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Model order reduction appears to be beneficial for the synthesis and simulation of compliant mech-
anisms due to computational costs. Model order reduction is an established method in many technical fields
for the approximation of large-scale linear time-invariant dynamical systems described by ordifeagntial
equations. Based on system theory, underlying representations of the dynamical system are introduced from
which the general reduced order model is derived by projection. During the last years, numerous riew pro-
cedures were published and investigated appropriate to simulation, optimization and control. Singular value
decomposition, condensation-based and Krylov subspace methods representing three order reduction methods
are reviewed and their advantages and disadvantages are outlined in this paper. The convenience of apply-
ing model order reduction in compliant mechanisms is quoted. Moreover, the requested attributes for order
reduction as a future research direction meeting the characteristics of compliant mechanisms are commented.

actuators are not shown), as describedWyifsberg et al.
(2010, embedded in the mechatronic system.
A new approach to develop a feed unit of small machine tools The utilization of CMs assuring the trajectory of the tool
for small workpieces is based on the application of compliantis constituted by their performance. CMs distinguish from
mechanisms. Currently, non-intuitive design and optimiza-previous standard machine tools being potentially more ac-
tion techniques are in progress as well as controlling, meacurate, better scalable, cleaner, low-maintenance, less noisy
suring and calibration strategies. To describe the mechanicand cheaper in manufacturing which makes them particularly
behavior of a feed unit in an accurate way, very large andsuitable for small-scale applications.
sparse finite element models arise. This leads to numerical
simulations which require an unacceptable amount of time
and memory space and motivates the introduction and appli-

cation of model order reduction (MOR) methods. In this pa- Assuming a linear time invariant system (LTI), the perfor-
per, MOR approaches are reviewed taking a first step towardgance of the compliant mechanism can be specified by
its implemention_in (_:ompliant_mechanig,ms. To the a}uthors’a system of second order ordinaryffdiential equations
knowledge, applications and investigations of MOR in CMs (opE) derived from linear finite element discretization, see
are not existent. e.g.Koutsovasilis and Beitelschmi@008. This system de-

In the present case, the feed unit consists of two majolscribes the reaction of the mechanical structure in answer to
parts: (a) the compliant mechanism (CM) is a mechanicalinputs from the control system and can be written in the time

structure consisting of flexure hinges and rigid regions, in-domain by means of the state space form in vectorial repre-
cluding piezo-electric actuators and (b) the measure and corsentation as:

trol system supplying appropriate input signals for the me- _
chanical structure via the actuators. Figdrélustrates a  Med(t) + Deq(t) + Keq(t) = Beu(t), 1)
prototype of a CM appropriate to novel machine tools (the y(t) = Ceq(t),

) where M € R™" mass matrix,De € R™" damping matrix,
Correspondence tavl. Rosner K e € R™" stiffness matrixBe € R™P input matrix withu(t) €
BY (malte.roesner@hsu-hh.de) RP input vector forming an external force vect@, € R™"
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Prototype of a compliant mechanism used in a feed unitin an algebraic system of equations given by
for novel machine tools as component of the mechatronic system.

M eQ(8) +SDeQ(S) +KeQ(S) = BeU(S),

. . . . Y(9) = CeQ(S),
output matrix selecting thg(t) e R™ output vector of inter-
est of theq(t) e R" internal state vector corresponding to the where s is the complex-valued scalar parameter &),
structural characteristics of the CM. Moreowuers the order  U(s), Y(s) are the Laplace transformed gft), u(t), y(t) and
of the system, also referred to as state space dimension. Iprovided that homogeneous initial conditiag($= 0) = §(t =
casem= p=1 and thereford, and C, switch over to vec-  0)=0 are existent.
tors as well asi(t) andy(t) to scalars, the systems is called  The transfer function matrixi(s) of the system can be
single input — single output (SISO) otherwise multiple input specified by combining the two equations in E8), @s
— multiple output (MIMO).

