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Abstract. The synthesis of compliant mechanisms yield optimized topologies that combine several stiff parts
with highly elastic flexure hinges. The hinges are often represented in finite element analysis by a single
node (one-node hinge) leaving doubts on the physical meaning as well as an uncertainty in the manufacturing
process.

To overcome this one-node hinge problem of optimized compliant mechanisms’ topologies, one-node hinges
need to be replaced by real flexure hinges providing desired deflection range and the ability to bear internal
loads without failure. Therefore, several common types of planar flexure hinges with different geometries are
characterized and categorized in this work providing a comprehensive guide with explicit analytical expres-
sions to replace one-node hinges effectively.

Analytical expressions on displacements, stresses, maximum elastic deformations, bending stiffness, center of
rotation and first natural frequencies are derived in this work. Numerical simulations and experimental stud-
ies are performed validating the analytical results. More importance is given to practice-oriented flexure hinge
types in terms of cost-saving manufacturability, i.e. circular notch type hinges and rectangular leaf type hinges.

1 Introduction

In order to create machine tools for small scale applications,
compliant mechanisms (CM) have become more popular in
the last years competing against rigid body systems con-
nected by conventional pin joints. CM are flexible, mono-
lithic structures that gain their motion from the (elastic) de-
formation of certain parts, so-called flexure hinges. CM
are potentially more accurate, better scalable, cleaner, less
noisy and most importantly more cost-saving in manufactur-
ing and maintenance. However, designing CM is more dif-
ficult and non-intuitive due to its inherent complex overall
deformation.

Several approaches have arisen to address this draw-
back by applying numerical topology design and op-
timization procedures. Relevant contributions have
been made by various research teams, in particular,
Ananthasuresh and Kota(1995), Frecker et al.(1997),
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Saxena and Ananthasuresh(2000), Howell (2001), Bruns
and Tortorelli(2001), Ansola et al.(2002), Bendsøe and Sig-
mund(2003), Mattson et al.(2004), Bendsøe and Sigmund
(2008). All these techniques lead in a systematic manner
to final, optimized topologies, i.e. an optimal distribution of
material over the design domain is obtained to meet the user-
specified motion requirements. As a key result, one-node
hinges (often called pseudo-hinges) with doubtful physical
meaning arise. As an example, a gripping mechanism and a
close up of a one-node hinge, obtained by a topology opti-
mization procedure without any regularization, is shown in
the upper box in Fig.1. Although some techniques exist
circumventing this critical issue, e.g.Poulsen(2002), Yoon
et al. (2004) or Sigmund(2009), a more consequent way is
to use the already known data from the finite element cal-
culation used in the topology optimization process. Since
nodal displacements for a given topology are known, the re-
quired deflection range and (internal) nodal forces are avail-
able without additional costs, as well. These information can
be used to replace one-node hinges with real flexure hinges
that meet the deflection and load bearing requirements as a
result of their specific shape, dimension and material data.
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Figure 1. Beneficial procedure for non-intuitive synthesis of com-
pliant mechanisms: Replacing artificial one-node hinges by appro-
priate flexure hinge types meeting specified, known hinge require-
ments.

Necessary mechanical properties of flexure hinges have
been investigated by a few authors.Paros and Weisbord
(1965) did pioneer work yielding approximate compliances
of flexure hinges decades ago.Smith(2000) provided in his
book a good background on flexure elements and some flex-
ure systems.Lobontiu (2003) analytically investigated flex-
ure hinges based on energy principles to calculate desired
properties at individual single points of hinges. Recently,
Raatz(2006) demonstrated in her dissertation the potential
of flexure hinges in compliant parallel mechanisms using su-
perelastic shape memory alloys.

In spite of the aforementioned research, the mechanical
behavior of flexure hinges is not yet fully characterized in
terms of the synthesis of compliant mechanisms and, thus,
leaving a gap between final, optimized topologies and appro-
priate flexure hinges. In order to bridge this gap, mechanical
properties of flexure hinges are derived and validated in this
work to provide a comprehensive guide from a topology op-
timization standpoint. The overall scheme is shown in Fig.1.

2 Objectives

For the synthesis of compliant mechanisms it is crucial to
characterize and categorize individual flexure hinges in terms
of their mechanical properties as a result of geometric shape
and material data. Therefore, relevant mechanical properties
are derived, such as:

– Displacementsu(x,z), w(x), to gain a better understand-
ing of the deformation of the whole flexure hinge.

– Mechanical stressesσx(x,z), τxz(x,z), to identify criti-
cal regions that are not apparent.

– Stiffnesskz and bending stiffnesscψ, to be able to
model flexure hinges appropriately by spring joints.

2 F.Dirksen: On mechanical properties of planar flexure hinges for topology optimization purposes of compliant mechanisms

hinges) with doubtful physical meaning arise. As an ex-
ample, a gripping mechanism and a close up of a one-node
hinge, obtained by a topology optimization procedure with-
out any regularization, is shown in the upper box in Fig. 1.
Although some techniques exist circumventing this critical
issue, e.g. Poulsen (2002), Yoon et al. (2004) or Sigmund
(2009), a more consequent way is to use the already known
data from the finite element calculation used in the topol-
ogy optimization process. Since nodal displacements for a
given topology are known, the required deflection range and
(internal) nodal forces are available without additional costs,
as well. These information can be used to replace one-node
hinges with real flexure hinges that meet the deflection and
load bearing requirements as a result of their specific shape,
dimension and material data.

