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Abstract. Servo actuators are widely used in fields such as aerospace, manufacturing, and robotics. Nonlinear
factors, including friction, backlash, and transmission error, significantly affect their servo performance. Tra-
ditional modeling methods for these nonlinear factors rely on simplified analytical models, which struggle to
meet the increasing demands for dynamic model accuracy in control systems. Therefore, this study proposes a
data-driven modeling method for nonlinear factors. A back propagation (BP) neural network is employed to per-
form nonlinear regression analysis of friction and backlash. Based on order spectrum analysis and the principle
of dominant order invariance, a multi-order harmonic superposition model is established to describe transmis-
sion error. The proposed modeling method has been experimentally validated and demonstrates significantly
improved accuracy in nonlinear modeling. Compared with traditional models, the developed data-driven model
achieves a goodness of fit exceeding 0.92 with the actual system, an average improvement of over 7 %. More-
over, it accurately captures velocity fluctuations caused by transmission errors, velocity dead zones induced by
friction, dynamic backlash variations under load, and uneven friction torque at the same velocity. The proposed
data-driven dynamic modeling method can provide valuable insights for accurate modeling of servo systems and
controller design.

1 Introduction

Servo actuators equipped with precision reducers such as ro-
tary vector (RV) reducers and harmonic reducers as trans-
mission devices are widely used in fields like aerospace,
weapons, robot systems, and manufacturing. Currently, this
type of mechanical system is evolving towards higher preci-
sion, dynamics, and reliability, and there is significant focus
on enhancing the control precision of servo actuators (Zhen
et al., 2021). Accurately describing the dynamic characteris-
tics of servo actuators is fundamental to addressing these is-
sues. However, due to the intricacies of nonlinear factors like
friction and backlash, the accuracy of the nonlinear models
produced by traditional modeling techniques falls short of
meeting the demands of the control system. This has long-

term adverse impacts on the design of high-precision con-
trollers for servo actuators. Consequently, there is an urgent
need to utilize novel principles and methods to achieve more
precise dynamic modeling of servo actuators.

Dynamic modeling serves as a crucial approach for ad-
dressing practical challenges such as high-precision con-
troller design, state monitoring, and safety control (Chen et
al., 2023; Wang et al., 2024; Shi et al., 2025; Xie et al., 2025).
Owing to the coupling effects of internal nonlinear factors
within transmission components and the system state, the
system input and output exhibit highly complex nonlinear
dynamic behavior (Margielewicz et al., 2019). Accurately
capturing the time-varying nonlinear characteristics of trans-
mission components poses a significant challenge in dynamic
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modeling. The analytical model of nonlinear factors provides
vital support for the dynamic model and plays a pivotal role
in enhancing model accuracy. However, given the complex-
ity and feasibility of the model, several simplifications have
been made to the nonlinear modeling. For instance, friction
is simplified as a Stribeck curve that solely depends on speed
(Wang et al., 2024; Guo et al., 2026), backlash is simplified
as a dead zone with a fixed size (Sun et al., 2021), and trans-
mission error is simplified as a combination of third-order
harmonics (Guo et al., 2023). The simplified modeling ap-
proach, which relies on analytical equations to approximate
nonlinear factors, struggles to accurately capture the dynamic
evolution of nonlinear characteristics in response to changes
in the system state.

Currently, data-driven methods based on artificial neural
network algorithms have gradually emerged as a research
trend for describing nonlinear factors (Brunton and Kutz,
2019). Scholars both domestically and internationally have
applied this approach to model the nonlinear characteris-
tics of various systems, including maglev vehicles (Liu et
al., 2025), microwave devices (Liu et al., 2024), autonomous
vehicles (Cheng et al., 2025), industrial robots (Yang et
al., 2025), two-wheeled robots (Khan et al., 2022), and
robotic manipulators (Polydoros et al., 2015; Ren and Ben-
Tzvi, 2020). These studies have accurately predicted output
responses under different input conditions. The data-driven
approach has been verified to possess strong nonlinear mod-
eling capabilities. However, the aforementioned modeling
methods treat the research object as a black box and rely
heavily on the comprehensiveness of experimental data for
accurate prediction (Rane et al., 2019).