To accurately reproduce the structural behavior, in mostY(s) = Ce[S"Me+ SDe+ K] *BeU(9),

Positioning

©)

instances, the set of ODEs stated in Eb). eaches a nu- H(9) @)
merousness of degrees of freedom (DOF), stated ibythe
present case. These large scale systems entail prohibitivdlternatively for the descriptor system in E8) (
computational time and memory space for calculation mak- "

H(s)=C(sE-A)™"B, (5)

ing them impractical for simulation, optimization, analysis

and gontrol. Therefore, MOR tec.hnlq'ues are Implementethere the transfer function matrkt(s) has a dimension of
to gain a low dimensional approximation of the high order mx p) in the MIMO case and, accordingly, is a scalar in the

system. MOR can be arranged in the simulation process, ISO case. The transfer functidf(s) describes the corre-

shown in Fig.2. : . . .
. . ) lation between inputd(s) and outputY(s), disregarding the
Depending on the reduction methodffdient representa- internal states of 51e s(y)stem put/(s) g g

tions of the system are required, which are illustrated below. Due to the fact that most MOR procedures are accom-

Several appro'ximation method§ rely on first ordpr systemsplished by means of projection, the approach is explained by
The transformation of Eql] to a first order descriptor sys- a system represented in E@).( The objective is to approx-

i i i 1T ATIT
;cen:j_ls reahﬁed by applyln%the st_atel veckq) =[q' G’} imate the state vectox(t) e R™ to a low-dimensional sub-
eading to the state-space dynamical system space. This is achieved by the substitution

EX(t) = Ax(t) + Bu(t), X(t) = Vi (t) +€(t), (6)

y(t) = Cx(t), @
whereV € R is the transformation matrixx(t) € R the
whereA € R"™*™ system matrixB € R™*P input matrix,Ce  reduced state vectog(t) the residual andj < ns. Insert-
R™M output matrixE € R™*"™ descriptor matrixands=2n. ing the projection Eq.g) into the linear system of ODEs in
Since some reduction methods are not based on the represeRg. (2) results in a low-dimensional approximation
tations written in Eqgs.1) and @), respectively, but on the
transfer function matriH(s). Its derivation is described in  EVX:(t) = AV x,(t) + BVu(t) + €(t),

the following. y(t) = CVx.(t). )



Characteristics of condensation-based methods.

Advantages Disadvantages

— stability is preserved — not automatable

— invariant to system representation — unnecessarily large reduced order models

— physical information is preserved — not expandable to nonlinear systems

— independent from the number of the systems inputs and outputs  — no presetting of a minimal dimension of the reduced system possible
— error estimation possible — computationally intense

— implemented in software (Matlab, ANSYS) — inappropriate for large scale systems

In general, this system is overdetermined hagjnoknowns (1989, Bennini (2005 and Gugel (2009. In Tablel, the

but ns equations. To solve this problem and find a unique main advantages and disadvantages are listed for MOR using
solution, Eq. {) is pre-multiplied by a second transformation condensation-based reduction methods.

matrix W € R™*9 such thatW " e(t) = 0, the residual is equal

to zero and
WTEV %,(t) = WTAV x,(t) + WTBu(t), Static condensation is based on the partition of the systems
Er A B 8 degrees of freedom into dependent (MDOF — master degree
y(t) = _CV x(t). @) of freedom, index m) and independent (SDOF — slave degree
——

of freedom, index s) ones in a physical expedient way. This
procedure is also the basis for sub-structure modeling and
The system in Eq.9§) is called generaleduced order model the generation of super elements. For the static d{e =
(ROM) by projection. The number of inputgt) € RP and g(t) =0, an external force vector is introduced Byu(t) =
outputsy(t) e R™ remains the same though the order of the F(t). The aforementioned partition into MDOF and SDOF
system, expressed by the dimension of the reduced systempplied to Eq. I) results in
matricesk, e R4 A, e R¥™4 B, ¢ R™P, C, e R™™ and the
reduced state vectox(t) € R? decreases froms to g. [Kmm Kms] [qm(t)] = [Fm(t)]. (10)

For most of the methods, the aim of model order reduc- Ksm  Kss [ Gs() Fs(t)

tion is to provide the projection matric¥8 andV such that  The second row in Eq10) provides the so called static cor-

their calculation is computationallyfiecient as well as au-  re|ation between the MDOF and SDOF given by
tomatable and the systems characteristics are preserved. The

existence of a predefined error bound is desired in additiorfis(t) = —K 52K smm(t) + K 5o Fs(t). (11)
to the applicability in large-scale systems with an order up
to a few hundred thousand. Details are specified e.gidn
(2009 andRudnyi and Korvink(20086.

