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Abstract. A flexure joint is an important component in flexure mechanisms. Most of well known flexure
joints have always a trade-off among such performances as precision, stiffness, and stroke, which heavily affect
the overall performances of flexure mechanisms. In this paper, a new flexure joint, named an anti-symmetric
double leaf-type isosceles-trapezoidal flexure joint (ADLIF), is introduced. The joint is constructed by two
leaf-type isosceles-trapezoidal flexure (LITF) building blocks in an anti-symmetrical form. In order to investi-
gate such characteristics as precision, stiffness and stroke, two ADLIFs with different structural parameters are
compared with a cartwheel hinge. In addition, a simple and accurate pseudo-rigid body (PRB) joint model of
the ADLIF is formulated to simplify the parametric model and achieve the structural optimization. The results
show that the ADLIF can gain a great improvement in precision as well as maintain other characteristics such
as stiffness and ranges of motion similar. Even the ADLIF gets more than 16 times improvement in precision in
the case that the rotational angle is less than five degrees (5◦). The ADLIF can thus be used for the replacement
of the cartwheel joint in some precision application fields.

1 Introduction

Flexure mechanisms are devices that attain motion by means
of elastic deformation of flexures. They have been utilized in
many applications, in particular as precise instruments (Her
and Chang, 1994; Kota et al., 1999; Onillon et al., 2003; Per-
nette et al., 1997; Slocum, 1992) due to a number of advan-
tages including low cost, reduced weight and smooth motion.
Besides, simplified, especially monolithic manufacturing for
the flexure mechanisms can cut down the number of work
pieces; sequentially diminish the errors brought by assembly.

As one of the most important elements in flexure mech-
anisms, flexure joints transfer the motion and energy, and
ensure the movement and precision that the specified appli-
cations required. One of the commonly-used flexure joints
is notch hinges (Lobontiu, 2003), which provide a high pre-
cision and a large stiffness but a very limited stroke. One
the contrary, another commonly-used flexure joint is a leaf
spring or a compliant beam, the stroke of which is much
larger due to its distributed-compliance characteristic. How-
ever, it lacks in precision and stiffness. In order to overcome
such disadvantages, some complex flexure joints were inves-
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tigated recently (Tseytlin, 2006; Trease et al., 2005). The
typical examples are the cross-axis flexural pivots (Jensen
and Howell, 2002), the cartwheel hinges (Smith, 2000), the
split-tube pivots (Goldfarb and Speich, 1999), the butterfly
flexural pivot (Henein et al., 2003) and so on. Most of them
consist of two and more flexural beams: a cross-axis flex-
ural pivot is assembled by two beams; a cartwheel hinge is
constructed by four beams; and butterfly pivot is up to eight
beams.

Some complex flexure joints, such as the cross-axis flexu-
ral pivot, are indeed the spatial structures; therefore they are
hard to be machined out from a monolithic block of mate-
rial. Therefore, they are generally unsuitable for being used
in the high precision systems because assembly error could
be easily introduced.

A cartwheel hinge, on the contrary, has a planar nature.
It provides not only a large-deflection stroke, but also over-
comes such disadvantages of a cross-axis pivot as an un-
avoidable assembly and a relatively low rotational precision.
As a result, by comparison with the cross-axis pivot, the
cartwheel hinge gets a five times improvement in the stabil-
ity of the center of rotation, but as a cost of nearly four times
lose in the rotational stroke (Smith, 2000).
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A cartwheel hinge, on the contrary, has a planar nature. It provides not only a large-deflection stroke, but also 

overcomes such disadvantages of a cross-axis pivot as an unavoidable assembly and a relatively low rotational 

precision. As a result, by comparison with the cross-axis pivot, the cartwheel hinge gets a five times improvement 

in the stability of the center of rotation, but as a cost of nearly four times lose in the rotational stroke (Smith, 2000).  

Another type of planar flexure joint is the butterfly flexural pivot. Although there exists 8 beams in the 

architecture, it is a nearly perfect combination of a large-deflection stroke and a high precision (much better than a 

cartwheel hinge).  