Adding prior knowledge to the black box model to form a
gray box or hybrid model effectively enhances the extended
attributes of the model, allowing for easier creation of data-
driven models (Hashemi et al., 2023). A hybrid model is a
data-driven modeling approach that focuses solely on non-
linear factors within a system, based on its dynamic char-
acteristics. In terms of modeling the backlash and transmis-
sion error of transmission components, Wang et al. (2015)
applied a back propagation (BP) neural network to describe
the relationship between backlash and spindle position in es-
tablishing the backlash model in a ball screw kinematic pair
and accurately predicted the forward backlash and the reverse
backlash. Additionally, Li et al. (2020) considered the non-
linear relationship in which backlash becomes larger with an
increase in running time on this basis and used a deep be-
lief network to establish the mapping relationship between
backlash, spindle position, and running time, realizing the hi-
erarchical diagnosis and prediction of backlash. Sakaridis et
al. (2023) established a symmetry-preserving neural network
model for static transmission error of spur gear, with an av-
erage prediction error of 0.075 % beyond the training data,
realizing high-accuracy prediction of transmission error.

In the nonlinear modeling of friction based on neural net-
work algorithms, friction is reduced to a function of velocity

in systems such as industrial robots (Hu et al., 2025), indus-
trial robotic joints (Trinh et al., 2023), and geared transmis-
sions (Hirose and Tajima, 2017), and different neural net-
work algorithms are used to model the static nonlinearity
of friction. Tu et al. (2019) considered the relationship be-
tween friction and heavy torque when modeling the friction
of robotic arm joints, and they applied a BP neural network
to establish a mapping relationship between friction, veloc-
ity, and heavy torque. Baş and Karabacak (2023a, b) mod-
eled the friction of a cam mechanism and plain bearing re-
spectively using three machine learning algorithms – namely
an artificial neural network, a support vector machine, and
Gaussian process regression analysis – in which the effects
of speed and load on friction were taken into consideration,
and proved that the machine-learning-based model can effec-
tively estimate changes in friction torque.

The research mentioned above has primarily focused on
nonlinear factors that are challenging to model in transmis-
sion systems. By utilizing data-driven methods, nonlinear
models such as friction and backlash can be captured ef-
fectively. In terms of model accuracy and prediction per-
formance, these data-driven modeling approaches have been
shown to possess significant potential in replacing traditional
modeling techniques. There are still two issues in the data-
driven modeling of servo actuators: first, only the most sig-
nificant nonlinear factors are considered when modeling the
system; second, the model structure is oversimplified when
modeling these nonlinear factors. Therefore, there remains
considerable room for improving the accuracy of data-driven
models for servo actuators.

In this paper, a hybrid modeling method for servo actuators
is developed based on the data-driven method. The method
integrates nonlinear factor models of friction, backlash, and
transmission error into the linear mechanism model of the
system. A BP neural network is utilized to establish the map-
ping relationships between friction, angular velocity, and an-
gular position, as well as between backlash, load torque, and
angular position. Furthermore, based on the order-ratio spec-
tral analysis of transmission error and the principle of invari-
ance of the main order, a harmonic superposition model of
transmission error is established. Finally, to demonstrate the
effectiveness of the proposed method, a specific servo actu-
ator is selected as the research object, and simulations and
experiments are conducted to verify the accuracy and versa-
tility of the proposed modeling method.

The article is organized as follows. Section 2 proposes a
data-driven servo actuator modeling method. Section 3 con-
structs a nonlinear factor model for the servo actuator. Sec-
tion 4 verifies the accuracy of the model through a simulation
and an experiment. Section 5 concludes the research work.
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2 Dynamic modeling method

The dynamic modeling method for servo actuators pro-
posed in this paper comprises two main components. Firstly,
based on the mechanism of electric–magnetic force–motion
changes within the actuator, linear features reflecting the
force–displacement relationship are extracted to establish a
linear mechanism model of the servo actuator. Subsequently,
by analyzing the nonlinear factors that significantly impact
servo performance and utilizing data-driven methods to in-
vestigate the mapping relationship between nonlinear fac-
tors, such as friction, backlash, and transmission error, with
system state, a nonlinear factor model of servo actuators is
established.