Cr

One obtains the reduced system by substitutigl@) in the
first row of Eq. (L0) by Eq. (L1). Rearranging ensues
KredOm(t) = Fred, (12)

9 . . o
The reduction of a given system using condensation method§ msss Fs(t)- - Therewith, the transformation matrices in
is the most commonly applied reduction method. Applying Ed- () have the following structure

the time independent transformation matrit®$ andV to | |
the first equation in Eq4j gives the reduced system V= [—K‘lem}’W = [_KmSK—l]’ (13)
SS SS
M X, (t) + Dy X (1) + K X (1) = Br e (1), (9)  wherel is the identity matrix. The identification d€ g in
) T T . this way is exact. In case of approximately reducing the mass
with My =W MgV, Dr =W 'DeV, K, =W KV andB, = matrix M and damping matriP, also with the transforma-

WTB. where the transformation matrices have to ensure thgjon matrices in Eq.13) from the static approach, the proce-

conservation of the potential and kinetic energy of the sys-yyre is called Guyan reduction, as statedStgizmann et al.
tem. The reduced damping matri may be modelled (2002 andLienemann(2006.

as linear combination of the mass andffettss matrices
(Rayleigh damping) witlD; = aM + K.
The construction of the transformation matuxs carried
out either by static, modal or mixed condensation which areUsing modal condensation, only a selected number of eigen-
explained briefly below, segiedl (2008, Gasch and Knothe modes is taken into account. The involved reduction is based



Characteristics of Krylov subspace methods.

Advantages Disadvantages

— iterative method —no support in Matlab

— easy to implement —no global error bound

— suitable for very large scale systems — order depends on number of duppitgs

— computational #icient — result may depend on systems representation

— stationary exact — no guarantee for preserving stability

— robust calculation — expansion point required
on the limitation of the explorative frequency range. Resolv- _, ) Choose numerical
. h . | bl | ina d . d | Original Select appropriate Igorithm orovidin
ing the eigenvalue problem, neg ecting damping an gxterna system =1 Krylov subspace(s) ] #9°" " p 0\?.. g
forces, results in the modal matdxassembled by the eigen- projection matrices
vectorsy; !

Reduced Apply projection to Calculate projection
D= [¢1’ @2, v, ‘PI] (14) system — the original system = matrices
| I . . . . .
where® e R™ is getting d'ownS|zed by choosing a minor Key steps of dimensional reduction using Krylov sub-
frequency range resulting in the reduced modal malxix spaces.
R, Using an orthogonal projectid' =V as mentioned by
Rickelt-Rolf (2009, the transformation matrices are chosen ) o )
such that for example Generalized-Minimal-Residual-Method (GM-
RES), Biconjugate-Gradient (BICG,) Conjugate-Gradien-

W=V=0a,. (15) Square (CGS) and Transpose-Free-Quasi-Minimal-Residual

(TFQMR), which can be found e.g. Meister(2005, Kan-

zow (2005, Van der Vorst(2003 and Bai (2000 to name

only a few.
Mixed condensation, known as reduction KBraig and In case of MOR, Krylov subspaces are used to form the
Bampton(1968, combines static and modal reduction meth- projection matrices/ andW in Eq. @). The general ap-
ods. In afirst step, the system in E@) (s similarly re-sorted  proach is based on the approximation of the transfer behav-
with respect to SDOF and MDOF as described before. Secior of the original system by means of the transfer function
ondly, the MDOF are blocked out by settingg =0 resulting  H(s) in the frequency domain given in Edt)(and Eq. §), re-

in an auxiliary system spectively. MOR using Krylov subspaces is also well-known
. as moment matching, meaning that a certain number of mo-
M ssGs(t) + KssOs(t) =0, (16)  ments of the reduced and the original system is equal. Hence,

£ which the ei d lculated sub | the moments of the transfer function and their matching in
of which the eigenmodeg; are calculated subsequently. w,q qanse of an approximation play a decisive role and are de-

A_nalog_ue to the_ modal conden_sat|on, th_e rgduced modal M5, e pelow. Figur8illustrates the key steps using Krylov
trix @, is established by selecting certain eigenmodes as dez

. : . I Subspaces.
scribed bySiedl (2008. The SDOF is again linked to the In Table 2, the main advantages and disadvantages are

