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Abstract. The aim of this article is to introduce a new topology optimisation formulation for optimal robust
design of Micro Electro Mechanical Systems. Mesh independence in topology optimisation is most often
ensured by using filtering techniques, which result in transition grey regions difficult to interpret in practical
realisations. This problem has been alleviated recently by projection techniques, but these destroy the mesh
independence introduced by the filters and result in single node connected hinges. Such features in the de-
sign are undesirable as they are not robust with respect to geometric manufacturing errors (such as under/over
etching). They can be avoided by optimising for several design realisations which take into account the pos-
sible geometry errors. The design variations are modelled with the help of random variables. The proposed
stochastic formulation for the design variations results in nearly black and white mechanism designs, robust
with respect to uncertainties in the production process, i.e. without any hinges or small details which can create
manufacturing difficulties.

1 Introduction

The focus in this article is on the design of compliant mech-
anisms by topology optimisation. Compliant mechanisms
gain their mobility from the flexibility of the building com-
ponents and they have found wide applicability in the pro-
duction of Micro Electro Mechanical Systems (MEMS) –
small mechanical devices coupled with electronic circuits.
The manufacturing is based on etching techniques utilised
in the semi-conductor industry. The dimensions of MEMS
are in the order of several hundredµm and due to their small
size any hinges or assembly procedures are undesirable.

Topology optimisation (Bendsøe and Sigmund, 2004) has
been utilised widely in the industry for optimising machine
elements and assemblies. It is an iterative process where the
aim is to minimise predefined objective, such as weight, cost
or compliance, by distributing material in the design domain
and fulfilling prescribed constraints. The design domain is
discretised by using cells in 2D or voxels in 3D, and a de-
sign variable is assigned to each of them. The variables
can take values 1 or 0, where 1 is assigned if a cell is filled
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with material and 0 if it is void. In order to utilise gradient
based optimisation methods, the 0/1 design problem is re-
laxed and the design variables are allowed to take values con-
tinuously between zero and one. The optimisation problem
is mesh dependent1 and convergence for mesh refinement is
ensured by regularisation. Among the different methods pro-
posed in the literature, the so-called filtering techniques have
gained popularity. Initially, filtering has been introduced on
the sensitivities of the objective (Sigmund, 1997), and later
on the density field (Bruns and Tortorelli, 2001; Bourdin,
2001). The regularised topology optimisation problem re-
sults in designs with grey transition regions between the void
and solid. These regions can often be removed by post-
processing, however in many cases they model the correct
physics of the problem and discarding them will compro-
mise the design performance. Recently, several projection
schemes (Guest et al., 2004; Sigmund, 2007; Xu et al., 2010)
have been proposed to decrease the grey transitions in the
final designs. The first two (Guest et al., 2004; Sigmund,

1Mesh independence does not guarantee uniqueness of the so-
lution. The optimisation problem considered in this article is non-
convex and possesses several different local minima, i.e. the solu-
tion is not unique. Mesh independence means that the minimum
feature sizes remain constant with mesh refinement.
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2007) impose length scale on the void or the solid phase by
regularising with finite support density filter and threshold
projection with threshold 0 or 1, respectively. The projection
scheme proposed inXu et al. (2010) is based on Heaviside
projection with arbitrary threshold. It results in nearly black
and white designs with small features which are mesh depen-
dent.

Topology optimised designs for MEMS consist of solid el-
ements connected with hinges. The hinges in the case with-
out Heaviside projection appear as grey material regions, and
for projected designs as solid elements connected through a
single node (e.g.Pedersen et al., 2001). The robust formu-
lation (Sigmund, 2009; Wang et al., 2011), provide nearly
black and white designs without any hinges by requiring the
performance to be insensitive with respect to production er-
rors in the geometry. The formulation is able to represent
constant uniform under- or over- etching error distributed
uniformly along the perimeter of the design. Under- or over-
etched design realisations are obtained using two different
threshold projections. A more realistic representation of the
manufacturing uncertainties requires to model them in a con-
tinuous space, i.e., considering the threshold to vary contin-
uously between the most dilated and the most eroded case.
The scenario can be modelled by using min/max formula-
tion with more than three design realisations. Increasing the
number of the design realisations will approximate closer
the design space. A more systematic approach, presented
here, is based on modelling geometry uncertainties by us-
ing stochastic theory. The threshold is modelled as a ran-
dom variable. The linear elasticity state problem becomes
non-deterministic and the methods developed for solving
Stochastic Partial Differential Equations can be utilised to
obtain the system response. The formulation proposed here
is based on the stochastic moments of the mechanism re-
sponse, and a full reconstruction of the system solution in
the stochastic and the physical space is not necessary. The
moments can be estimated easily by using Monte Carlo Sim-
ulations. The method converges relatively slowly to the true
moments. As demonstrated inXiu and Hesthaven(2005) an
order of magnitude faster convergence for a limited number
of the random dimensions can be obtained by the Stochastic
Collocation Method, which is the solution method used for
obtaining the presented results.