2.1 Linear mechanism modeling

The linear mechanism model is derived by analyzing the
mechanisms of electromagnetic conversion, force balance,
and displacement changes within the actuator. This model
describes the operating state of the system using mathemat-
ical tools, such as differential equations and transfer func-
tions, to reflect the linear characteristics of the actuator, and
it also reflects the dynamic and kinematic characteristics of
most servo mechanisms. The response model of the armature
current of the motor to the control command is approximated
using a proportional coefficient, while the stiffness coeffi-
cient is used to characterize the connection stiffness from the
output end of the motor to the load end. Therefore, the servo
actuator can be equivalently represented as a dual-inertia dy-
namic model, and the differential equation of motion is ac-
cordingly derived as

Jmθ̈m = Tm− Tout
Jlθ̈l = Tl
Tm =KaKmUa

Tl =Keq

(
θm
N
− θl

)
Tout =

Tl
N

, (1)

where Jm and Jl are the motor rotor inertia and equivalent
load inertia, θm and θl are the angular position of the motor
and load, Tm is the motor output torque, Tl is the torque trans-
mitted to the load by the system, N is the transmission ratio
of the reducer, Keq is the equivalent stiffness coefficient of
the system, Tout is the load torque on the motor, Ua is the in-
put voltage of the motor, Ka is the voltage conversion factor
of the driver, and Km is the motor moment coefficient.

Equation (1) can be further simplified as Jmθ̈m =KaKmUa−Keq

(
θm
N
− θl

)
/N

Jlθ̈l =Keq

(
θm
N
− θl

) . (2)

By presenting the above equation in block diagram form,
the linear mechanism model of the servo actuator can be ob-
tained.

2.2 Friction and backlash modeling

In response to the shortcomings of the Stribeck model and
other dynamic friction models, an implicit function fT is
used to describe the friction torque based on its correlation
with angular velocity and position.

Tf = fT
(
θl, θ̇l

)
sgn

(
θ̇l
)

(3)

In response to the limitations of the backlash model, based
on the relationship between backlash, load torque, and angu-
lar position, the nonlinear variation in backlash is represented
by an implicit function fH.

θh = fH (θl,TL) (4)

The above friction model and backlash model are both in
the form of implicit functions. The BP neural network al-
gorithm is used for nonlinear regression analysis. The pro-
cess of modeling and predicting forward friction using the
BP neural network is shown in Fig. 1.

Based on the characteristics of the friction model and the
backlash model, a BP neural network with two inputs, one
output, and one hidden layer is applied. The input layer nodes
are x1 and x2, the output layer node is ŷ, the number of hid-
den layer nodes is m, the threshold of the hidden layer is α,
the threshold of the output layer is β, the connection weight
between the input layer and the hidden layer is w, and the
connection weight between the hidden layer and the output
layer is v.

After processing the input data x1 and x2 through the hid-
den layer, the output hj of the hidden layer can be obtained
as

hj = f
(
w1jx1+w2jx2−αj

)
, j = 1,2, . . .m, (5)

where f (·) is the hidden layer excitation function and de-
faults to the tansig function.

The output layer output ŷ is

ŷ = g

(
m∑
j=1

hjvj −β

)
, (6)

where g(·) is the hidden layer excitation function and defaults
to the purelin function.

The loss function is represented by the mean square error
(MSE) between the output layer output and the test data, and
the loss function L is

L=
1
2

(
Tf− ŷ

)2
. (7)

Assuming the learning factor is η, according to the guiding
principle of the gradient descent method, iteratively updating
the connection weightsw and v, the following expression can
be obtained: wij (k+ 1)= wij (k)− η

∂L

∂wij
, i = 1,2, j = 1,2, . . .,m

vj (k+ 1)= vj (k)− η ∂L
∂vj
, j = 1,2, . . .,m

. (8)
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Figure 1. BP neural network modeling and prediction. Forward friction as an example.

By updating the thresholds using the same method, the up-
dated expressions for thresholds α and β can be obtained:{
αj (k+ 1)= αj (k)− η ∂L

∂αj
, j = 1,2, . . .,m

β(k+ 1)= β(k)− η ∂L
∂β

. (9)

After updating the weights and thresholds each time, we
calculate the loss function. When the output of the loss func-
tion meets expectations or reaches the upper limit of the iter-
ation, the iteration calculation of the BP neural network ends.
If the output of the loss function does not meet expectations,
it can be retrained until the result is satisfactory.