Necessary mechanical properties of flexure hinges have
been investigated by a few authors. Paros and Weisbord
(1965) did pioneer work yielding approximate compliances
of flexure hinges decades ago. Smith (2000) provided in his
book a good background on flexure elements and some flex-
ure systems. Lobontiu (2003) analytically investigated flex-
ure hinges based on energy principles to calculate desired
properties at individual single points of hinges. Recently,
Raatz (2006) demonstrated in her dissertation the potential
of flexure hinges in compliant parallel mechanisms using su-
perelastic shape memory alloys.

In spite of the aforementioned research, the mechanical
behavior of flexure hinges is not yet fully characterized in
terms of the synthesis of compliant mechanisms and, thus,
leaving a gap between final, optimized topologies and appro-
priate flexure hinges. In order to bridge this gap, mechanical
properties of flexure hinges are derived and validated in this
work to provide a comprehensive guide from a topology op-
timization standpoint. The overall scheme is shown in Fig. 1.

2 Objectives

For the synthesis of compliant mechanisms it is crucial to
characterize and categorize individual flexure hinges in terms
of their mechanical properties as a result of geometric shape
and material data. Therefore, relevant mechanical properties
are derived, such as:

• Displacementsu(x,z), w(x), to gain a better under-
standing of the deformation of the whole flexure hinge.

• Mechanical stressesσx(x,z), τxz(x,z), to identify crit-
ical regions that are not apparent.

• Stiffness kz and bending stiffnesscψ, to be able to
model flexure hinges appropriately by spring joints.

• Center of rotation and its motion with deflection, to
identify and compensate a change of kinematics under
certain loading conditions.

Fig. 2. Planar, flexure hinge characterized by lengthl, depthb,
heightH, variable thicknesst(x)≥ ts and common pointsP1, P2,
P3 to resist external (nodal) loadsFx, Fz, My.

• Maximum (elastic) deformation, to identify deflection
limits and avoid material failure.

• Natural frequenciesf , to understand the behavior un-
der dynamic load conditions and to check the quality of
numerical simulations against experimental data.

Analytical expressions are derived using a standard x-z-
coordinate system, as shown in Fig. 2, by applying differ-
ent established theories and models. If possible, numerical
simulations and experimental data are used to validate the
analytical calculations.

In this work, planar flexure hinges of different geome-
tries are examined: rectangular, circular and parabolic flex-
ure hinges, denoted by superscriptsR, C, P respectively, are
used due to an easy manufacturability (R, C) and convenient
mathematical handling (R, P ). In particular, circular shape is
approximated by parabolic function using Taylor expansion
to avoid complicated expressions. The geometric approxima-
tion error was checked and is negligible in all loaded regions.

The geometry of flexure hinges is described by lengthl,
heightH and variable thicknesst(x)≥ ts as well as common
pointsP1(0, H

2 ), P2( l
2 , ts

2 ) andP3(l, H
2 ), as shown in Fig. 2.

The depth is set to uniformb = 10mm over the entire hinge,
which is sufficient for the majority of planar applications.

Key aspect for the following calculations is the geometric
shape given by the variable thicknesst(x) of each type of
flexure hinge

tR(x) = ts, (1)

tP (x) = 2
(
c1 +c2x+c3x

2
)

= H−
4x(H− ts)

l
+

4x2(H− ts)
l2

,
(2)

Figure 2. Planar, flexure hinge characterized by lengthl, depthb,
heightH, variable thicknesst(x)≥ ts and common pointsP1, P2, P3

to resist external (nodal) loadsFx, Fz, My.

– Center of rotation and its motion with deflection, to
identify and compensate a change of kinematics under
certain loading conditions.

– Maximum (elastic) deformation, to identify deflection
limits and avoid material failure.

– Natural frequencies f , to understand the behavior un-
der dynamic load conditions and to check the quality of
numerical simulations against experimental data.

Analytical expressions are derived using a standard x-z-
coordinate system, as shown in Fig.2, by applying differ-
ent established theories and models. If possible, numerical
simulations and experimental data are used to validate the
analytical calculations.

In this work, planar flexure hinges of different geome-
tries are examined: rectangular, circular and parabolic flex-
ure hinges, denoted by superscripts R, C, P respectively, are
used due to an easy manufacturability (R, C) and convenient
mathematical handling (R, P). In particular, circular shape is
approximated by parabolic function using Taylor expansion
to avoid complicated expressions. The geometric approxima-
tion error was checked and is negligible in all loaded regions.

The geometry of flexure hinges is described by lengthl,
heightH and variable thicknesst(x)≥ ts as well as common
points P1(0, H

2 ), P2( l
2 ,

ts
2 ) and P3(l, H

2 ), as shown in Fig.2.
The depth is set to uniformb= 10 mm over the entire hinge,
which is sufficient for the majority of planar applications.

Key aspect for the following calculations is the geometric
shape given by the variable thicknesst(x) of each type of
flexure hinge

tR(x)= ts, (1)
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tP(x)=2
(
c1+c2x+c3x2

)
=H−

4x(H− ts)
l

+
4x2(H− ts)

l2
,

(2)

tC(x)=2(zM+
√

r2− (x− xM)2)

=
H2− t2s+ l2

4(H− ts)
−

√(
l2+ (H− ts)2

)2

(4(H− ts))2
−

(l−2x)2

4
.