The paper is composed as follows. First, the standard de-
terministic topology optimisation approach is presented for
large displacement linear elasticity in Sect.2. The section
covers the optimisation formulation, regularisation and pro-
jection techniques, and derivation of the objective sensitivi-
ties. In Sect.3, the existing robust formulations are discussed
and then the stochastic robust formulation is introduced. A
brief discussion of the solution techniques for the stochas-
tic state problem is presented in Sect.4 and robust designs
for MEMS obtained by the proposed approach are shown in
Sect.5.

2 Topology optimisation of large displacement com-
pliant mechanisms

The objective in the considered compliant mechanism de-
sign, shown in Fig.1, is to minimise the displacement in a
selected degree of freedom. The original non-robust deter-
ministic problem (Sigmund, 1997; Pedersen et al., 2001) can
be written in discrete form as

min
ρ

: c(ρ)= lTu

s.t. : r (ρ,u)=0 (1)

: V(ρ)≤V∗ (2)

: 0≤ ρi ≤1∀i ∈Ne

where the state elasticity problem is assumed to be discre-
tised using the finite element method (FEM),u is the sys-
tem response displacements vector,ρ is a vector with the
topology optimisation variables associated with each finite
element, andl is a vector with size equal to the size ofu. The
elementl i which corresponds to the displacement degree of
interest is set to one, and the rest are set to zero.r (ρ,u) is the
residual vector function for the state problem. For a small
displacement linear elasticity formulation of the state prob-
lem, the residual vector is given asr = f −Ku, wheref is the
external load andK is the stiffness matrix. For large displace-
ment formulationr is presented in Sect.2.1. The volume of
the design domain occupied with material is denoted with
V(ρ) and it is restricted to be smaller or equal to a predefined
valueV∗. The design variablesρi ,i ∈Ne are bounded between
zero and one. The individual element contributions to the
tangent matrixK are calculated by using elasticity modulus
E obtained by the so-called solid isotropic material interpo-
lation with penalisation (SIMP), which can be written as

E=Emin+ ρ̂
p(E0−Emin) (3)

whereE0 is the stiffness of the solid phase.Emin is the stiff-
ness of the void phase – a small number larger than zero in
order to ensure non-singularity of the tangent matrix. The
parameterp is used for penalising intermediate design val-
ues and is usually taken to bep= 3, andρ̂i in Eq. (3) is the
physical density at the selected point in the design domain.

In order to ensure mesh independence of the optimised so-
lution, as well as to avoid checker-boards, the original design
field ρ is filtered. The filtered densitỹρ can be obtained ex-
plicitly by using weighted average of the design variables
around each element (Bruns and Tortorelli, 2001; Bourdin,
2001) or implicitly by solving partial differential equation
(PDE) for the filtered density field (Lazarov and Sigmund,
2011)

− r2∇2ρ̃+ ρ̃= ρ,
∂ρ̃

∂n
=0 (4)

wherer is a filter length parameter which defines the length
scale imposed by the filter. Forr =0 the filtered field is equal
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to the original design field. The increase of the filter pa-
rameterr suppresses fast oscillations in the design field and
passes out the slowly varying components of the field. The
boundary condition ensures that the filter is volume preserv-
ing, i.e. the volume of the input design fieldρ is equal to
the volume of the filtered field ˜ρ. The vectorn denotes the
outward normal to the design boundary. The PDE (4) is dis-
cretised by using the same mesh utilised for solving the state
problem, and in discrete form can be written as

K f ρ̃=Tfρ (5)

whereK f is the discrete differential operator∇2+1 andTf

maps the design field vector associated with each element
to the nodal input field of the PDE filter. An example of a
MATLAB implementation of the PDE filter can be found in
Andreassen et al.(2011).

