projection to
the original system

Original 
system

Reduced
system

Figure 3. Key steps of dimensional reduction using Krylov sub-
spaces.

for example Generalized-Minimal-Residual-Method (GM-
RES), Biconjugate-Gradient (BiCG,) Conjugate-Gradien-
Square (CGS) and Transpose-Free-Quasi-Minimal-Residual
(TFQMR), which can be found e.g. inMeister(2005), Kan-
zow (2005), Van der Vorst(2003) andBai (2000) to name
only a few.

In case of MOR, Krylov subspaces are used to form the
projection matricesV and W in Eq. (8). The general ap-
proach is based on the approximation of the transfer behav-
ior of the original system by means of the transfer function
H(s) in the frequency domain given in Eq. (4) and Eq. (5), re-
spectively. MOR using Krylov subspaces is also well-known
as moment matching, meaning that a certain number of mo-
ments of the reduced and the original system is equal. Hence,
the moments of the transfer function and their matching in
the sense of an approximation play a decisive role and are de-
scribed below. Figure3 illustrates the key steps using Krylov
subspaces.

In Table 2, the main advantages and disadvantages are
listed for MOR using Krylov subspaces, given inSalim-
bahrami(2006) andEid (2009).

4.1 Transfer function and its moments

Considering the transfer function in Eq. (5) for the MIMO
case, rearranging results in

H(s)=−C(I − sA−1E)−1A−1B. (18)

Taking into account the Neumann series, as described by
Werner(2009) andEid (2009),

(I − sA−1E)−1=

∞∑
j=0

(A−1Es) j , (19)

Mech. Sci., 2, 197–204, 2011 www.mech-sci.net/2/197/2011/
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one obtains the following Taylor series

H(s)=
∞∑
j=0

−C(A−1E) jA−1Bsj =

∞∑
j=0

−M0
j s

j . (20)

This power series is called MacLaurin series, withM0
j =

C(A−1E) jA−1B called moments of the transfer function and
its expansion point beings= 0. Depending on the expansion
point, the moments and its corresponding MOR schemes are
defined as:

– Expansion points=0 results in a MacLaurin series with
its moments defined by

M s=0
j =C(A−1E) jA−1B. (21)

The corresponding MOR procedure is calledPadé-
Approximation.

– Expansion points= sk results in a Taylor series with its
moments defined by

M s=sk
j =C((A− skE)−1E) j(A− skE)−1B. (22)

The corresponding MOR procedure is calledShifted
Padé-Approximation, Rational Interpolationor Multi-
point Padé-Approximation.

– Expansion points→∞ results in a Markov series with
its moments defined by

M s→∞
j =C(E−1A) jE−1B. (23)

The corresponding MOR procedure is calledPartial Re-
alisation.

The users choice of the expansion point concerning its loca-
tion and number in case of the Shifted Padé-Approximation,
which is also suitable for multiple expansion points, affects
the approximating characteristics. In the context of MOR,
Pad́e-Approximation matches the behavior in the low fre-
quency range whereas Partial Realisation fullfils in the high
frequency range and Rational Interpolation in the user spec-
ified one. The usage of moment matching in sparse, large
scale systems is due to the simplicity of the involved op-
erations to compute these moments, namely matrix vector
multiplication and matrix inversion. Details may be found
in Eid (2009), Lehner and Eberhard(2006), Grimme(1997)
andSalimbahrami(2006).

4.2 Krylov subspaces and moment matching

To provide the projection matricesV and W, Krylov sub-
spaces are employed to match a certain number of the previ-
ously defined moments. A Krylov subspace is spanned by a
succession of vectors as

Kq(A,b)= span{b,Ab,A2b,...,Aq−1b}, (24)

whereA ∈Rn×n is a matrix,b∈Rn is called starting vector
andb,Ab,A2b,...,Aq−1b are the generated basic vectors span-
ning the q-th Krylov subspace. The first linearly independent
basic vectors form the basis of this Krylov subspace. In case
multiple starting vectors have to be considered, a q-th order
block Krylov subspace can be rendered precisely by

Kq(A,B)= span{B,AB,A2B,...,Aq−1B}, (25)

whereA ∈Rn×n, B= [b1,...,bp] ∈Rn×p is the starting matrix
containing thep linearly independent starting vectors. Ifp=
1, one obtains the standard Krylov subspace in Eq. (24) with
the starting vectorb.