Whether for a cartwheel hinge or a butterfly flexural pivot, we notice that both of them can be regarded as the 

combination of two and more LITF pivots (Pei et al., 2008a), in which the remote-center-motion (RCM) enable 

them to be easily superimposed to construct some new complex flexure joints. Just inspired by this design 

phylosiphy, in this paper, we present a new type of a planar leaf-type flexure joint, i.e. an anti-symmetric double 

leaf-type isosceles-trapezoidal flexure joint (ADLIF), which is constructed by four beams. The ADLIF possesses 

almost all the merits of the cartwheel hinge and meantime can gain much higher precision. In the later sections, 

Finite Element Analysis (FEA) is used to validate such an improvement. In addition, in order to provide a simple 

tool to design or optimize the ADLIF, an improved pseudo-rigid-body (PRB) method is also formulated. The 

proposed PRB model is not only simple and accurate, but also intuitive to designers.  

            
Fig.1 Leaf-Type Flexure joints: (a) A cross-axis pivot; (b) A cartwheel hinge; (c) An ADLIF 

 

2. Conceptual design 

As shown in Fig. 1(c), an ADLIF consists of four leaf-type flexures, and the extended lines of the four leaves 

intersected at a point called the virtual pivot point. Both of the ADLIF and the cartwheel hinge can be regarded as 

two LITF building blocks connected in series (Pei et al., 2008a). The major difference between them is that 

whether the two LITF modules are arranged symmetrically or anti-symmetrically. In the ADLIF as shown in Fig. 

2(b), the two LITF modules are connected by an intermediate body. In a cartwheel hinge, the intermediate body is 

reduced to zero. When either of two rims (Rim 1 and Rim 2) is stationary, the other one becomes movable. 

Three parameters are needed to determine the configuration of the ADLIF: (1) hf denotes the distance between 

the bottom end of the leaves and the pivot point O; (2) H denotes the distance between the upper end of the leaves 

and the pivot point O; (3) φ denotes half of the angle between two leaves. The length of each leaf is thus written as 
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Assuming one rim (Rim 1 or Rim 2) is stationary, when the joint deflects, θ is used to denote the rotation angle 

of the other rim. 

3. Pseudo-rigid-body model 
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Another type of planar flexure joint is the butterfly flexural
pivot. Although there exists 8 beams in the architecture, it is
a nearly perfect combination of a large-deflection stroke and
a high precision (much better than a cartwheel hinge).

Whether for a cartwheel hinge or a butterfly flexural pivot,
we notice that both of them can be regarded as the combi-
nation of two and more LITF pivots (Pei et al., 2008a), in
which the remote-center-motion (RCM) enable them to be
easily superimposed to construct some new complex flexure
joints. Just inspired by this design phylosiphy, in this pa-
per, we present a new type of a planar leaf-type flexure joint,
i.e. an anti-symmetric double leaf-type isosceles-trapezoidal
flexure joint (ADLIF), which is constructed by four beams.
The ADLIF possesses almost all the merits of the cartwheel
hinge and meantime can gain much higher precision. In the
later sections, Finite Element Analysis (FEA) is used to vali-
date such an improvement. In addition, in order to provide a
simple tool to design or optimize the ADLIF, an improved
pseudo-rigid-body (PRB) method is also formulated. The
proposed PRB model is not only simple and accurate, but
also intuitive to designers.

2 Conceptual design

As shown in Fig. 1c, an ADLIF consists of four leaf-type
flexures, and the extended lines of the four leaves intersected
at a point called the virtual pivot point. Both of the ADLIF
and the cartwheel hinge can be regarded as two LITF build-
ing blocks connected in series (Pei et al., 2008a). The major
difference between them is that whether the two LITF mod-
ules are arranged symmetrically or anti-symmetrically. In the
ADLIF as shown in Fig. 2b, the two LITF modules are con-
nected by an intermediate body. In a cartwheel hinge, the
intermediate body is reduced to zero. When either of two
rims (Rim 1 and Rim 2) is stationary, the other one becomes
movable.