If the physical element density is represented by the fil-
tered density obtained by solving Eq. (4), the optimised de-
sign consists of grey areas which are difficult to interpret.
Practical realisations require a discrete black and white solu-
tion. Such a solution can be obtained by threshold projection
(Guest et al., 2004; Sigmund, 2007; Xu et al., 2010). All
values above the selected thresholdη are projected to 1 and
all values below the threshold are projected to 0. Mathe-
matically the operation can be represented by the Heaviside
function, which is not differentiable. Therefore, for compu-
tational purposes, it is replaced by a smooth function with
the expression suggested inWang et al.(2011) and given as

ρ̂i =
tanh(βη)+ tanh(β(ρ̃i −η))
tanh(βη)+ tanh(β(1−η))

(6)

In the limit when,β→∞ Eq. (6) approaches the Heaviside
function with thresholdη. One undesirable feature of the
threshold projection is that the length scale imposed by the
density filter is lost. InWang et al.(2011), this property is
demonstrated for several optimisation problems in heat trans-
fer and compliant mechanisms designs. The optimised de-
signs consist of small features comparable with the mesh
size. Furthermore, the threshold projection for the compli-
ant mechanisms results in hinges in the final black and white
design which is not desirable.

2.1 Non-linear elasticity and finite element formulation

It is assumed that the mechanism displacements are large and
the standard small displacements and small strains formula-
tion in linear elasticity is not capable of representing the final
deformed state of the system. In order to account for finite
deformations of a continuous body, the linear strain and the
Cauchy stresses are replaced with a non-linear strain measure
and its conjugate stress. Detailed overview and finite ele-
ment discretization for finite strains elasticity can be found in
many textbooks on the subject (e.g.Krenk, 2009; Belytschko
et al., 2000; Bonet and Wood, 1997). Here the non-linear

strains are considered to be the Green’s strains given in a
tensor form as

E=
1
2

(
D+DT

)T
+

1
2

DTD (7)

whereD is the displacement gradient tensor with respect to
the initial coordinate system. Each component ofE can be
written as

Eαβ =
1
2

(
∂uα
∂xβ
+
∂uβ
∂xα

)
+

1
2

∂uγ
∂xα

∂uγ
∂xβ

(8)

where Einstein summation convention is assumed with re-
spect to the indexγ. By removing the second quadratic term
in Eq. (7), the small strain measure is recovered. Green’s
strains require the introduction of the 2nd Piola Kirchhoff
stress tensor. Both of them are work conjugate. A linear con-
stitutive relation is assumed between the strain dEαβ and the
stress dSαβ increments in the form

dSαβ =CαβγδdEγδ (9)

where the material tensorC is obtained as

Cαβγδ =EC0
αβγδ (10)

with E given by Eq. (3), andC0
αβγδ – the material tensor for

unit elasticity modulus.
An expression for the residual forces is obtained by form-

ing the virtual work equation and requiring that the variation
of the total work is zero

r = p−
∫
Ω

BT (u)sdΩ (11)

p is an external force vector obtained by integrating any
point, surface or volume forces acting on the system. The
stress vectorsconsists of the following stress tensor compo-
nents

s= [S11,S22,S33,S23,S13,S12]
T (12)

B(u) is a matrix function which depends on the current de-
formed state and relates the strain vector variations

ε = [E11,E22,E33,2E23,2E13,2E12]
T (13)

to the displacement variations

δε =B(u)δu (14)

In total Lagrangian formulation the integration in Eq. (11) is
performed over the original undeformed volume. At equi-
librium the residual vector is equal to zero, and the solution
of

r (u)=0 (15)

with respect tou determines the deformed state of the sys-
tem. The values ofu are obtained iteratively by the Newton-
Raphson method with tangent matrix computed as

K t =−
dr (u)

du
(16)
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2.2 Optimisation sensitivities

The objective sensitivities can be obtained by using adjoint
analysis, and for large displacement formulation detailed
derivations can be found inPedersen et al.(2001). The gra-
dient of the objective with respect to the physical design field
is given as

∂lTu
∂ρ̂
= λT ∂r
∂ρ̂

(17)

whereλ is obtained as a solution of the following system of
linear equations

K tλ= l (18)

The matrixK t corresponds to the tangent matrix computed
at the state equilibrium, i.e. forr (u)= 0, andl is an input to
the system which is zero everywhere except at the degree of
freedom where the objective is computed. The above deriva-
tion is based on the assumption of symmetry in the tangent
matrix.