(3)

Parabolic and circular hinges are first written in a general
form denoted by polynomial coefficientsc1, c2, c3 and cir-
cle’s center coordinatesxM, zM and radiusr, respectively.
In the second lines of Eqs. (2) and (3), relevant geometric
boundary conditions

c1=
H
2
, c2=

−2(H− ts)
l

, c3=
2(H− ts)

l2
,

xM =
l
2
, zM =

ts

2
+ r, r =

l2+ (H− ts)2

4(H− ts)
,

(4)

are applied. Throughout this paper, the formulations
tR,P,C= tR,P,C(x,H,l,ts) are used to keep the solution adaptable
to specific problems.

In order to compare analytical results with numerical and
experimental data, a high strength aluminum wrought alloy
AlCu4Mg1 (EN AW 2024) that is often used in applications
of CM due to its high fatigue strength and high elastic strain,
is considered throughout this work. The relevant material
specifications are

E=70 GPa, ν=0.33, ρ=2790 kg m−3.

Although it remains unchanged throughout this publication,
the analytical formulas hold for other isotropic materials as
well.

3 Mechanical properties of flexure hinges

Relevant mechanical properties of individual flexure hinges
under quasi-static loading conditions are described and dis-
cussed in this section. Thetotal behavior of CM consisting of
severalflexure hinges is not described here and is subject to
further investigations. Since flexure hinges are mainly used
in CM to allow rotational motion, the main focus is on axial
bending caused by external nodal forcesFx, Fz and moment
My(x) as illustrated in Fig.2.

3.1 Moments of area

The areas of the cross sectionA(x) = bts(x), first moments
of areaSy(x,z) and second moments of areaIy(x) were cal-
culated and are listed in Table1 for all considered flexure
hinges using thicknessest(x) given in Eqs. (1)–(3). Note,
that the first moment of area is calculated fromz to t(x)/2.

The listed moments of area are used to calculate stresses
and displacements in the following sections.

Table 1. First and second moments of areas of rectangular (R),
circular (C) and parabolic (P) flexure hinges.

Sy(x,z)=
∫

A∗
z∗dA Iy(x)=

∫
A
z2dA

R b
8(t2s−z2) bt3s

12

C
b

((
zM+
√

r2−(x−xM )2
)2
−z2

)
2

b((x−xM )2+2r(zM−r))3

12r3

P
b
(
(Hl2+4(H−ts)(x2−lx))2

−4l4z2
)

8l4
b(H(l−2x)2+4ts(l−x)x)3

12l6

3.2 Stresses

The normal stressesσx(x,z)=
Fx

A(x) +
My(x)
Iy(x) z, and shear stresses

τxz=
Fz(x)Sy(x,z)

Iy(x)b depend on the external loads, moments of
area Sy(x,z), Iy(x,z) and depthb, where a linear-elastic,
isotropic stress-strain relation is assumed. Furthermore, the
normal stressesσy, σz and shear stressesτyz,τxy are assumed
to be negligible. Thus, the relevant normal stresses are

σR
x (z)=

1
bts

Fx+
12(x− l)z

bt3s
Fz+

12z
bt3s

My,

σP
x(x,z)=

l2

bh3
∗(x)

Fx+
12l6z

bh9
∗(x)

My+
12l6(x− l)z

bh9
∗(x)

Fz,

σC
x (x,z)=

1
2bh∗∗(x)

Fx+
3z(x− l)
2bh∗∗(x)

My+
3z

2bh∗∗(x)
Fz,

(5)

and shear stresses are

τR
xz(z)=

(
−6z2

bt3s
+

3
2bts

)
Fz,

τP
xz(x,z)=

3l2
(
−4l4z2+h6

∗(x)
)

2bh9
∗(x)

Fz, (6)

τC
xz(x,z)=

3
(
r2−z2− (x− xM)2+

(
zM−2

√
r2− (x− xM)2)

)
zM

)
4bh∗∗(x)

Fz,

where h3
∗(x) = H(l − 2x)2 + 4(l − x)xts and h∗∗(x) = zM −√

r2− (x− xM)2 are introduced to keep the expressions short.
Note, that any stress concentration effects are not yet taken
into account as they will later, in Sect.3.4.

3.3 Displacements

The displacementsu(x,z), w(x) due to external loadsFx, Fz,
My, as shown in Fig.2, are calculated. Later, they are used
to calculate stiffness and bending stiffness in Sect.3.5.

In order to calculate displacementsu(x,z), w(x) and bend-
ing slopeψ(x), different beam theories are supposed to be
applicable:Euler-Bernoulli’sbeam theory assumes that the
(shear-indeformable) cross section remains perpendicular to
the neutral axis andψ ≈ tanψ = −w′(x), which is sufficient
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for slender beams (e.g. rectangular flexure hinges) under-
going small and moderate bending angles.Elastica beam
theory lifts the latter limitation using the correct, non-linear
expression

w′′E(x)
(1+(w′E(x))2)3/2 = −

My(x)
EIy(x) and, thus, it also holds for

large bending angles.Timoshenko’sbeam theory holds for
small and moderate bending angles, as Bernoulli’s theory
does, but it takes the shear deformation caused by aris-
ing shear stresses into account. Usually, this has a minor
effect on the displacements considering “long” rectangular
hinges (t(x)� l). However, it cannot be neglected in the
case of “thick” hinges with an increased “effective” thickness
(teff = 1

l

∫
t(x)dx≈ l) compared to hinge lengthl, such as most

circular and parabolic hinges. Further details can be found in
standard literature; particularly the influence of large defor-
mations and shear stresses are described inLove (1920) and
Wang et al.(2000), respectively.

