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The aim of this article is to introduce a new topology optimisation formulation for optimal robust
design of Micro Electro Mechanical Systems. Mesh independence in topology optimisation is most often
ensured by using filtering techniques, which result in transition grey regidisudti to interpret in practicel
realisations. This problem has been alleviated recently by projection techniques, but these destroy the mesh
independence introduced by the filters and result in single node connected hinges. Such features in the de-
sign are undesirable as they are not robust with respect to geometric manufacturing errors (suchi@gunder
etching). They can be avoided by optimising for several design realisations which take into account the pos-
sible geometry errors. The design variations are modelled with the help of random variables. The proposed
stochastic formulation for the design variations results in nearly black and white mechanism designs, robust
with respect to uncertainties in the production process, i.e. without any hinges or small details which cen create
manufacturing dficulties.

with material and O if it is void. In order to utilise gradient
based optimisation methods, thgl @esign problem is re-
The focus in this article is on the design of compliant mech-laxed and the design variables are allowed to take values con-
anisms by topology optimisation. Compliant mechanismstinuously between zero and one. The optimisation problem
gain their mobility from the flexibility of the building com- is mesh dependehaind convergence for mesh refinement is
ponents and they have found wide applicability in the pro-ensured by regularisation. Among thé&dient methods pro-
duction of Micro Electro Mechanical Systems (MEMS) — posed in the literature, the so-called filtering techniques have
small mechanical devices coupled with electronic circuits.gained popularity. Initially, filtering has been introduced on
The manufacturing is based on etching techniques utilisedhe sensitivities of the objectiveésigmund 1997, and later
in the semi-conductor industry. The dimensions of MEMS on the density field Bruns and Tortorelli 2001, Bourdin,
are in the order of several hundrgoh and due to their small 2001). The regularised topology optimisation problem re-
size any hinges or assembly procedures are undesirable. sults in designs with grey transition regions between the void
Topology optimisationBendsge and Sigmung004 has  and solid. These regions can often be removed by post-
been utilised widely in the industry for optimising machine processing, however in many cases they model the correct
elements and assemblies. It is an iterative process where thghysics of the problem and discarding them will compro-
aim is to minimise predefined objective, such as weight, cosimise the design performance. Recently, several projection
or compliance, by distributing material in the design domainschemesGuest et a.2004 Sigmund 2007, Xu et al, 2010
and fulfilling prescribed constraints. The design domain ishave been proposed to decrease the grey transitions in the
discretised by using cells in 2D or voxels in 3D, and a de-final designs. The first twoQuest et al.2004 Sigmund
sign variable is assigned to each of them. The variables
can take values 1 or 0, where 1 is assigned if a cell is filled

IMesh independence does not guarantee uniqueness of the so-
lution. The optimisation problem considered in this article is non-

convex and possesses severdledent local minima, i.e. the solu-
Correspondence tdB. S. Lazarov tion is not unique. Mesh independence means that the minimum
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feature sizes remain constant with mesh refinement.



http://creativecommons.org/licenses/by/3.0/

2007 impose length scale on the void or the solid phase by

regularising with finite support density filter and threshold

projection with threshold O or 1, respectively. The projection

scheme proposed Mu et al. (2010 is based on Heaviside The objective in the considered compliant mechanism de-

projection with arbitrary threshold. It results in nearly black sign, shown in Figl, is to minimise the displacement in a

and white designs with small features which are mesh deperselected degree of freedom. The original non-robust deter-

dent. ministic problem Sigmund 1997, Pedersen et al200]) can
Topology optimised designs for MEMS consist of solid el- be written in discrete form as

ements connected with hinges. The hinges in the case with- T

out Heaviside projection appear as grey material regions, andin = cl)=1"u

for projected designs as solid elements connected through at. = r(p,u)=0 (1)

single node (e.gPedersen et al2001). The robust formu- V(p) <V @)