The gradients with respect to the design variablesρ are
computed using the chain rule

∂lTu
∂ρ
=
∂lTu
∂ρ̂

∂ρ̂

∂ρ̃

∂ρ̃

∂ρ
(19)

The derivative∂r/∂ρ̂i is computed analytically by differenti-
ating Eq. (11) with respect to ˆρ. With respect to the filtered
field it is computed by applying the chain rule and after that
analytically differentiating the threshold projection given by
Eq. (6). In discrete vector form the gradients with respect to
the nodal values of the filtered field are given as

s=
∂lTu
∂ρ̃

(20)

wheres is assembled element-wise by integrating the sen-
sitivities contribution from each element (Lazarov and Sig-
mund, 2011). The final gradients with respect to the original
design variables associated with the elements are computed
as

∂lTu
∂ρ
=TT

f K−1
f s (21)

3 Robust topology optimisation

A general overview of various formulations for obtaining ro-
bust solution to an optimisation problem can be found in
Beyer and Sendhoff (2007); Tsompanakis et al.(2008). In
this work, robustness is required for the system performance
with respect to uniform under- or over- etching of the design,
i.e. the optimised design has to perform well when the mech-
anism elements are produced thinner or thicker with respect
to a reference topology supplied to the manufacturer.

The geometric variations in the design topology can be
modelled by varying the thresholdη in Eq. (6). Three pro-
jections with three different thresholdsηe,ηi ,ηd are shown in

Fig. 4. The three projections are called eroded, intermedi-
ate and dilated (Sigmund, 2009; Wang et al., 2011). If the
intermediate projection is considered to be the reference de-
sign, uniform over-etching error can be modelled by the dif-
ference between the intermediate and the eroded design pro-
jections. Uniform under-etching error can be modelled by
the difference between the intermediate and the dilated de-
sign projections. Using these three cases, robust designs for
small displacement compliant mechanisms are obtained in
Wang et al.(2011) by minimising the maximal objective of
the three projections. The formulation is an extension of an
earlier work bySigmund(2009) where the min/max formu-
lation is applied for eroded and dilated designs obtained with
thresholdsη = 1 andη = 0, respectively. Both formulations
utilise several discrete points in the design space and they do
not account for the continuous nature of the geometric er-
rors. A way to expand the considered error space is to use
the min/max formulation for more than 3 cases, however the
latter would increase the computational burden significantly.

A continuous geometric error can be modelled systemati-
cally by employing a stochastic variable with suitable (phys-
ically admissible) distribution function. Here it is modelled
by using the threshold projection Eq. (6) where the threshold
η is considered to be uniformly distributed, i.e.η ∈U [a,b].
The lower bounda of the uniform distribution corresponds
to the most dilated case, and the upper boundb – to the most
eroded case. The mean threshold corresponds to the refer-
ence design supplied to the manufacturer. Representing the
threshold as a random variable results in random variations
in the deterministic objective considered in Eq. (1), as well
as in the volume occupied with material. The original de-
terministic optimisation Eq. (1) can be reformulated by us-
ing a probability measure of the mechanism performance, or
the moments of the objective distribution. By utilising the
stochastic moments of the response, the following stochastic
robust optimisation problem can be introduced

min
ρ

: E
[
lTu

]
s.t. : r (ρ,u)=0 (22)

: Vd(ρ)≤V∗

: STD
[
lTu

]
≤g

: 0≤ ρi ≤1∀i ∈Ne

where E
[
lTu

]
is the expected value of the deterministic ob-

jective and STD
[
lTu

]
is the standard deviation. Alternatively

optimal robust design can be obtained by

min
ρ

: E
[
lTu

]
+κSTD

[
lTu

]
s.t. : r (ρ,u)=0 (23)