Three parameters are needed to determine the configura-
tion of the ADLIF: (1) hf denotes the distance between the
bottom end of the leaves and the pivot pointO; (2) H de-
notes the distance between the upper end of the leaves and

the pivot pointO; (3) φ denotes half of the angle between
two leaves. The length of each leaf is thus written as

l =DA= (H−hf )/cosφ (1)

Assuming one rim (Rim 1 or Rim 2) is stationary, when the
joint deflects,θ is used to denote the rotation angle of the
other rim.

3 Pseudo-rigid-body model

Although the FEA is an effective and credible way to ana-
lyze a flexible body, the commercial software is usually ex-
pensive; what is more important, the modelling and simula-
tion processes are rather time-consuming. In the early design
phases of flexures, a PRB is instead a useful tool. It is not
only intuitive to designers, but also a resultant parameterized
model that facilitates structural optimization. In this section,
based on the results for the LITF model (Pei et al., 2008b, c),
a simple PRB model of the ADLIF is formulated. The accu-
racy of the model is relatively high, and it can be confirmed
in Sect. 5 by comparison with the results of FEA.

An improved PRB bar model of the ADLIF is shown in
Fig. 2b, where the bold lines denote the rigid segments; eight
ideal rigid pivots are added to predict the deflected path; four
torsional springs are attached at the inner four pivots to reveal
the force-deflection relationships in the ADLIF.

The vertical distances between all four pivotsA, B, A′, B′

and the centerO are equal toh, which is given by

h= γhf + (1−γ)H (2)

where the characteristic radius factorγ is defined using the
equation (Pei et al., 2008b)

γ=
15

2n2
f −nf +17

. (3)

nf =hf/H (4)

Using a rough estimation,γ is approximately equal to 8/9.
The stiffness of the springK can be calculated as (Pei et

al., 2008b)

K =
4EIγ2(1+nf +n2

f )

lf
(5)
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Fig.2  The PRB model of an ADLIF: (a) The ADLIF ; (b) The bar model; (c) The pin-joint model; 

 

A. Stiffness 

With aid of the PRB bar model shown in Fig. 2b, the force-displacement relationship of the ADLIF can be found 

correspondingly. In addition, a pin-joint model of ADLIF the shown in Fig. 2c is proposed by simplifying the PRB 

bar model. The more detailed modeling process has been demonstrated extensively in the literature (Pei et al., 

2008b). The stiffness value of the pin-joint model can be obtained by 
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Figure 2. The PRB model of an ADLIF:(a) the ADLIF; (b) the bar model;(c) the pin-joint model.

3.1 Stiffness

With aid of the PRB bar model shown in Fig. 2b, the force-
displacement relationship of the ADLIF can be found cor-
respondingly. In addition, a pin-joint model of ADLIF
the shown in Fig. 2c is proposed by simplifying the PRB
bar model. The more detailed modeling process has been
demonstrated extensively in the literature (Pei et al., 2008b).
The stiffness value of the pin-joint model can be obtained by

Kp=
4EI(H2+Hhf +h2

f )cosφ

(H−hf )3
(6)

M =Kp ·θ (7)

3.2 Center-shift

The developed pin-joint model only can be used to determine
the moment-displacement nature. When the detail feature of
the joint needs to be investigated, such as the accurate motion
of the Rim 2, the bar model prefers to be used in this case.
The center-shiftδ is an important criterion for evaluating the
rotational precision of a general flexure joint. It can be ob-
tained in a way proposed in literature (Pei et al., 2008a). The
vector-form result is given by

δ=−δ1cos
θ

2
+δ1sin

θ

2
· i (8)

‖δ‖= δ1

√
2(1−cos

θ

2
)= δ1

∣∣∣∣∣ θ2
∣∣∣∣∣ (9)

whereδ1 is the center-shift of a single LITF joint, and

δ1= δ1x+ iδ1y (10)

‖δ1‖

H
= B3

√
B1 (11)

whereδ1x and δ1y are the components of the center-shift.
They can be written as

δ1x

H
= B3 ·sin

θ

2
(12)

δ1y

H
= (n−cos

θ

2
) ·B3 (13)

where

B1=1+n2−2ncos
θ

2
(14)

B2= (1−n)2/sin2ϕ (15)

B3=1− tanϕ

√
B2

B1
−1 (16)

n=h/H (17)

3.3 Stress analysis

Stress always occurs as the hinge deflects. It is therefore
another important criterion to be considered, which can also
be used to decide the maximum deflection for the hinge.