In this work, Timoshenko’s beam theory is used to calcu-
late the required displacements, since flexure hinges do not
undergo large rotations and shear deformation cannot be ne-
glected. The displacement expressions are

w′(x)=−ψ(x)+
Fz

αSGA(x)
,

ψ′(x)=
My(x)

EIy(x)
,

u(x,z)= zψ(x)+
∫ x

0

Fx

EA(x∗)
dx∗.

(7)

Here, the anglesw′(x) andψ(x) differ by an additional shear
deformation term, whereαs is a shear correction factor com-
pensating non-uniform shear stressesτxs in the cross section.
Furthermore, the displacementu(x,z) is expanded by an ad-
ditional axial displacement term caused by axial forcesFx.

Based on Eq. (7), the displacement expressions can be cal-
culated for different types of flexure hinges. As an example,
the displacements for a rectangular flexure hinge based on
Timoshenko’s theory become

wR(x)=
12(1+ν)t2sx+30lx2−10x3

5Ebt3s
Fz−

6x2

Ebt3s
My,

ψR(x)=−
12lx−6x2

Ebt3s
Fz+

12x

Ebt3s
My,

uR(x,z)=
x

Ebts
Fx−

(12lx−6x2)z

Ebt3s
Fz+

12xz

Ebt3s
My.

(8)

The derived displacements expressions are used in Sect.3.5
to calculate stiffness and bending stiffness of different flexure
hinges. Note, that anti-clastic bending effects are neglected,
as suggested byConway and Nickola(1965).

3.4 Maximum elastic deformation

Flexure hinges can undergo smaller rotational deformation
than conventional pin joints that have practically no limits.
The maximum elastic deformation of flexure hinges can be
estimated by combining the occurring stresses derived above
to an equivalent stressσV which has to be lower than the
yield stress Rp0.2: σV ≤Rp0.2. Among various established

yield criteria, von-Mises yield criterionσV =

√
σ2

x+3τ2
xz is

mainly used for ductile materials and, thus, applicable to the
majority of materials in compliant mechanisms.

Static load cases and quasi-static motions are considered;
fatigue effects and durability are not yet fully investigated
and will be subject of future investigations and publications.

Maximum normal stressσx,max can be found at the thinnest
cross sectionx= x(t= ts) at the upper or lower edgez=±ts/2.
Whereas maximum shear stressesτxz,max occur at thecenter
of the thinnest cross sectionx= x(t = ts) at z= 0 and is zero
at the edgesτxz(z=±ts/2)=0. Typically in applications con-
sidered here, normal stresses are more dominant than shear
stresses suggesting to neglect shear stress. However, maxi-
mum shear stresses are taken into account in the equivalent
stress due to safety reasons in this work. Therefore, equiva-
lent stresses become

σV,max=

√(
σmax,xKtx+σmax,bKtb

)2
+3τ2

max

=

√(
Fx

bts
Ktx+

6My(x)

bt2s
Ktb

)2

+3

(
Fz

2bts

)2

,

(9)

where stress concentration factorsKtx andKtb for axial and
bending loads (second indicesx, b) are introduced.

For rectangular leaf type hinges, with uniform thickness
t(x)= ts= const. , the critical section is solely determined by
the maximum bending momentMR

y,max(x= 0)=My− lFz. In
contrast to this, for parabolic and circular notch type hinges,
the critical section is determined by the thinnest cross sec-
tion ts, as well, leading to a critical section very close to
the thinnest cross section atx≈ l/2, where the bending mo-
ment becomesMC,P

y,max(x≈
l
2) = My−

l
2Fz. Thus, the maxi-

mum equivalent stresses are

σR
V,max=

√(
Fx

bts
KR

tx+
6(My− lFz)

bt2s
KR

tb

)2

+3

(
Fz

2bts

)2

,

σC,P
V,max=

√√ Fx

bts
KC,P

tx +
6(My−

l
2Fz)

bt2s
KC,P

tb

2

+3

(
Fz

2bts

)2

.

(10)

The stress concentration factors for rectangular leaf type
hingesKR

tx, KR
tb strongly depend on the corner radius and

can be found inPilkey and Pilkey(2008). For circular and
parabolic hinges, stress concentration factors can be approx-
imated followingHaibach(2006)
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Figure 3. Stress concentration at flexure hinges due to notch effect.

KC,P
tx =1+

[
0.1

( r
t∗

)
+0.7

(
1+

ts

2r

)2( ts

2r

)−3

+0.13
( ts

2r

)( ts

2r
+

t∗

r

)−1( t∗

r

)−1.25−
1
2

,

KC,P
tb =1+

[
0.08

( r
t∗

)0.66
+2.2

(
1+

ts

2r

)2.25( ts

2r

)−3.375

+0.2
( ts

2r

)( ts

2r
+

t∗

r

)−1( t
r

)−1.33
−

1
2

,

(11)

wheret∗ = H−ts
2 and the radii of curvaturer are

rC=
l2+ (H− ts)2)

4(H− ts)
= const. (12)

and

rP

(
x=

l
2

)
=

l2

4(H− ts)
, (13)

for circular and parabolic hinges as shown in Fig.3. Here,
the geometric properties given in Eq. (2) and corresponding
derivativest′(x), t′′(x) were applied to calculate the radius of

a parabolarP(x)=
∣∣∣∣ (1+t′(x)2)3/2

t′′(x)

∣∣∣∣.
Finally, the equivalent stresses can be calculated using

Eq. (9) for known (nodal) loads and all considered types of
flexure hinges considered in this work.