lation (Sigmund 2009 Wang et al. 2011), provide nearly -

black and white designs without any hinges by requiring the © O<pi<lvieNe

perfqrmance to be insensitive with r_esp«_act fo production €M where the state elasticity problem is assumed to be discre-
rors in the geometry. The formulation is able to represen

constant uniform under- or over- etching error distrib tedttised using the finite element method (FEM)js the sys-
uni u v ng IStributed o response displacements vecjoris a vector with the

u?|Lord|”r1I()j/ alioragrthe”petrimeterrof tgf ?r:as(;gn. iLr:ndt:;i;zcr)(;ir?tv er- topology optimisation variables associated with each finite
etched design realisations are obtained using element, andl is a vector with size equal to the sizelwofThe

threshold p_rOJectlons. A more rea“St'C representathn of theelemenﬂi which corresponds to the displacement degree of
manufacturing uncertainties requires to model them in a con-

. . L __Interest is set to one, and the rest are set to agpgu) is the
tinuous space, i.e., considering the threshold to vary contin )

v betw h t dilated and th ¢ eroded residual vector function for the state problem. For a small
uously between the most drated and the most erode CaS‘tajl'isplrclcement linear elasticity formulation of the state prob-
The scenario can be modelled by using fmax formula-

tion with more than three desian realisations. Increasing th lem, the residual vector is given as f —Ku, wheref is the
0 ore than three gesign realisations. Increasing NG,;o a1 j0ad and is the stifness matrix. For large displace-
number of the design realisations will approximate closer

. : ent formulationr is presented in Sec2.1 The volume of
the design space. A more systematic approach, presentﬁra

here, is based on modelling geometry uncertainties by us; © de3|g_n_doma|_n occupied with material is denoted \.Nlth
. ' ) " V(p) and it is restricted to be smaller or equal to a predefined
:jng stochabslnc thﬁorly. The Ithrgshold IS modsllled E\s a ranyaluev*. The design variablgs,i € Ng are bounded between

om variable. The linear elasticity state problem €COMES 015 and one. The individual element contributions to the

Stoc_hastlc Partial Dlierential Equations can be utilised to E obtained by the so-called solid isotropic material interpo-
obtain the system response. The formulation proposed her%tion with penalisation (SIMP), which can be written as

is based on the stochastic moments of the mechanism re-
sponse, and. a full reconstrgction of thg system solution iNg = g, + pP(Eo — Emin) (3)
the stochastic and the physical space is not necessary. The
moments can be estimated easily by using Monte Carlo SimwhereE, is the stifness of the solid phas&ni, is the stif-
ulations. The method converges relatively slowly to the trueness of the void phase — a small number larger than zero in
moments. As demonstratedXiu and Hesthave2005 an  order to ensure non-singularity of the tangent matrix. The
order of magnitude faster convergence for a limited numbeparameterp is used for penalising intermediate design val-
of the random dimensions can be obtained by the Stochastiges and is usually taken to lge= 3, andg; in Eq. @) is the
Collocation Method, which is the solution method used for physical density at the selected point in the design domain.
obtaining the presented results. In order to ensure mesh independence of the optimised so-
The paper is composed as follows. First, the standard delution, as well as to avoid checker-boards, the original design
terministic topology optimisation approach is presented forfield p is filtered. The filtered density can be obtained ex-
large displacement linear elasticity in Se2t. The section  plicitly by using weighted average of the design variables
covers the optimisation formulation, regularisation and pro-around each elemenB(uns and Tortorel|i2001; Bourdin
jection techniques, and derivation of the objective sensitivi-2001) or implicitly by solving partial diferential equation
ties. In Sect3, the existing robust formulations are discussed (PDE) for the filtered density field_&zarov and Sigmund
and then the stochastic robust formulation is introduced. A2011)
brief discussion of the solution techniques for the stochas- ~

tic state problem is presented in Settand robust designs —r2v35+p=p, % =0 4)
for MEMS obtained by the proposed approach are shown in on
Sect.5. wherer is a filter length parameter which defines the length

scale imposed by the filter. Foe 0 the filtered field is equal



to the original design field. The increase of the filter pa- strains are considered to be the Green’s strains given in a
rameterr suppresses fast oscillations in the design field andtensor form as

passes out the slowly varying components of the field. The 1 . .