: Vd(ρ)≤V∗

: 0≤ ρi ≤1∀i ∈Ne

The first optimisation problem given by Eq. (22) minimises
the mean performance by constraining its standard deviation.
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The second formulation Eq. (23) provides an alternative
where the parameterκ controls the contribution of the stan-
dard deviation to the objective. Increasingκ puts more
weight on the standard deviation and the obtained solution
possesses response which is less sensitive to geometry vari-
ations. In both formulations, based on the results fromSig-
mund(2009) andWang et al.(2011), the volume constraint
is imposed on the dilated design, i.e.Vd(ρ)≤V∗. The dilated
design has the largest amount of material in the considered
model.

The expectation E
[
lTu

]
of the original deterministic objec-

tive can be computed as

E
[
lTu

]
=

∫
c(ρ,η)dP

[
η
]
=

∫ b

a
c(ρ,η)ϕ(η)dη (24)

whereϕ(η)= 1/(b−a) is the probability density function for
uniform distributionU [a,b]. The standard deviation of the
deterministic objective is given as STD

[
lTu

]
=

√
Var

[
lTu

]
,

and the variance is computed as

Var
[
lTu

]
=

∫ b

a

(
c(ρ,η)−E

[
c(ρ,η)

])2ϕ(η)dη (25)

4 Optimisation algorithm and numerical
implementation

The main difficulty from computational point of view, in the
stochastic robust formulation, is the evaluation of the mean
and the variance of the deterministic objective. These can
be estimated by obtaining a solution of the finite strain elas-
ticity problem with stochastic modulus of elasticity. Several
solution strategies can be employed (Xiu, 2010), and among
them the easiest and the most expensive one for a single ran-
dom variable, in terms of computations, is the Monte Carlo
simulations (MCS) method. The method converges to the
true expected value relatively slow, with a rate proportional
to the inverse of the square root 1/

√
M of the number of

the realisationsM. For a sufficiently smooth solution of the
stochastic partial differential equation problem, the Stochas-
tic Collocation Method (SCM) (Xiu and Hesthaven, 2005;
Xiu, 2010) converges an order of magnitude faster than MCS.
The method doesn’t require the actual construction of the so-
lution in the stochastic space, and the integrals for the expec-
tation Eq. (24) and the variance Eq. (25) can be computed
by evaluating the solution of the deterministic problems at
prescribed collocation pointsηi . The SCM method is based
on Lagrangian polynomial approximation in the stochastic
space. The residual of the interpolated solution is required to
be zero at selected collocation points, which can be written
as

r (ρ(ηk),uk)=0, k=1...M (26)

Each one of the above equations is equivalent to the state
problem formulated for thresholdηk. The integrals Eq. (24)
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Figure 1. Design domains and boundary conditions for a compliant
inverter design.

and Eq. (25) can be computed as

E
[
c(ρ,η)

]
=

M∑
k=1

c((ρ,ηk)ωk (27)

Var
[
c(ρ,η)

]
=

M∑
k=1

(
c(ρ,ηk)−E

[
c(ρ,η)

])2ωk (28)

=

M∑
k=1

c(ρ,ηk)
2ωk−E

[
c(ρ,η)

]2
whereωk are integration weights. The sensitivities for the
stochastic robust formulation Eq. (22) can be obtained from
Eq. (27) and Eq. (28) by differentiating them with respect
to ρ

∂E
[
c(ρ,η)

]
∂ρi

=

M∑
k=1

∂ck

∂ρi
ωk (29)

∂Var
[
c(ρ,η)

]
∂ρi

=

M∑
k=1

2ck
∂ck

∂ρi
ωk−2E

[
c(ρ,η)

] ∂E[
c(ρ,η)

]
∂ρi

(30)

whereck = c(ρ,ηk). The gradients∂ck/∂ρi can be estimated
using the derivation presented in Sect. 2.2.