As an example, Table2 illustrates the maximum elastic
deformationw(l) of differently-sized parabolic and circular
flexure hinges based on given geometric parameter: length
l, height H = 10 mm, depthb= 10 mm and smallest thick-
nessts. It can be noted, that circular flexure hinges provide a
larger deflection range than parabolic counterparts maintain-
ing the aforementioned common material pointsP1, P2, P3.

Table 2. Maximum elastic deformation of circular (C) and
parabolic (P) flexure hinges undergoing bending due to pure shear
forceFz.

Shape l ts Ktx Ktb Fz w(l) w′(l)
[–] [mm] [mm] [–] [–] [N] [ µm] [rad]

C 8 2 1.119 1.051 47.6 52.0 −0.013
P 8 2 1.281 1.133 44.1 36.1 −0.009

C 9 1 1.040 1.015 12.2 93.2 −0.020
P 9 1 1.102 1.043 11.8 65.8 −0.015

C 9.5 0.5 1.014 1.004 3.1 145.9 −0.031
P 9.5 0.5 1.037 1.013 3.0 103.4 −0.022

Generally, the occurring stresses depend directly on the
radii of curvature, i.e. smaller radii of curvature result in
higher stress concentration factors leading to higher stresses.
This is not a surprising result, however Eqs. (9)–(13) provide
the reader with analytical expressions to calculate the range
of elastic deformation of flexure hinges in compliant mecha-
nisms prior to any modeling or manufacturing efforts.

3.5 Stiffness and bending stiffness

The stiffnesskx, kz and, in particular, the bending stiffnesscψ
of a flexure hinge is important for modeling of compliant
mechanisms using discrete spring joints or reduced finite ele-
ment models. They are calculated analytically and compared
to experimental data for all flexure hinge types considered

in this work. The loadsF =
(
Fz,My,Fx

)T
and displacements

u = (w(x),ψ(x),u(x,z))T are coupled by the compliance ex-
pressionsu = N F as given in Eq. (8). For modeling and
topology optimization purposes, it is beneficial to convert
this relation to

Ku= F. (14)

The stiffness matrixK represents all mechanical properties
(for quasi-static problems) that are crucial for modeling pur-
poses, topology optimization problems and (embedded) fi-
nite element calculations using efficient, reduced models.

Generally, these expressions are quite large, especially, for
parabolic and circular flexure hinges. Due to conciseness, the
stiffness matrix of a rectangular flexure hinge is presented
solely. However, the calculation of stiffness matrices for
parabolic and circular hinges is similar and straightforward.
Using the derived relations between loads and corresponding
displacement from Eq. (8) yield

K =Ebt3s


5

l(12(1+ν)t2s+5l2)
5

24(1+ν)t2s+10l2
0

5l
2l(12(1+ν)t2s+5l2)

10l2+6(1+ν)t2s
l(12(1+ν)t2s+5l2) 0

0 0 1
lt2

s

. (15)

To compare these analytical calculations with experimen-
tal data with superposed external loads, scalar values
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Table 3. Bending stiffnesscψ for rectangular (R), circular (C) and
parabolic (P) flexure hinges: analytical calculations and experimen-
tal results.

Shape l ts cψ,ana cψ,exp error

[–] [mm] [mm] [ Nm
rad ] [ Nm

rad ] [%]

P 8 2 199.37 180.06 10.72
C 8 2 143.64 133.71 7.43
R 8 2 58.33 61.18 −4.66

for bending stiffness cψ are desirable. Therefore, the
stiffness matrix is decomposed (diagonalized) intoKD =

diag(λ1,λ2,λ3), whereλ1,λ2,λ3 are the eigenvalues ofK . The
resulting eigenvectorsb1,b2,b3 are used to form the orthog-
onal transformation matrixT = T(b1,b2,b3) which is negli-
gibly close to identityI (norm(T− I ) ≤ 10−4) for every case
considered in this work. Thus, Eq. (14) can be rewritten as λ1= kz 0 0

0 λ2= cψ 0
0 0 λ3= kx

︸                                 ︷︷                                 ︸
KD

 w
ψ
u

︸︷︷︸
u

≈

 Fz

My

Fx

︸  ︷︷  ︸
F

(16)

yielding a desired, decoupled relation among loads, stiffness
and deflection.

The bending stiffnesscψ for rectangular (R), circular (C)
and parabolic (P) flexure hinges are listed in Table3. Here,
the analytical calculations differ from the experimental re-
sults by a maximum relative error≤ 11 %, which is accept-
able, considering manufacturing imperfections in z-direction
and its enormous effect on the stiffness as described in detail
in Ryu and Gweon(1997). Therefore, the aforementioned
analytical expressions represent a good prediction for super-
posed, application-oriented loading conditions.

3.6 Center of rotation

The center of rotation and its motion with deflection of bod-
ies connected by flexure hinges are crucial for a correct mod-
eling of compliant mechanisms. Ignoring the particular cen-
ter of rotation of flexure hinges can lead to parasitic motion
or failure of the entire mechanism due to unwanted behavior,
e.g. snap through effects.