MDOF via the static correlation and the transformation ma-|ic;o. 4 for MOR using Krylov subspaces, given 8alim-

trices are complemented to bahrami(2006 andEid (2009.
W=V= [q(;f <I|>s] 7)

) . Considering the transfer function in Ed) (for the MIMO
with @s = -KgKsm and®, = [401, @2, s sok] as men-  case, rearranging results in
tioned in Sect3.1and Sect3.2, respectively.
H(s)=-C(I -sAE)'A-1B. (18)

Taking into account the Neumann series, as described by

Werner(2009 andEid (2009,
Originally, Krylov subspace methods were developed

for iteratively solving large and sparse linear sys- (I—sA‘lE)‘1=Z(A‘1Es)j, (19)
tems of equations. Multiple methods are available, =0



one obtains the following Taylor series whereA € R™" is a matrix,be R" is called starting vector
. . andb,Ab,A2%Db,..., A% b are the generated basic vectors span-
H(s) = Z_C(A—lE)jA—lBSj _ Z_M(_)Sj. (20) ning the g-th Krylov subspa}ce. The first linearly independent
= = ! basic vectors form the basis of this Krylov subspace. In case
multiple starting vectors have to be considered, a g-th order
This power series is called MacLaurin series, wittf = block Krylov subspace can be rendered precisely by

C(A~'E)IA~1B called moments of the transfer function and
its expansion point being= 0. Depending on the expansion Kq(A,B)=sparB,AB,A’B,...AY'B}, (25)
point, the moments and its corresponding MOR schemes are
defined as: whereA e R™", B =[by,...,bp] e R™P is the starting matrix
containing thep linearly independent starting vectors.p&
1, one obtains the standard Krylov subspace in Ed).\{iith
the starting vectob.
M:];:O:C(A—lE)jA—lB_ 21) For the reduced order system in E),(the basic vec-
tors of a suitable Krylov subspace can be utilized to find
The corresponding MOR procedure is calleddé-  the projection matrice¥ and W. An explicit calculation
Approximation of the moments to match is not neccessary. As carried out
) ) ) ) ~in Koutsovasilis(2009 and Salimbahrami(2006 an input
— Expansion poins= s results in a Taylor series with its - pjock Krylov subspace 1 (A~*E,A"1B) and output block
moments defined by Krylov subspace&K (A-TET,A-TCT) are to be used for an
M lﬁk = C((A-SE)E)I(A—sE) B, 22) expansion poinszl 0 to match some moments in EQJJ.
For s= s, the input block Krylov subspace Kq((A -
The corresponding MOR procedure is call§tifted  E)*E.(A-sE)~*B) and the output block Krylov subspace
Padé-ApproximationRational Interpolationor Multi- ~ Kaa((A - SE)TET,(A - sE)""C"). If the colmuns of the
point Padé-Approximatian matrix V form a basis 0K 41 andK gz, respectively, and the
matrix W is chosen such tha, = WTAV is non-singular,
— Expansion poins— oo results in a Markov series with  then the firStQ_r; and accordinglyﬁ moments match. A typ-
its moments defined by ical choice isW =V, named Galerkin (orthogonal) projec-
S0 il tion, otherwiseWV # V Petrov-Galerkin (oblique) projection.
M~ =C(E A)ETB. (23) Using only the input Krylov subspace is known as one-sided
The corresponding MOR procedure is calRattial Re- Krylov subspace method. Two-sided mtzathods applyi_ng input
alisation and output Krylov subspaces matﬁw qﬁ and accordingly
. . . o q—nf’ + %‘ moments.
The users ch0|c§ of the expansion point concerning !ts loca-" 14 calculate the desired projection matridésandW, a
tion and number in case of the Shifted Baipproximation, \yije range of numerical, mostly iterative algorithms is ava-
which is also suitable for multiple expansion pointeets  jahie  The most popular ones are Amoldi algorithm, two-
the approximating characteristics. In the context of MOR, gjgeq Amoldi algorithm and Lanczos algorithm which are
Pade-Approximation matche; the pehgwor m_thg low frg- not further investigated in this paper. Details and further
guency range whereas Partial Realisation fullfils in the h'ghalgorithms can be found iBechtold et al.(2007), Meis-

frequency range and Rational Interpolation in the user specg,, (2009, Grimme (1997, Krohne (2007, Salimbahrami

ified one. The usage of moment matching in sparse, |arg?2006, Antoulas et al(2001), Eid (2009 andBai (2002.
scale systems is due to the simplicity of the involved op-

erations to compute these moments, namely matrix vector
multiplication and matrix inversion. Details may be found
in Eid (2009, Lehner and Eberhar@006, Grimme (1997
andSalimbahram{2006.