For a single flexible segment, because the lengthl is much
larger than the thicknesst, thus the shear deflection can be
neglected, and only the bending deflection is considered. In
this case, the stress is given by

σmax=
Et(2H+hf )cosφ

2(H−hf )2
θ (18)

The maximum deflection of the ADLIF may be found by re-
placingσ with the yield strength (Sy).

θmax=
2(H−hf )2

Et(2H+hf )cosφ
Sy (19)
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D. Model validation 

To validate the proposed PRB model, two ADLIFs with different structural parameters are adopted in thus study, 

and the results are plotted in Fig. 4 to compare with FEA simulation results. Fig. 4 shows that the curves of the 

PRB and FEA results are very close to each other.  

4. Case study 

In order to validate the improvement in performances, two ADLIFs with different structural parameters are 

selected to make a comparison with a cartwheel hinge. Fig. 3 illustrates the parametric model for the cartwheel 

hinge, and all structural parameters in the ADLIF are described in Fig. 2a. The concrete parameter values used for 

comparison are listed in Table 1. The length of leaves of the first ADLIF (ADLIF I) is same as that of the cartwheel 

joint, while the stiffness specification of the second ADLIF (ADLIF II) is approximate to that of the cartwheel joint. 

In Table 1, t is the thickness of the flexible segment; b is the width of the flexible segment; E is the Young’s 

modulus. 

The commercial FEA software (ANSYS 9.0) capable of making a large-deflection nonlinear analysis is used. 

The selected material in these cases is aluminum alloy. The Young’s modulus, E, is thus 71GPa and the Poisson’s 

ratio, μ, is 0.33. The BEAM3 elements have been chosen with the large displacement option turned on. The options 

of non-linear computation and stress stiffening are also turned on. A moment is loaded in the middle of moveable 

rim for each joint; while the other rim is fixed on the ground. 

  

l f

      

Fig. 3  Parametric model of the cartwheel hinge  

 

Table 1.  Structural parameters of three flexure joints 

 H (mm) hf (mm) φ (degree) lf (mm) t (mm) b (mm) E (Mpa)

Cartwheel 20 - 45 28.28 0.5 5 71,000 

ADLIF I 23 3 45 28.28 0.5 5 71,000 

ADLIF II 30 3 45 38.18 0.5 5 71,000 

 

5. Results and discussion 

The moment-displacement characteristics, center-shifts, and stresses of the three flexure joints are measured and 

evaluated through the FEA program, and the results are ploted in Fig. 4. 

hf  of ADLIF cannot be too small due to the limit of the manufacture capability. This makes the stiffness value 

of the ADLIF I higher than the cartwheel hinge (shown in Fig. 4a). When the length of all leaves is identical to 

Figure 3. Parametric model of the cartwheel hinge.

3.4 Model validation

To validate the proposed PRB model, two ADLIFs with dif-
ferent structural parameters are adopted in thus study, and the
results are plotted in Fig. 4 to compare with FEA simulation
results. Figure 4 shows that the curves of the PRB and FEA
results are very close to each other.

4 Case study

In order to validate the improvement in performances, two
ADLIFs with different structural parameters are selected to
make a comparison with a cartwheel hinge. Figure 3 illus-
trates the parametric model for the cartwheel hinge, and all
structural parameters in the ADLIF are described in Fig. 2a.
The concrete parameter values used for comparison are listed
in Table 1. The length of leaves of the first ADLIF (ADLIF I)
is same as that of the cartwheel joint, while the stiffness spec-
ification of the second ADLIF (ADLIF II) is approximate to
that of the cartwheel joint. In Table 1,t is the thickness of
the flexible segment;b is the width of the flexible segment;
E is the Young’s modulus.