boundary condition ensures that the filter is volume preservE = §<D+ D) + 50D @)

ing, i.e. the volume of the input design fietdis equal to
the volume of the filtered field."The vectorn denotes the
outward normal to the design boundary. The P2Eg dis-

whereD is the displacement gradient tensor with respect to
the initial coordinate system. Each componenEofan be

cretised by using the same mesh utilised for solving the stat(\aN”tten as

problem, and in discrete form can be written as - }(6“0 + %)Jr 10uy duy (8)
P 2\0%s  0x.) " 20%, dxg

Kip=Tep ()

where Einstein summation convention is assumed with re-

whereK; is the discrete dierential operatoF’2+ 1 andT; spect to the index. By removing the sgcond quadratic term
maps the design field vector associated with each elemeri EQ. (7), the small strain measure is recovered. Green's
to the nodal input field of the PDE filter. An example of a Strains require the introduction of the 2nd Piola Kircfiho
MATLAB implementation of the PDE filter can be found in Stress tensor. Both of them are work conjugate. A linear con-

Andreassen et a{2011). stitutive relation is assumed between the strdpzoand the
If the physical element density is represented by the fil-Stress &qs increments in the form
tered density obtained by solving Ed)(the optimised de- 0S5 = CopysdE, s )

sign consists of grey areas which ardfidult to interpret.

Practical realisations require a discrete black and white soluwhere the material tens@ris obtained as
tion. Such a solution can be obtained by threshold projection- s=EC?
(Guest et al.2004 Sigmund 2007 Xu et al, 2010. All o apro
values above the selected threshpldre projected to 1 and with E given by Eq. 8), andcgﬁw — the material tensor for
all values below the threshold are projected to 0. Mathe-unit elasticity modulus.

matically the operation can be represented by the Heaviside An expression for the residual forces is obtained by form-
function, which is not dferentiable. Therefore, for compu- ing the virtual work equation and requiring that the variation
tational purposes, it is replaced by a smooth function withof the total work is zero

(10)

the expression suggestedWang et al(2011) and given as
P r=p- f B (u)sdQ (11)
. _ tanh(Bn) +tanh(B (g — 1)) ©) Q
'™ tanh(8y) + tanh(8(1-17)) p is an external force vector obtained by integrating any

point, surface or volume forces acting on the system. The

In the limit when,3 — co Eq. (6) approaches the Heaviside gyress vectos consists of the following stress tensor compo-
function with threshold;. One undesirable feature of the ants

threshold projection is that the length scale imposed by the .
density filter is lost. InWang et al.(2011), this property is ~ S=1[S11,522,Ss3,523,513,512] (12)
demonstrated for several optimisation problems in heat transg ) is a matrix function which depends on the current de-

fer and compliant mechanisms designs. The optimised defo;me state and relates the strain vector variations
signs consist of small features comparable with the mesh
size. Furthermore, the threshold projection for the compli-€ = [E11,Ez2, Ess, 2E23,2E13,2E12] (13)
ant mechanisms results in hinges in the final black and white(0 the displacement variations
design which is not desirable.

de=B(u)su (14)

In total Lagrangian formulation the integration in Ef1)is

. . . rformed over the original undeformed volume. At equi-
Itis assumed that the mechanism displacements are large arﬁ§ g 9