For the reduced order system in Eq. (8), the basic vec-
tors of a suitable Krylov subspace can be utilized to find
the projection matricesV and W. An explicit calculation
of the moments to match is not neccessary. As carried out
in Koutsovasilis(2009) and Salimbahrami(2006) an input
block Krylov subspaceKq1(A−1E,A−1B) and output block
Krylov subspaceKq2(A−TET ,A−TCT) are to be used for an
expansion points=0 to match some moments in Eq. (21).

For s= sk, the input block Krylov subspace isKq3((A −
skE)−1E,(A−skE)−1B) and the output block Krylov subspace
Kq4((A − skE)−TET ,(A − skE)−TCT). If the colmuns of the
matrix V form a basis ofKq1 andKq3, respectively, and the
matrix W is chosen such thatAr =WTAV is non-singular,
then the firstq1

m and accordinglyq3
m moments match. A typ-

ical choice isW = V, named Galerkin (orthogonal) projec-
tion, otherwiseW ,V Petrov-Galerkin (oblique) projection.
Using only the input Krylov subspace is known as one-sided
Krylov subspace method. Two-sided methods applying input
and output Krylov subspaces matchq1

m +
q2
m and accordingly

q3
m +

q4
m moments.

To calculate the desired projection matricesV andW, a
wide range of numerical, mostly iterative algorithms is ava-
iable. The most popular ones are Arnoldi algorithm, two-
sided Arnoldi algorithm and Lanczos algorithm which are
not further investigated in this paper. Details and further
algorithms can be found inBechtold et al.(2007), Meis-
ter (2005), Grimme (1997), Krohne (2007), Salimbahrami
(2006), Antoulas et al.(2001), Eid (2009) andBai (2002).

5 Control theory methods based on singular value
decomposition

Methods using the singular value decomposition (SVD) aim
for an approximation of matrices by lower ranked matrices,
as carried out byHackbusch(2009). The reduced order
model (ROM) is found by deleting those system states that
are both least controllable and observable. Figure4 gives an
overview of the key steps using singular value decomposi-
tion. In Table3, the main advantages and disadvantages are
listed for MOR using SVD methods.
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Table 3. Characteristics of SVD methods.

Advantages Disadvantages

– invariant to representation – only for small systems
– applicable to nonlinear systems – new methods may have convergence troubles
– comprising all relevant system parts – computationally expensive (Lyapunov equations)
– existence of an error bound
– preservation of stability
– fully automatable
– SVD supported in Matlab

Transform into 
balanced system

Solve the Lyapunov
equations

Calculate the 
singular values 

Original 
system

Select the order of
the reduced system

Truncate the
balanced system

Reduced
system

Figure 4. Key steps of dimensional reduction using singular value
decomposition (SVD).

5.1 Controllability and observability of a system

Considering the system in Eq. (2) represented by

ẋ(t)= Âx(t)+ B̂u(t),

y(t)=Cx(t),
(26)

the two important control theory quantaties controllabilityP
and observabilityQ can be introduced, as done byLiene-
mann(2006), via the Gramians

P=

∫ ∞
0

eÂtB̂B̂TeÂT t dt (27)

and

Q=

∫ ∞
0

eÂT tCTCeÂt dt. (28)

The concept of controllability examines how the statesx(t)
of a system are linked to its inputsu(t) whereas observabil-
ity deals with the connection between the statesx(t) and its
outputsy(t), as delineated byEid (2009).