The commercial FEA software (ANSYS 9.0) capable of
making a large-deflection nonlinear analysis is used. The se-
lected material in these cases is aluminum alloy. The Young’s
modulus,E, is thus 71 GPa and the Poisson’s ratio,µ is 0.33.
The BEAM3 elements have been chosen with the large dis-
placement option turned on. The options of non-linear com-
putation and stress stiffening are also turned on. A moment
is loaded in the middle of moveable rim for each joint; while
the other rim is fixed on the ground.
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each other, increase in the leaves’ length of the ADLIF (see ADLIF II) may lead to the reduced stiffness. 

Meanwhile, the center-shift of the ADLIF II increases by a little, as shown in Fig. 4b, and it is still much smaller 

than that of the cartwheel hinge.  

As illustrated in Fig. 5, the center-shift ratio of the cartwheel hinge to the ADLIF II is decreasing when the 

rotational angle becomes larger. When the rotational angle is up to 5, the center-shift of the cartwheel joint (about 

0.01mm) is about 16 times larger than that of ADLIF II (about 0.0006mm). In other words, by comparison with the 

cartwheel hinge, the ADLIF II can gain more than 16 times improvement in precision when rotational angle is less 

than 5. 
The maximum deflections of all three joints can be found in Fig. 4c. If the yield strength Sy is 250MPa, the 

ranges of motion corresponding to the cartwheel hinge, the ADLIF I and the ADLIF II are about 11.4°, 9.3° and 

13.2°, respectively. 
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Table 1. Structural parameters of three flexure joints.

H (mm) hf (mm) φ (degree) l f (mm) t (mm) b (mm) E (Mpa)

Cartwheel 20 – 45 28.28 0.5 5 71 000
ADLIF I 23 3 45 28.28 0.5 5 71 000
ADLIF II 30 3 45 38.18 0.5 5 71 000
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5 Results and discussion

The moment-displacement characteristics, center-shifts, and
stresses of the three flexure joints are measured and evaluated
through the FEA program, and the results are ploted in Fig. 4.

hf of ADLIF cannot be too small due to the limit of the
manufacture capability. This makes the stiffness value of the
ADLIF I higher than the cartwheel hinge (shown in Fig. 4a).
When the length of all leaves is identical to each other, in-
crease in the leaves’ length of the ADLIF (see ADLIF II) may
lead to the reduced stiffness. Meanwhile, the center-shift of
the ADLIF II increases by a little, as shown in Fig. 4b, and it
is still much smaller than that of the cartwheel hinge.

As illustrated in Fig. 5, the center-shift ratio of the
cartwheel hinge to the ADLIF II is decreasing when the ro-
tational angle becomes larger. When the rotational angle
is up to 5◦, the center-shift of the cartwheel joint (about
0.01 mm) is about 16 times larger than that of ADLIF II
(about 0.0006 mm). In other words, by comparison with
the cartwheel hinge, the ADLIF II can gain more than 16
times improvement in precision when rotational angle is less
than 5◦.

The maximum deflections of all three joints can be found
in Fig. 4c. If the yield strengthSy is 250 MPa, the ranges of
motion corresponding to the cartwheel hinge, the ADLIF I
and the ADLIF II are about 11.4◦, 9.3◦ and 13.2◦, respec-
tively.