. i rium the residual vector is equal to zero, and the solution
the standard small displacements and small strains formula-
tion in linear elasticity is not capable of representing the final
deformed state of the system. In order to account for finiter (u)=0 (15)
deformations of a continuous bgdy, the '”f‘ear stral_n and theWith respect tau determines the deformed state of the sys-
Cauchy stresses are replaced with a non-linear strain measule = 1o alues ai are obtained i teratively by the Newton-
and its conjugate stress. Detailed overview and finite ele'Rap.hson method with tangent matrix computed as
ment discretization for finite strains elasticity can be found in
many textbooks on the subject (eigenk, 2009 Belytschko | _ _dr(u) (16)

et al, 200Q Bonet and Wood1997). Here the non-linear ! du



Fig. 4. The three projections are called eroded, intermedi-
ate and dilatedSigmund 2009 Wang et al. 2011). If the

The Ob.JeCt'Ve sensmvmes.can be obtained by using adJp'mintermediate projection is considered to be the reference de-
analysis, and for large displacement formulation detalledsign, uniform over-etching error can be modelled by the dif-

d_erlvatlons can be_: four_1d iRedersen et a(200_]). The gra-  ference between the intermediate and the eroded design pro-
_d|er_1t of the objective with respect to the physical design ﬂeldjections. Uniform under-etching error can be modelled by
IS given as the diference between the intermediate and the dilated de-
olu _qor 17 sign projections. Using these three cases, robust designs for
3_;, 3_5 17) small displacement compliant mechanisms are obtained in

. . . . Wang et al.(2011) by minimising the maximal objective of
:{vhere/l 'S optalned as a solution of the following system of the three projections. The formulation is an extension of an
Inear equations earlier work bySigmund(2009 where the mifmax formu-
Kid=1 18) lation is applied for eroded and dilated designs obtained with

. . thresholdsy = 1 andn =0, respectively. Both formulations

The matrixK corresponds to the tangent matrix computed utilise several discrete points in the design space and they do

at the state qulhb_rlum, l.e. fau) =0, andl is an input to ot account for the continuous nature of the geometric er-
the system which is zero everywhere except at the degree c}qors. A way to expand the considered error space is to use

freedom where the objective is computed. The above derlvafhe minmax formulation for more than 3 cases, however the

tlrr?antrlii based on the assumption of symmetry in the tangenf,tier would increase the computational burden significantly.

. . . . A continuous geometric error can be modelled systemati-
The gradlgnts with respect to the design variahlesre cally by employing a stochastic variable with suitable (phys-
computed using the chain rule ically admissible) distribution function. Here it is modelled
ol"u  ol"udp dp by using the threshold projection E) (vhere the threshold
~"9b 0b 0o (19) n is considered to be uniformly distributed, i.ec U[a,b].

ap op op op . tributec
The derivativedr /93 i d tically by i _ The lower bound of the uniform distribution corresponds
e derivativeir/dpi Is computed analytically by derenti- to the most dilated case, and the upper boordo the most

ating Eq. (1) with respect to” With respect to the filtered eroded case. The mean threshold corresponds to the refer-

field it.is computed py.applying the chain “‘_'Ie qnd gfter thatence design supplied to the manufacturer. Representing the
analytically diferentiating the threshold projection given by w,.oqp 414 as a random variable results in random variations

Eq. ©). In discrete vector form the gradients with respect to in the deterministic objective considered in Ej, @as well

the nodal values of the filtered field are given as as in the volume occupied with material. The original de-
olu terministic optimisation Eqg.1) can be reformulated by us-
= p (20) ing a probability measure of the mechanism performance, or

h : bled el t-wise by int tina th the moments of the objective distribution. By utilising the
wheres 1S assembied element-wise by integrating the Sen-g, -nastic moments of the response, the following stochastic
sitivities contribution from each elementgzarov and Sig-

) . ) S robust optimisation problem can be introduced
mund 2017). The final gradients with respect to the original P P

design variables associated with the elements are computeahin E[lTU]
p
as
oI st. : r(pu)=0 (22)
a_: =TTK:1s 1) © Va(p)<V*
: STD[I"u|<g
0<pi<1VieNg