The center of rotation is usually considered for rigid-body-
motions. However, many parts of a compliant mechanism
that are connected by flexure hinges are very stiff and can
be treated in a similar way. In this work, overall center of
rotationP01

eff refers to a fixed point considering undeformed
(0) and maximum elastically deformed state (1) as illustrated
in Fig. 4, whereas its motion refers to the herpolhode, i.e.
motion of instantaneous center of rotation with deflection.

In order to calculate the center of rotation of a rigid body
attached to the flexure hinge, the position of two single points
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Fig. 4. Determination of instantaneous center of rotationP 01,(i) of
a flexure hinge
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and deflection.
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the analytical calculations differ from the experimental re-
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and its enormous effect on the stiffness as described in detail
in Ryu and Gweon (1997). Therefore, the aforementioned
analytical expressions represent a good prediction for super-
posed, application-oriented loading conditions.

3.6 Center of rotation

The center of rotation and its motion with deflection of bod-
ies connected by flexure hinges are crucial for a correct mod-
eling of compliant mechanisms. Ignoring the particular cen-
ter of rotation of flexure hinges can lead to parasitic motion
or failure of the entire mechanism due to unwanted behavior,
e.g. snap through effects.

The center of rotation is usually considered for rigid-body-
motions. However, many parts of a compliant mechanism
that are connected by flexure hinges are very stiff and can
be treated in a similar way. In this work, overall center of
rotationP 01

eff refers to a fixed point considering undeformed
(0) and maximum elastically deformed state (1) as illustrated
in Fig. 4, whereas its motion refers to the herpolhode, i.e.
motion of instantaneous center of rotation with deflection.

In order to calculate the center of rotation of a rigid body
attached to the flexure hinge, the position of two single points
PA, PB and the corresponding displacementsuA = u(l,0),
wA = w(l,0) and uB = u(l,−H/2) are considered. This
yields an overall center of rotation

Table 4. Overall center of rotation for rectangular (R), circular (C)
and parabolic (P ) flexurehinges

Shape l ts Fz My P 01
eff,Δx P 01

eff,z

[−] [mm] [mm] [N ] [Nm] [mm] [mm]

R 8 2 35 -1.260 -0.1479 0.0499
C 8 2 35 -1.260 -0.0657 0.0191
P 8 2 35 -1.260 -0.0615 0.0143

R 9 1 8 -0.288 -0.1607 0.1168
C 9 1 8 -0.288 -0.0142 0.0307
P 9 1 8 -0.288 -0.0070 0.0222

P 01
eff =

1
2





wA

uA−uB
H +uA +uB +2l

uA

uB−uA
H− uAuB

wA
+wA



, (17)

which holds for all types of flexure hinges.
The motion of the (instantaneous) center of rotation can

be calculated considering an infinite number of intermedi-
ate steps between undeformed and maximum elastically de-
formed step. Therefore, the motion paths:

S
(i)
A = P A +

(
u

(i)
A

w
(i)
A

)

, S
(i)
B = P B +

(
u

(i)
B

w
(i)
B

)

, (18)

the tangent vectors:

T
(i)
A = K̇A =

(
u̇

(i)
A

ẇ
(i)
A

)

, T
(i)
B = K̇B =

(
u̇

(i)
B

ẇ
(i)
B

)

,

(19)
and the corresponding normal vectors:

N
(i)
A =

(
ẇ

(i)
A

−u̇
(i)
A

)

, N
(i)
B =

(
ẇ

(i)
B

−u̇
(i)
B

)

, (20)

need to be calculated first. Determining the point of intersec-
tion of N

(i)
A andN

(i)
B leads to the center of rotation for all

intermediate steps, i.e. the desired motion with deflection:

P 01,(i) =






2(uA+l)u̇A−2(uB+l)u̇B+HẇA

2(u̇A−u̇B)

wA− 2(uA−uB)u̇B+HẇA

2(u̇A−u̇B)ẇA
u̇A




, (21)

The effective centers of rotation for rectangular (R), cir-
cular (C) and parabolic (P ) flexure hinges are illustrated in
Table 4 for two different loading conditions. Here, thex-
coordinates refer to the center of the flexure hinge denoted
by Δx. It can be noted, that the effective center of rotation
is shifted to(−x,+z) direction for all flexure hinges for the
given load case. The motion of the center of rotation for rect-
angular flexure hinges is clearly larger due to the deflection
of the entire hinge lengthl, whereas it is very small for cir-
cular and parabolic flexure hinges. Thus, it is crucial to con-
sider the center of rotation and its motion with deflection for

Figure 4. Determination of instantaneous center of rotation P01,(i)

of a flexure hinge.
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the tangent vectors:
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and the corresponding normal vectors:

N(i)
A =

 ẇ(i)
A

−u̇(i)
A

, N(i)
B =
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need to be calculated first. Determining the point of inter-
section ofN(i)

A andN(i)
B leads to the center of rotation for all

intermediate steps, i.e. the desired motion with deflection:

P01,(i) =


2(uA+l)u̇A−2(uB+l)u̇B+HẇA
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Table 4. Overall center of rotation for rectangular (R), circular (C)
and parabolic (P) flexure hinges.