6 Conclusions

A novel large-displacement flexure joint, named an ADLIF,
is proposed in this paper. It consists of two LITF building
blocks, but these two blocks are arranged asymmetrically.
Compared with the cartwheel hinge commonly used in
precision engineering and characterized as two LITF build-
ing blocks arranged symmetrically, the ADLIF can gain a
great improvement in precision as well as keeping other
characteristics such as stiffness and ranges of motion at
the same level. In order to quantitatively evaluate these
performances, A PRB model of the ADLIF is developed,
and the moment-displacement characteristics, center-shifts,
and stresses of two cases are calculated correspondingly. By
aid of validation by the FEA result, the PRB model is proved
accurate. According to both the theoretical and simulation
results, the ADLIF can get more than 16 times improvement
in precision as the rotational angle is less than 5◦. Therefore,
the ADLIF is suitable for a replacement of the cartwheel
hinge in precision some applications.

Acknowledgements. The authors would like to acknowledge the
support of National Natural Science Foundation of China, through
Grant No. 50905005, 50875008.

Edited by: N. Tolou
Reviewed by: G. Chen, A. Khavvaji, and
another anonymous referee

References

Goldfarb, M. and Speich, J.: A Well-Behaved Revolute Flexure
Joint for Compliant Mechanism Design, ASME J. Mech. Des.,
121, 424–429, 1999.

Henein, S., Droz, S., Myklebust, L., and Onillon, E.: Flexure pivot
for aerospace mechanisms, Proc. 10th European Space Mecha-
nisms and Tribology Symposium, 24–26 September 2003, San
Sebastian, Spain, 1–4, 2003.

Her, I. and Chang, J. C.: A linear scheme for the displacement anal-
ysis of micropositioning stages with flexure hinges, J. Mech. De-
sign, 116, 770–776, 1994.

Jensen, B. D. and Howell, L. L.: The modeling of cross-axis flexural
pivots, Mech. Mach. Theory, 37, 461–476, 2002.

Kota, S., Hetrick, J., Li, Z., and Saggere, L.: Tailoring unconven-
tional actuators using compliant transmissions: design methods
and applications, IEEE/ASME Transactions on Mechatronics, 4,
396–408, 1999.

www.mech-sci.net/2/183/2011/ Mech. Sci., 2, 183–188, 2011



188 X. Pei and J. Yu: ADLIF: a new large-displacement beam-based flexure joint

Lobontiu, N.: Compliant Mechanisms: Design of Flexure Hinges,
CRC Press, Boca Raton, FL, 2003.

Onillon, E., Henein, S., and Theurillat, P.: Small scanning mirror
mechanism, 2003 IEEE/ASME International Conference on Ad-
vanced Intelligent Mechatronics, 1129–1133, 2003.

Pei, X., Yu, J. J., Zong, G. H., and Bi, S. S.: A Novel Family
of Leaf-Type Compliant Joints: Combination of Two Isosceles-
Trapezoidal Flexural Pivots in Series, Journal of Mechanisms
and Robotics, 1, 021005, 1–6, 2008a.

Pei, X., Yu, J. J., Zong, G. H., and Bi, S. S.: The stiffness model of
leaf-type isosceles-trapezoidal flexural pivots, J. Mech. Design,
130, 082303,doi:10.1115/1.2936902, 2008b.

Pei, X., Yu, J. J., Zong, G. H., Bi, S. S., and Yu, Z. W.: Analysis of
rotational precision for an isosceles-trapezoidal flexural pivot, J.
Mech. Design, 130, 052302doi:10.1115/1.2885507, 2008c.

Pernette, E., Henein, S., Magnani, I., and Clavel, R.: Design of
parallel robots in microrobotics, Robotica, 15, 417–420, 1997.

Slocum, A. H.: Precision Machine Design, Society of Manufactur-
ing Engineers, 1992.

Smith, S. T.: Flexures: elements of elastic mechanisms, Gordon and
Breach Science, New York, 153–230, 2000.

Trease, B. P., Moon, Y. M., and Kota, S.: Design of Large-
Displacement Compliant Joints, J. Mech. Design, 127, 788–798,
2005.

Tseytlin, Y. M.: Structural Synthesis in Precision Elasticity,
Springer, New York, 2006.

Mech. Sci., 2, 183–188, 2011 www.mech-sci.net/2/183/2011/

http://dx.doi.org/10.1115/1.2936902
http://dx.doi.org/10.1115/1.2885507