. . . - where BITu] is the expected value of the deterministic ob-
A general overview of various formulations for obtaining ro-

bust solution to an optimisation problem can be found injective and STITu] is the standard deviation. Alternatively
Beyer and Send!b(2007); Tsompanakis et a(2008. In  Optimal robust design can be obtained by

this work, robustness is required for the system performanct?nin : E[|Tu] +KSTD[|TU]

with respect to uniform under- or over- etching of the design, »

i.e. the optimised design has to perform well when the mech-st. : r(p,u)=0 (23)
anism elements are produced thinner or thicker with respect © Vg(p) <V

to a reference topology supplied to the manufacturer.

The geometric variations in the design topology can be
modelled by varying the thresholgin Eq. ). Three pro-  The first optimisation problem given by E®4) minimises
jections with three dferent thresholdse,ni,nq are shown in  the mean performance by constraining its standard deviation.

0<pi<1VieNg



The second formulation Eq28) provides an alternative fin
where the parametercontrols the contribution of the stan- —
dard deviation to the objective. Increasirgputs more in Kout
weight on the standard deviation and the obtained solution
possesses response which is less sensitive to geometry vari-
ations. In both formulations, based on the results f®@igy L/2
mund (2009 andWang et al.(2011), the volume constraint
is imposed on the dilated design, i(p) < V*. The dilated L/25
design has the largest amount of material in the considered / I
model.

The expectation [E[Tu] of the original deterministic objec- L
tive can be computed as

Design domains and boundary conditions for a compliant

T b inverter design.
e[i"u] = [ condPlnl= [ ooty (24)
a
wherep(n) = 1/ (b—a) is the probability density function for ~and Eq. 5) can be computed as
uniform distribution?{[a,b]. The standard deviation of the M
deterministic objective is given as STBu| = yVar[ITu], Elcton] = Y cllpmox (27)
and the variance is computed as k=1
M
b _ _ 2

Var[I"u] = f (clp.n) - Elc(o.m)]) e (n)dn (25) Vil = ;(C‘P’”@ Elcte.nl)" e (28)

; =

M
> clp.md?w—Elclo.m)
k=1

wherewy are integration weights. The sensitivities for the
The main dificulty from computational point of view, in the stochastic robust formulation Eq22) can be obtained from
stochastic robust formulation, is the evaluation of the mearEq. 27) and Eq. 28) by differentiating them with respect
and the variance of the deterministic objective. These carto p
be estimated by obtaining a solution of the finite strain elas-

M
ticity problem with stochastic modulus of elasticity. Several 9E[c(p.m)] = Za_cka,k (29)
solution strategies can be employedy, 2010, and among Opi i Opi
them the easiest and the most expensive one for a single ran:, M
dom variable, in terms of computations, is the Monte Carlorw = ZZCK%(IJK_ZE[C(I),U)]M (30)
simulations (MCS) method. The method converges to the 9P = Opi Ipi

true expected value relatively slow, with a rate proportional
to the inverse of the square root YM of the number of
the realisation®. For a stificiently smooth solution of the
stochastic partial dierential equation problem, the Stochas-
tic Collocation Method (SCM)Xiu and Hesthaven2005

Xiu, 2010 converge:\s an o_rder of magnitude faste_r than MCS'The proposed stochastic robust formulation is demonstrated
The method doesn't require the actual construction of the SOz the desian of comoliant inverter mechanism. with de-
lution in the stochastic space, and the integrals for the expecéign domaingand boungary conditions shown in F,;nghe
tation Eg. .24) and the vanance Eq26) can b.e computed length of the design domain is chosen tolbe 300um and
by evaluating the solution of the deterministic problems atthe thickness ig = 7um. The elasticity modulus is set to
prescribed collocation pointg. The SCM method is based E. = 180 GPa Tﬁe il:mﬁt and the outgut springistiss is
on Lagrangian polynomial approximation in the stochasticsgt tok —40me m-1 and koy = 0.01 MNum™L, respec-
space. The residual of the interpolated solution is required tc{ively ;h_e driving l;orce isf —ué(_)rﬁN Theuinteiqratign of
. n — 0