— Expansion poins= 0 results in a MacLaurin series with
its moments defined by

Methods using the singular value decomposition (SVD) aim
for an approximation of matrices by lower ranked matrices,

To provide the projection matrice¢ and W, Krylov sub- ~ @s carried out byHackbusch(2009. The reduced order
spaces are employed to match a certain number of the previnodel (ROM) is found by deleting those system states that

ously defined moments. A Krylov subspace is spanned by &ré both least controllable and observable. Figlgeres an
succession of vectors as overview of the key steps using singular value decomposi-

tion. In Table3, the main advantages and disadvantages are
Kq(A,b) = sparib,A b,A%b,....A% b}, (24) listed for MOR using SVD methods.



Characteristics of SVD methods.

Advantages

Disadvantages

— invariant to representation

— applicable to nonlinear systems

— comprising all relevant system parts
— existence of an error bound

— preservation of stability

— fully automatable
— SVD supported in Matlab

— only for small systems
— new methods may have convergence troubles
— computationally expensive (Lyapunov equations)

Original Solve the Lyapunov Calculate the
system equations singular values
Transform into
balanced system
Reduced Truncate the Select the order of
system balanced system the reduced system

Key steps of dimensional reduction using singular value
decomposition (SVD).

Considering the system in EQ)(represented by

(t) = Ax(t) + Bu(t),

y(t) = Cx(),

the two important control theory quantaties controllab#fity
and observabilityQ can be introduced, as done hjene-

mann(2006, via the Gramians

P f MBATA gt
0

and

Q= f AltcTeeldt,
0

The concept of controllability examines how the staté3
of a system are linked to its inputgt) whereas observabil-
ity deals with the connection between the staté¥ and its

outputsy(t), as delineated bkid (2009.

Under certain conditions, described e.g.Bschtold et al.

(26)

As known from linear algebra and described®ygel(2009
andHackbusch(2009, any matrixA € R™" can be decom-
posed into the product of three matrices, more precisely an
orthogonal matriXJ, a diagonal matrix and the transpose

of an orthogonal matri¥ such that

k
A=UzVT = ZmUiViT

(30)
i=1
where the matrix
O’l e O ~
%= = [’S 8] e R™ (31)
O e O’k

comprises the singular values = /4 (ATA) >oi.1 >00n

its diagonal in descending order with raAj(=k andk =
min{m,n}. The left singular vectord =[ui Uy ... up] € R™M
are the orthonormal vectors #AT, the right singular vec-
torsV =[vy V2 ... vy] € R™" are the orthonormal vectors of
AT A. The term in Eq.30) is called a singular value decom-
position (SVD) of A and provides a basis for finding a lower
ranked matrixA, which best approximates such that

(27)

(28)

r
ArZZO'iUiViT. (32)

i=1
The task is to find an optimal approximation in a certain sys-
tem norm, eg. the spectral norm{-norm), as specified by
Antoulas and Sorens€2007), Hackbusch2009 andDah-
men and Reuske(2008, via the Schmidt-Mirsky theorem
which results in the minimisation of the approximation error
such that

in A =Allg, = o1 (A).

mi (33)
rank(Ar)<rank@)

(2007 andKoutsovasilis(2009, the Gramians can be found

by solving the two system related Lyapunov equations given

by

AP+PAT +BBT =0,
ATQ+QA+C'C=0.