Under certain conditions, described e.g. byBechtold et al.
(2007) andKoutsovasilis(2009), the Gramians can be found
by solving the two system related Lyapunov equations given
by

ÂP+PÂT + B̂B̂T =0,

ÂT
Q+QÂ+CTC=0.

(29)

5.2 The singular value decomposition

As known from linear algebra and described byGugel(2009)
andHackbusch(2009), any matrixA ∈Rm×n can be decom-
posed into the product of three matrices, more precisely an
orthogonal matrixU, a diagonal matrixΣ and the transpose
of an orthogonal matrixV such that

A =UΣVT =

k∑
i=1

σiuiv
T
i (30)

where the matrix

Σ̂=


σ1 ··· 0
...
. . .

...
0 ··· σk

,Σ=
[
Σ̂ 0
0 0

]
∈Rm×n (31)

comprises the singular valuesσi =
√
λi(ATA) ≥σi+1 ≥0 on

its diagonal in descending order with rank(A) =k andk =
min{m,n}. The left singular vectorsU= [u1 u2 ... um] ∈Rm×m

are the orthonormal vectors ofAAT , the right singular vec-
tors V = [v1 v2 ... vn] ∈Rn×n are the orthonormal vectors of
AT A. The term in Eq. (30) is called a singular value decom-
position (SVD) of A and provides a basis for finding a lower
ranked matrixAr which best approximatesA such that

Ar =

r∑
i=1

σiuiv
T
i . (32)

The task is to find an optimal approximation in a certain sys-
tem norm, eg. the spectral norm (H2-norm), as specified by
Antoulas and Sorensen(2001), Hackbusch(2009) andDah-
men and Reusken(2008), via the Schmidt-Mirsky theorem
which results in the minimisation of the approximation error
such that

min
rank(Ar)≤rank(A)

‖A−Ar‖H2 =σk+1(A). (33)

In the following, the most commonly used SVD procedures
are specified, namely balanced truncation approximation,
singular perturbation approximation and Hankel norm ap-
proximation. They distinguish in the rating of the approxi-
mation error and the procedure of its minimization, seeBen-
ner et al.(2004).

Mech. Sci., 2, 197–204, 2011 www.mech-sci.net/2/197/2011/



M. Rösner and R. Lammering: Basic principles and aims of model order reduction in compliant mechanisms 203

5.3 Balanced truncation approximation

In case of a stable system, balanced truncation approxima-
tion (BTA) assumes that the system is balanced first and af-
terwards truncated. Based on the system representation given
in Eq. (26), the balanced partition of the system matrices and
state vector can be quoted as[
ẋ1(t)
ẋ2(t)

]
=

[
Â11 Â12

Â21 Â22

][
x1(t)
x2(t)

]
+

[
B̂1

B̂2

]
u(t)

y(t)=
[
Ĉ1 Ĉ2

][x1(t)
x2(t)

] (34)

with Â11 ∈Rr×r , B̂1 ∈Rr×m and Ĉ1 ∈Rp×r . At all times, a
balancing transformation is feasible for minimal order sys-
tems. The McMillan degree of the system is specified as the
order of any minimal state-space realization of the transfer-
function matrix, as stated bySasane(2002) and Baur and
Benner(2008).

The singular values are the eigenvalues of the observability
P and controllabilityQ Gramians:σi =

√
λi(PQ) which are

called Hankel singular values (HSV) ofΣ, e.g. described by
Gugercin and Antoulas(2004) and Antoulas and Sorensen
(2001). The Gramians are equal and diagonal. The bal-
anced truncation approximation is predicted on transform-
ing the state-space-system into a balanced realization. Those
state variables that are least observable and controllable, and
therefore related to the smallest Hankel singular values, are
truncated with respect to the error bound between original
and reduced transfer function

‖H(s)−H(s)r‖H∞ ≤2
m∑

r+1

σi . (35)

The ROM obtained by BTA is related to

ẋ1(t)= Â11x1(t)+ B̂1u(t),

y(t)= Ĉ1x1(t).
(36)

as mentioned byObinata and Anderson(2000). BTA in-
volves an approximation error in the low-frequency region
as mentioned byBechtold et al.(2007), Obinata and Ander-
son(2000) andBaur and Benner(2008). For details and as-
pects in numerical calculation see e.g.Benner and Quintana-
ort’i (2004), Bechtold et al.(2007), Koutsovasilis(2009),
Antoulas(2005) andGugercin and Antoulas(2004).