be zero at selected collocation points, which can be Writter}he expectation and the variance is performed using Gaus-

as sian quadrature. The error tolerance for the Newton-Raphson
re(m),ud=0, k=1...M (26) Iterations is set to be 18 and the algorithm is stabilised us-

ing arc-length control. The Method of Moving Asymptotes
Each one of the above equations is equivalent to the statdMMA) ( Svanberg1987) is utilised for solving the optimi-
problem formulated for thresholgk. The integrals Eq.24) sation problem.

wherecy = ¢(p,nx). The gradientdic/dp; can be estimated
using the derivation presented in Sect. 2.2.



formulation. The result is shown in the middle of F@.
and is obtained with threshold projectigrn= 0.5. In order
to use the same settings as the ones for the robust formu-
lation, the volume constraint is imposed on design obtained
with threshold projection; = 0.3. The optimised topology
consists of elements and one node connected hinges. Small
| deviations from the design are shown on the figure as well.
The left design in Fig3 is obtained by erosion with Heav-
| | iside projection thresholg = 0.6. The mechanism is com-
L pletely disintegrated. The right design in F8&y.is obtained
by dilation with projection thresholg = 0.4. The mecha-
spond to Dirichlet BGp= 1.0, the dotted lines correspond to Neu- (r:nosrrr?ezICgfyssaﬁriéllﬂ]epixléhténtit:r::}!;gg;g%gfggg?ﬁ;g ?oer_
mann BCdp/dn=0, and the dashed lines correspond to Dirichlet S L
BC 5 =0.0. The length of the bold lines around the two springs is 7 = 0.5. The m'ean value of the deterministic Obje.Ct'_Ve fpr
L/50. nee U[0.3,0.7] is E[c] = —6.23 and the standard deviation is
STD|[c] =8.84. Forn €[0.4,0.6] the values are €] = -11.05
and STOc] =10.57. Clearly the performance of the design
] ) ] ] ] _is not robust with respect to erosion or dilation.

All designs are c_)btayned using a continuation schemg With  Three projections for an optimised design obtained by us-
respect to the projection paramege(see Eq6). The opti-  jn |arge displacement robust formulation are shown in#ig.
misations start wit = 1 and every 50 stepg,is increased 5 Fig.5, All of them perform similar for the selected
with 1. Wheng is equal to 16, the continuation scheme dou- iresholds. The mean fare [0.4,0.6] is E[c] = —9.58 and
bles it and the design process runs for 100 iterations. In Of'ihe standard deviation is STE = 346. Furthermore, in
der to decrease the computational cost, all steps except thgnirast to the non-robust deterministic design, the mecha-
last one g = 32) are performed with 2 Gaussian integration nism does not posses any hinges, and small erosion or di-

points. Such a numerical integration scheme is not able to apration does not disintegrate it. The penalty is smaller max-
proximate the standard deviation well, however based on nuj,4| displacement. The performance and the standard de-

merical simulations, it captures very well the mean responseyistion of the design fon € 1[0.3,0.7] is E[c] = -8.96 and
The initial steps are used only to obtain good initial guUesSgTP[c] = 5.80. The mean performance in the design inter-
for the final optimisation step, thus it is not necessary t0 esy ) js petter for the robust design compared to the one for
timate the moments of the response very precisely. The fingjhe geterministic case. In addition it is robust with respect
step of the optimisations(= 32) is performed with Kronod- 14 ergsjon or dilation, i.e. the standard deviation is smaller
Patterson quadrature using 31 points. The optimisation prosq, the design obtained by using the robust formulation. The
cess can be improved further by using the nested property Oﬁrojections shown in Figé are obtained with two integra-
the Kronod-Patterson integration points and estimating thg;,, points and the projections in Fifare obtained with 31.
error in the integration process. The robust designs are relrpq topology in the second case (FRydiffers slightly from
atively stif compared to the non-robust and small displace-ine one obtained with two integration points. The perfor-
ment theory can be used in the initial steps to decrease furthgf, 5 nce is improved slightly and the mairfidience is in the
the computational cost. Theftrence in the performance orogeq design which is thicker than the one shown in &ig.
for designs obtained by using large and small displacemen{yis hehaviour is expected, as more precise approximation