(29)

In the following, the most commonly used SVD procedures
are specified, namely balanced truncation approximation,
singular perturbation approximation and Hankel norm ap-
proximation. They distinguish in the rating of the approxi-
mation error and the procedure of its minimization, Bea-

ner et al.(2004.



with the reduced system matricAs= A1 —A1,A2A, B=

5 A AR X A Az

In case of a stable system, balanced truncation approximagllj AAhl2A2ZBZ andC = Clt. C2A22A21j[ Ir?. Ck? nftrast to BTA, but

tion (BTA) assumes that the system is balanced first and af: as an approximation error at figh frequencies, bu
matches at low frequencies, s&binata and Anderson

terwards truncated. Based on the system representation givé 00
in Eq. (26), the balanced partition of the system matrices and( 0.
state vector can be quoted as

xa()| _[Awr Aga|[xa(t) N B, ult) o
o) T 1A Al x2(t)| T [B, The Hankel norm approximation (HNA) employs the so-
(34) called Hankel norm which is defined as the maximal Hankel
y(t) = [él éz] Klgg] singular value of the system given in EQ6Y:
2
with A11 eR™", él e R™™M and Cl e RPX". At all times, a IH(SMlH = VAmax(PQ) = Tmax. (38)

balancing transformation is feasible for minimal order sys-The aim is to minimize the approximation error between the

tems. The McMillan degree of the system is specified as theyriginal system transfer functioH(s) and the reduced one
order of any minimal state-space realization of the transfery (s) with orderr via the Hankel norm

function matrix, as stated bgasang2002 and Baur and y

Benner(2008. IH(S) = H(9)ll#4, = or+1(H(S)) < IIH(S) = H(S)lIH» (39)
The singular values are the eigenvalues of the observability )

£ and controllabilityQ Gramianso; = yA;(PQ) which are ~ as stated byGlover (1984, Green and Limebeef1999,

called Hankel singular values (HSV) Bf e.g. described by ~Bechtold et al(2007), Benner et al(2004, Antoulas(2009

Gugercin and Antoulag2004 and Antoulas and Sorensen andAntoulas and Sorensg@00]) where also the computa-

(2001). The Gramians are equal and diagonal. The bal-tion of the optimal Hankel norm approxmqtlon is perfor_med.

anced truncation approximation is predicted on transform-In Ed. 39) H.(s) denotes all transfer functions of McMillan

ing the state-space-system into a balanced realization. Thos#egree less than or equalrto

state variables that are least observable and controllable, and

therefore related to the smallest Hankel singular values, aré

truncated with respect to the error bound between original

and reduced transfer function

m In this work, system theoretical basics are reviewed which
IH(S)—H(9)llgs, < ZZ ai. (35) constitute the origin for model order reduction (MOR). Three
T+l different procedures, namely modal reduction, Krylov sub-
The ROM obtained by BTA is related to spaces and singular value decomposition (SVD) based meth-
) « . ods, are described with their associated characteristics.
X1(t) = Araxa(t) + B1u(t), (36) The application of MOR can be motivated by challenges
y(t) = C1xq(t). arising in the numerical characterisation of compliant mech-

anisms (CM) which can be traced back to the numerousness
of ODEs required to specify their behavior in an accurate
way. In most cases, large finite element models arise to cap-
ture a detailed representation of the geometrical domain and
the dynamical performance of the CM. This circumstance is
unfeasible, particularly with regard to further investigations
such as simulation, optimization and control. For this reason,
MOR in CMs seems to be a purposeful approach to generate
efficient models and would benefit the design and develop-
ment as well as analysis process of CMs.

The singular perturbation approximation (SPA) is closely re-  The specific feature of CMs exists in their mechanical
lated to the balanced truncation approximation and ensuref’Pology as they consist of rigid parts connected by flexure
zero error at zero frequency and is applicable to nonlineaflinges. This characteristic hagfets on the potentiality of

systems. Refering to the expression in E3f)(and as ex- MOR and.requwes futher investigations to provide a suit-
plained byLiu and Anderson(1989 and Antoulas et al. able algorithm. Especially, the algorithm has to notably in-

as mentioned byObinata and Anderso(000. BTA in-
volves an approximation error in the low-frequency region
as mentioned bfBechtold et al(2007), Obinata and Ander-
son(2000 andBaur and Bennef2008. For details and as-
pects in numerical calculation see eBgnner and Quintana-
ort'i (2009, Bechtold et al.(2007), Koutsovasilis(2009,
Antoulas(2005 andGugercin and Antoulag@004).

(2007) the reduced system is identified by corporate the distinct fierences between the compliant and
) - ~ rigid parts of the structure with regard to their mechanical
X(t) = Ax(t) +Bu(b), (37) properties and influence on the systems transfer behavior.

yvi(t) = f:x(t), Moreover, having a small error between original and reduced
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be investigated and reasonable combinations among them 1995
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