5 Numerical examples

The proposed stochastic robust formulation is demonstrated
for the design of compliant inverter mechanism, with de-
sign domain and boundary conditions shown in Fig.1. The
length of the design domain is chosen to beL= 300µm and
the thickness ist = 7µm. The elasticity modulus is set to
E0 = 180 GPa. The input and the output springs stiffness is
set tokin = 4.00 mNµm−1 andkout= 0.01 mNµm−1, respec-
tively. The driving force isfin = 20 mN. The integration of
the expectation and the variance is performed using Gaus-
sian quadrature. The error tolerance for the Newton-Raphson
iterations is set to be 10−6 and the algorithm is stabilised us-
ing arc-length control. The Method of Moving Asymptotes
(MMA) ( Svanberg, 1987) is utilised for solving the optimi-
sation problem.
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Figure 1. Design domains and boundary conditions for a compliant
inverter design.
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Figure 2. Boundary conditions for filtering. The bold lines corre-
spond to Dirichlet BC ˜ρ= 1.0, the dotted lines correspond to Neu-
mann BC∂ρ̃/∂n = 0, and the dashed lines correspond to Dirichlet
BC ρ̃= 0.0. The length of the bold lines around the two springs is
L/50.
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All designs are obtained using a continuation scheme with
respect to the projection parameterβ (see Eq.6). The opti-
misations start withβ= 1 and every 50 steps,β is increased
with 1. Whenβ is equal to 16, the continuation scheme dou-
bles it and the design process runs for 100 iterations. In or-
der to decrease the computational cost, all steps except the
last one (β= 32) are performed with 2 Gaussian integration
points. Such a numerical integration scheme is not able to ap-
proximate the standard deviation well, however based on nu-
merical simulations, it captures very well the mean response.
The initial steps are used only to obtain good initial guess
for the final optimisation step, thus it is not necessary to es-
timate the moments of the response very precisely. The final
step of the optimisation (β= 32) is performed with Kronod-
Patterson quadrature using 31 points. The optimisation pro-
cess can be improved further by using the nested property of
the Kronod-Patterson integration points and estimating the
error in the integration process. The robust designs are rel-
atively stiff compared to the non-robust and small displace-
ment theory can be used in the initial steps to decrease further
the computational cost. The difference in the performance
for designs obtained by using large and small displacement
formulation, in the examples presented here is between 15 %
and 20 %. Therefore for smallβ linear analysis can save sig-
nificant amount of computational time. For largeβ the design
changes relatively slow and if the initial guess if far from the
optimal one, the optimisation would require large number of
iteration steps. In order to avoid half width elements close
to the design domain borders (e.g.,Wang et al., 2011), the
boundary conditions (BC) for the PDE filter (Fig.2) differ
from the original formulation (Lazarov and Sigmund, 2011).
Dirichlet BC ρ̃= 0 is imposed on two sides of the design do-
main and ˜ρ=1 is imposed around the input and the output of
the system. The BC ˜ρ = 1 implies solid material outside of
the design domain and ˜ρ=0 implies void.

The first example is an optimised topology of the com-
pliant mechanism using the large displacement deterministic

formulation. The result is shown in the middle of Fig.3,
and is obtained with threshold projectionη = 0.5. In order
to use the same settings as the ones for the robust formu-
lation, the volume constraint is imposed on design obtained
with threshold projectionη = 0.3. The optimised topology
consists of elements and one node connected hinges. Small
deviations from the design are shown on the figure as well.
The left design in Fig.3 is obtained by erosion with Heav-
iside projection thresholdη = 0.6. The mechanism is com-
pletely disintegrated. The right design in Fig.3, is obtained
by dilation with projection thresholdη = 0.4. The mecha-
nism hinges are filled with material and the mechanism be-
comes very stiff compared to the reference one obtained for
η = 0.5. The mean value of the deterministic objective for
η ∈∈U [0.3,0.7] is E[c] =−6.23 and the standard deviation is
STD[c] =8.84. Forη ∈ [0.4,0.6] the values are E[c] =−11.05
and STD[c] = 10.57. Clearly the performance of the design
is not robust with respect to erosion or dilation.