formulagion, in the examples presented here is between 15 % 14564 on integration points which are closer to the bounds
and 20 %. Therefore for smaglllinear analysis can save sig- st the threshold interval and therefore the sensitivities for

nificant amount of computational time. For laggthe design  highly eroded or highly dilated structures will have contri-
changes relatively slow and if the initial guess if far from the , tions to the average sensitivities given by E29)(and
optimal one, the optimisation would require large number oqu' (30). Threshold projections for a design obtained with
iteration steps. In order to avoid half width elements closepqader threshold intervaje [0.2,0.8] are shown in Fig6.
to the design domain borders (e.Wang et al. 2011, the  |,creasing the threshold interval decreases the performance
boundary conditions (BC) for the PDE filter (Fig) differ 4t e mechanism and increases its robustness with respect to
from the original formulationl{azarov and Sigmun@01).  eometry variations. The optimal threshold interval, as well
Dirichlet BC 5= 0 is imposed on two sides of the design do- 55 the selected threshold distribution, have to be tuned to a
main ango’= 1 is imposed around the input and the output of giyen production process. Increasidg makes the volume
the system. The B@ =1 implies solid material outside of nt ; :
: i — RHE : constraint inactive. For the selected formulation and bound-

the design domain ang="0 implies void. ary conditions, the optimisation finds topology with the high-

The first example is an optimised topology of the com- est possible flexibility rather than the highest possible force
pliant mechanism using the large displacement deterministi¢ransfer.

L/ZSI

Boundary conditions for filtering. The bold lines corre-
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Three threshold projections, eroded, intermediate and dilated, obtained with threghd@ds0.5 andrn = 0.4, respectively. The
design is obtained using large displacements deterministic optimisation formulation with threstfland volume constraint 30% of the
original volume imposed on the dilated projectiomat0.3. The objective i€ =-29.12um and the projection parameterds: 32.

A\

Three threshold projections, eroded, intermediate and dilated, obtained with threghdds0.5 andrn = 0.4, respectively. The
design is obtained using large displacements robust optimisation formulation with thrgsh®{§0.3,0.7] and volume constraint 30% of
the original volume imposed on the dilated projectiom at0.3. The objective is ] = —7.85um, the standard deviation is ST = 1.0,
the number of the integration points is 2, and the projection paramgter32. The objective expectation and standard deviation, computed
with 31 integration points Kronrod-Patterson rile afe]& —8.43 and STIjc] =5.83.

7 V7 Vi Vi

Three threshold projections, eroded, intermediate and dilated, obtained with threghdds0.5 andrn = 0.4, respectively. The
design is obtained using large displacements robust optimisation formulation with thrgsh@d§0.3,0.7] and volume constraint 30 % of
the original volume imposed on the dilated projection at0.3. The objective is ] = —8.96um, the standard deviation is ST& = 5.80,
the number of the integration points is 31, and the projection paramgter32.

™/ /S

Three threshold projections, eroded, intermediate and dilated, obtained with threghd@ds0.5 andrn = 0.4, respectively. The
design is obtained using large displacements robust optimisation formulation with thresh@df0.2,0.8] and volume constraint 30 % of
the original volume imposed on the dilated projectiory at0.2. The objective is k] = —6.12um, the standard deviation is ST& = 4.00,
the number of the integration points is 31, and the projection paramgter32.
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