5.4 Singular perturbation approximation

The singular perturbation approximation (SPA) is closely re-
lated to the balanced truncation approximation and ensures
zero error at zero frequency and is applicable to nonlinear
systems. Refering to the expression in Eq. (34) and as ex-
plained byLiu and Anderson(1989) and Antoulas et al.
(2001) the reduced system is identified by

ẋr(t)= Ãx(t)+ B̃u(t),

yr(t)= C̃x(t),
(37)

with the reduced system matricesÃ = Â11− Â12Â−1
22Â21, B̃=

B̂1− Â12Â−1
22B̂2 andC̃= Ĉ1− Ĉ2Â−1

22Â21. In contrast to BTA,
SPA has an approximation error at high frequencies, but
it matches at low frequencies, seeObinata and Anderson
(2000).

5.5 Hankel norm approximation

The Hankel norm approximation (HNA) employs the so-
called Hankel norm which is defined as the maximal Hankel
singular value of the system given in Eq. (26):

‖H(s)‖H =
√
λmax(PQ)=σmax. (38)

The aim is to minimize the approximation error between the
original system transfer functionH(s) and the reduced one
Hr(s) with orderr via the Hankel norm

‖H(s)−Hr(s)‖H2 =σr+1(H(s))≤ ‖H(s)− H̃r(s)‖H , (39)

as stated byGlover (1984), Green and Limebeer(1995),
Bechtold et al.(2007), Benner et al.(2004), Antoulas(2005)
andAntoulas and Sorensen(2001) where also the computa-
tion of the optimal Hankel norm approximation is performed.
In Eq. (39) H̃r(s) denotes all transfer functions of McMillan
degree less than or equal tor.

6 Conclusion: benefits and aims for model order
reduction in compliant mechanisms

In this work, system theoretical basics are reviewed which
constitute the origin for model order reduction (MOR). Three
different procedures, namely modal reduction, Krylov sub-
spaces and singular value decomposition (SVD) based meth-
ods, are described with their associated characteristics.

The application of MOR can be motivated by challenges
arising in the numerical characterisation of compliant mech-
anisms (CM) which can be traced back to the numerousness
of ODEs required to specify their behavior in an accurate
way. In most cases, large finite element models arise to cap-
ture a detailed representation of the geometrical domain and
the dynamical performance of the CM. This circumstance is
unfeasible, particularly with regard to further investigations
such as simulation, optimization and control. For this reason,
MOR in CMs seems to be a purposeful approach to generate
efficient models and would benefit the design and develop-
ment as well as analysis process of CMs.

The specific feature of CMs exists in their mechanical
topology as they consist of rigid parts connected by flexure
hinges. This characteristic has effects on the potentiality of
MOR and requires further investigations to provide a suit-
able algorithm. Especially, the algorithm has to notably in-
corporate the distinct differences between the compliant and
rigid parts of the structure with regard to their mechanical
properties and influence on the systems transfer behavior.
Moreover, having a small error between original and reduced
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system implying a global error bound, the procedure should
preserve the passivity as well as stability, has to be automat-
able, stable and computational efficient also for high order
systems.

In future work, different MOR schemes applied to CM will
be investigated and reasonable combinations among them
will be analysed to benefit from their advantages. Further-
more, a specific adjustment and upgrading is desired. Out of
this, the aim is to provide a reduction procedure meeting the
special circumstances of CMs.
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