Three projections for an optimised design obtained by us-
ing large displacement robust formulation are shown in Fig.4
and Fig.5. All of them perform similar for the selected
thresholds. The mean forη ∈ [0.4,0.6] is E[c] = −9.58 and
the standard deviation is STD[c] = 3.46. Furthermore, in
contrast to the non-robust deterministic design, the mecha-
nism does not posses any hinges, and small erosion or di-
lation does not disintegrate it. The penalty is smaller max-
imal displacement. The performance and the standard de-
viation of the design forη ∈U [0.3,0.7] is E[c] =−8.96 and
STD[c] = 5.80. The mean performance in the design inter-
val is better for the robust design compared to the one for
the deterministic case. In addition it is robust with respect
to erosion or dilation, i.e. the standard deviation is smaller
for the design obtained by using the robust formulation. The
projections shown in Fig.4 are obtained with two integra-
tion points and the projections in Fig.5 are obtained with 31.
The topology in the second case (Fig.5) differs slightly from
the one obtained with two integration points. The perfor-
mance is improved slightly and the main difference is in the
eroded design which is thicker than the one shown in Fig.4.
This behaviour is expected, as more precise approximation
is based on integration points which are closer to the bounds
of the threshold interval and therefore the sensitivities for
highly eroded or highly dilated structures will have contri-
butions to the average sensitivities given by Eq. (29) and
Eq. (30). Threshold projections for a design obtained with
broader threshold intervalη ∈ [0.2,0.8] are shown in Fig.6.
Increasing the threshold interval decreases the performance
of the mechanism and increases its robustness with respect to
geometry variations. The optimal threshold interval, as well
as the selected threshold distribution, have to be tuned to a
given production process. IncreasingV∗ makes the volume
constraint inactive. For the selected formulation and bound-
ary conditions, the optimisation finds topology with the high-
est possible flexibility rather than the highest possible force
transfer.
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Figure 3. Three threshold projections, eroded, intermediate and dilated, obtained with thresholdsη= 0.6,0.5 andη= 0.4, respectively. The
design is obtained using large displacements deterministic optimisation formulation with thresholdη= 0.5 and volume constraint 30% of the
original volume imposed on the dilated projection atη= 0.3. The objective isc=−29.12µm and the projection parameter isβ= 32.

Figure 4. Three threshold projections, eroded, intermediate and dilated, obtained with thresholdsη= 0.6,0.5 andη= 0.4, respectively. The
design is obtained using large displacements robust optimisation formulation with thresholdη ∈U [0.3,0.7] and volume constraint 30% of
the original volume imposed on the dilated projection atη= 0.3. The objective is E[c] = −7.85µm, the standard deviation is STD[c] = 1.0,
the number of the integration points is 2, and the projectionparameter isβ= 32. The objective expectation and standard deviation, computed
with 31 integration points Kronrod-Patterson rile are E[c] =−8.43 and STD[c] = 5.83.

Figure 5. Three threshold projections, eroded, intermediate and dilated, obtained with thresholdsη= 0.6,0.5 andη= 0.4, respectively. The
design is obtained using large displacements robust optimisation formulation with thresholdη ∈U [0.3,0.7] and volume constraint 30% of
the original volume imposed on the dilated projection atη= 0.3. The objective is E[c] =−8.96µm, the standard deviation is STD[c] = 5.80,
the number of the integration points is 31, and the projection parameter isβ= 32.

Figure 6. Three threshold projections, eroded, intermediate and dilated, obtained with thresholdsη= 0.6,0.5 andη= 0.4, respectively. The
design is obtained using large displacements robust optimisation formulation with thresholdη ∈U [0.2,0.8] and volume constraint 30% of
the original volume imposed on the dilated projection atη= 0.2. The objective is E[c] =−6.12µm, the standard deviation is STD[c] = 4.00,
the number of the integration points is 31, and the projection parameter isβ= 32.
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6 Conclusions

A new optimisation procedure for robust design of compli-
ant mechanisms is demonstrated. The performance of the
obtained designs is robust with respect to uncertainties in
the geometry. The uncertainties are modelled using Heavi-
side projection with a random threshold which is selected to
be uniformly distributed in the threshold interval. The ob-
tained designs do not possess any hinges and the require-
ment for robustness ensure easy manifacturability. For large
complex models the proposed formulation needs further im-
provements in order to decrease the number of optimisation
iterations and the computational cost associated with each of
them. This will be subject of future work.
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