Shape l ts Fz My P01
eff,∆x P01

eff,z

[–] [mm] [mm] [N] [Nm] [mm] [mm]

R 8 2 35 −1.260 −0.1479 0.0499
C 8 2 35 −1.260 −0.0657 0.0191
P 8 2 35 −1.260 −0.0615 0.0143

R 9 1 8 −0.288 −0.1607 0.1168
C 9 1 8 −0.288 −0.0142 0.0307
P 9 1 8 −0.288 −0.0070 0.0222

The effective centers of rotation for rectangular (R), cir-
cular (C) and parabolic (P) flexure hinges are illustrated in
Table 4 for two different loading conditions. Here, thex-
coordinates refer to the center of the flexure hinge denoted
by ∆x. It can be noted, that the effective center of rotation
is shifted to (−x,+z) direction for all flexure hinges for the
given load case. The motion of the center of rotation for
rectangular flexure hinges is clearly larger due to the deflec-
tion of the entire hinge lengthl, whereas it is very small for
circular and parabolic flexure hinges. Thus, it is crucial to
consider the center of rotation and its motion with deflection
for rectangular flexure hinges in order to ensure an appropri-
ate modeling.

3.7 Natural frequency

The natural frequency of a system consisting of a rigid body
connected to a flexure hinge as shown in Fig.5 (left) is rele-
vant for compliant mechanisms under dynamic loading con-
ditions. In addition, it is a good quality measure comparing
analytical, numerical and experimental studies.

The natural frequencies are first calculated analytically us-
ing the aforementioned Timoshenko’s beam theory. Extend-
ing Eq. (7) to a dynamic state yield the differential equations:

ρA(x)ẅ(x)−
(
GA∗(x)(w′(x)+ψ)

)′
=q,

ρIy(x)ψ̈− (EIy(x)ψ′)′+GA∗(w
′+ψ)=0.

(22)

Applying standard boundary conditions at fixed endx=0

w=0,

ψ=0, (23)

and free endx= l

EIyψ
′ =0,

GA∗(w
′+ψ)=0, (24)

the differential Eq. (22) can be solved. However, solving
these equations analytically for a variable, unspecified thick-

Table 5. Natural frequencies for rectangular (R), circular (C) and
parabolic (P) flexure hinges connected to a rigid body (H = 10 mm,
L=50 mm,b=10 mm).

l ts fana fnum fexp f dm
exp

[mm] [mm] [Hz] [Hz] [Hz] [Hz]

R 9.47 1.18 146.2 (7.3 %) 144.0 (5.7 %) 136.2 141.0 (3.9 %)
C 9.09 0.99 218.6 (8.3 %) 219.7 (7.8 %) 238.4 242.5 (1.7 %)
P 9.09 1.07 284.8 (0.2 %) 274.0 (4.0 %) 285.3 288.5 (1.1 %)

R 8.42 2.28 408.4 (10.9 %) 400.9 (8.9 %) 368.1 370.0 (0.9 %)
C 8.08 2.00 534.9 (2.9 %) 524.4 (4.8 %) 550.9 541.6 (1.7 %)
P 8.03 2.13 676.9 (6.0 %) 643.3 (0.8 %) 638.4 636.4 (0.3 %)
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rectangular flexure hinges in order to ensure an appropriate
modeling.

3.7 Natural frequency

The natural frequency of a system consisting of a rigid body
connected to a flexure hinge as shown in Fig. 5 (left) is rele-
vant for compliant mechanisms under dynamic loading con-
ditions. In addition, it is a good quality measure comparing
analytical, numerical and experimental studies.

The natural frequencies are first calculated analytically us-
ing the aforementioned Timoshenko’s beam theory. Extend-
ing Eq. (7) to a dynamic state yield the differential equations:

ρA(x)ẅ(x)−(GA∗(x)(w′(x)+ψ))′ = q,

ρIy(x)ψ̈−(EIy(x)ψ′)′+GA∗(w
′+ψ)= 0.

(22)

Applying standard boundary conditions at fixed endx = 0

w =0, ψ =0, (23)

and free endx = l

EIyψ′ =0, GA∗(w
′+ψ)= 0, (24)

the differential Eqs. (22) can be solved. However, solving
these equations analytically for a variable, unspecified thick-
nesst(x) 6= const. is not always possible. Therefore, a nu-
merical approach, namely the Rayleigh quotient

ω2
1 =

maxEP

maxEk
(25)

is chosen, where the first natural circular frequencyω1 is
approximated by the ratio of maximum values of potential
and kinetic energiesEp and Ek. Following Tabarrok and
Karnopp (1967) yield

ω2
1 =

∫ l

0
EIy(x)Ψ′(x)2 +GA∗(x)(W ′(x)+Ψ(x))2dx

ρ
∫ l

0
A(x)W (x)2 +Iy(x)Ψ(x)2dx

,

(26)
where displacement and bending angle are described by ap-
propriate test functionsΨ(x) andW (x). In order to deter-
mineΨ(x) andW (x), the displacements and bending angle

Fig. 5. Continuous flexure hinge (left) and equivalent discrete tor-
sion spring model (right)

occuring from a uniform transverse loadq0 with a result-
ing bending momentMy(x) = − 1

2q0(l−x)2, as suggested
in Rao (2007), are used.

Table 5 lists the analytically, numerically and experimen-
tally determined first natural frequenciesfana, fnum, fexp,
fdm

exp for different flexure hinges connected to a rigid body,
as shown in Fig. 5 (left). The analytical calculationsfana

are based on (26) using Timoshenko’s beam theory. The nu-
merical calculationsfnum are obtained by a numerical modal
analysis using the commercial software package Abaqus 6.9.
The experimental datafexp is gathered by a experimental
modal analysis using non-contact laser scanning vibrometer
system. The frequenciesfdm

exp are calculated using the stan-
dard relation

fdm
exp =

1
2π

√
cψ,exp

Im
, (27)

with mass inertiaIm, that holds for discrete models of a tor-
sional (bending vibration, as illustrated in Fig. 5 (right).

It can be noted, that the analytical calculation agrees well
with the numerical results on all types of flexure hinges.
Compared to the experimental data, a relative error less than
11% can be noted. Due to imperfections in the manufactur-
ing process of the specimen, this error seems acceptable to
the authors; cf. Ryu and Gweon (1997). Comparing the ex-
perimental datafexp andfdm

exp with each other, a very small
relative error of less than4% can be noted. This implies, that
flexure hinges can be modeled by discrete torsional springs
as illustrated in Fig. 5, using the bending stiffnesscψ calcu-
lated in Sect. 3.5.

4 Conclusion: Benefits for the synthesis of compliant
mechanisms

In this work, planar flexure hinges are investigated in terms of
their application in the synthesis of compliant mechanisms,
where one-node hinges occur as an artificial artefact of many
topology optimization methods. In order to replace these
pseudo-hinges by flexure hinges efficiently, a characteriza-
tion of different types of flexure hinges was done.

Relevant mechanical properties, such as displacement and
bending angle, mechanical stresses, bending stiffness, cen-
ter of rotation, maximum elastic deformation and first natu-
ral frequencies were derived analytically and agree well with
numerical and experimental data.

Figure 5. Continuous flexure hinge (left) and equivalent discrete
torsion spring model (right).

nesst(x), const. is not always possible. Therefore, a numer-
ical approach, namely the Rayleigh quotient

ω2
1=

max Ep

max Ek
(25)

is chosen, where the first natural circular frequencyω1 is ap-
proximated by the ratio of maximum values of potential and
kinetic energiesEp andEk. FollowingTabarrok and Karnopp
(1967) yield
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∫ l

0
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ρ
∫ l

0
A(x)W(x)2+ Iy(x)Ψ(x)2dx

, (26)

where displacement and bending angle are described by ap-
propriate test functionsΨ(x) and W(x). In order to deter-
mineΨ(x) andW(x), the displacements and bending angle
occuring from a uniform transverse loadq0 with a resulting
bending momentMy(x) = − 1

2q0(l − x)2, as suggested inRao
(2007), are used.

Table5 lists the analytically, numerically and experimen-
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exp
for different flexure hinges connected to a rigid body, as
shown in Fig.5 (left). The analytical calculationsfana are
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merical calculationsfnum are obtained by a numerical modal
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with mass inertiaIm, that holds for discrete models of a tor-
sional (bending vibration, as illustrated in Fig.5 (right).

It can be noted, that the analytical calculation agrees well
with the numerical results on all types of flexure hinges.
Compared to the experimental data, a relative error less than
11 % can be noted. Due to imperfections in the manufac-
turing process of the specimen, this error seems acceptable
to the authors; cf.Ryu and Gweon(1997). Comparing the
experimental datafexp and f dm

exp with each other, a very small
relative error of less than 4 % can be noted. This implies, that
flexure hinges can be modeled by discrete torsional springs
as illustrated in Fig.5, using the bending stiffnesscψ calcu-
lated in Sect.3.5.

4 Conclusion: benefits for the synthesis of
compliant mechanisms

In this work, planar flexure hinges are investigated in terms of
their application in the synthesis of compliant mechanisms,
where one-node hinges occur as an artificial artefact of many
topology optimization methods. In order to replace these
pseudo-hinges by flexure hinges efficiently, a characteriza-
tion of different types of flexure hinges was done.

Relevant mechanical properties, such as displacement and
bending angle, mechanical stresses, bending stiffness, cen-
ter of rotation, maximum elastic deformation and first natu-
ral frequencies were derived analytically and agree well with
numerical and experimental data.

The analytical expressions were derived based on Timo-
shenko’s beam theory taking into account shear deformation
of flexure hinges. In order to calculate an elastic deflection
range, von-Mises yield criterion was chosen. Numerical sim-
ulations were performed using commercial software package
Abaqus 6.9. Experimental results of bending stiffness and
natural frequencies were gathered using a tension test ma-
chine and a non-contact scanning laser vibrometer system.

More importance was given to practice-oriented flexure
hinge types in terms of cost-saving manufacturability, i.e. cir-
cular notch type hinges and rectangular leaf type hinges, as
well as well-customizable parabolic hinges. Comparing dif-
ferent types of flexure hinges of similar dimensions, the fol-
lowing conclusion can be drawn:

Rectangular geometry of flexure hinges yield low bending
stiffness and very high rotational deflection, while the loca-
tion of the center of rotation and its motion with deflection
needs to be taken into account.

Circular geometry of flexure hinges yields moderate bend-
ing stiffness and high rotational deflection, while the center
of rotation remains close to the center point of the hinge.

Parabolic geometry of flexure hinges yield high bending
stiffness and low rotational deflection, while the center of ro-
tation remains very close to the center point of the hinge.

Some of these conclusions are not surprising, however the
key results of this work are the analytical expressions that
enable the reader:

– to calculate the relevant mechanical properties of flex-
ure hinges explicitly and

– to select the appropriate type of flexure hinge based
on the (known) nodal loads and displacements resulting
from the synthesis of compliant mechanism,

prior to any modeling or manufacturing efforts. Thus, the
synthesis and manufacturing process of compliant mecha-
nisms can be accelerated.
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