2.3 Transmission error modeling

Through the pre-testing and order-ratio spectral analysis of
transmission error, the relationship between transmission er-
ror and the angular velocity and angular position is described
by waveform reconstruction, and the periodic fluctuation in
transmission error is expressed by

θe =

n∑
i=1

A(i)cos
(

2πfte(i)
θl

θ̇l
+φ(i)

)
, (10)

where θe is the transmission error, fte is the frequency of
transmission error in the angular position domain, A and
φ are the amplitude and phase of transmission error at fre-
quency fte respectively, and n is the number of transmission
error principal components.

The following commutation relationship exists between
the angular position domain frequency fte and the order E:

E =
2πfte

θ̇l
. (11)

By associating Eqs. (10) and (11), the transmission error
model can be obtained:

θe =

n∑
i=1

A(i)cos(E(i)θl+φ(i)) . (12)

By substituting the order E for the angular position do-
main frequency fte, the transmission error model does not
contain the angular velocity term of the system, avoiding the
influence of velocity noise on the transmission error model.

By modeling the linear mechanism and nonlinear factors
such as friction, backlash, and transmission error, the dy-
namic model diagram of the servo actuator is obtained as
shown in Fig. 2.

3 Construction of nonlinear factor model

This paper takes a servo actuator as an example and builds
the experimental platform shown in Fig. 3. The servo ac-
tuator is composed of a permanent magnet synchronous
motor (model: ASM80B1007-30M) and an RV reducer
(model: ZKRV-20E-161-B). The main components of the
experimental platform include an encoder (model: RON-
786C), a torque sensor (model: DYN-200), a planetary
reducer (model: WAB090-70), and a load motor (model:
ASM80B1007-30M). The servo actuator and encoder are
connected using the same steel shaft to ensure coaxiality.
The load motor, planetary reducer, and torque sensor form
a torque closed-loop system, which serves as a load simula-
tion device for the servo actuator. A rigid coupling is used to
connect the load simulator and the servo actuator.

The nonlinear model is established using the experimental
modeling method. Based on the testing methods of friction
torque and transmission error, discrete data, such as friction
torque, backlash, and transmission error of the servo actu-
ator, are obtained through testing. After preprocessing, the
nonlinear factor model can be constructed using the model-
ing method proposed in Sect. 2, and the model accuracy can
be verified.
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Figure 2. Block diagram of servo actuator dynamic model.

Figure 3. Experimental platform.

3.1 Construction of friction model

In the velocity closed-loop mode, the servo actuator is driven
to rotate smoothly for one full revolution in both forward and
reverse directions from the zero position at different veloci-
ties, allowing measurement of the friction torque associated
with angular velocity and angular position. The relationship
between the friction, velocity, and position is shown in Fig. 4.

The experimental data under the same velocity command
are stored in the form of column vectors, and the column vec-
tor datasets under different velocity commands are sequen-
tially combined to form column vector datasets for friction
torque, angular position, and angular velocity. Resampling
is applied to ensure that the length of the column vectors is
consistent across different velocity commands. The resulting
datasets are used as inputs and outputs of the BP neural net-
work for training and validation of the friction model. The
number of nodes in the hidden layer is set to 30, the learn-
ing factor is 0.01, the target error is 10−12, and the maximum
number of iterations is 1000.

The MSE, mean absolute error (MAE), and mean absolute
percentage error (MAPE) are used as error indicators for the
friction model, and the results are shown in Table 1.

Figure 4. The experimental results of friction.

Overall, the validation error of friction torque is very
small, distributed within ±1 N m, and the validation error of
reverse friction torque is smaller than that of forward friction
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Table 1. Error indicators of the friction model.

Error indicators Forward friction Reverse friction

MSE/(N2 m2) 0.02673 0.01206
MAE/(N m) 0.12266 0.08257
MAPE/% 0.32293 0.18159

Table 2. Error indicators of the backlash model.

Error indicators Backlash

MSE/(arcmin2) 0.00003
MAE/arcmin 0.00387
MAPE/% 0.26261

torque. The MAPE of the validation error of the forward fric-
tion model is about 0.32 %, and the MAPE of the validation
error of the reverse friction model is about 0.18 %, indicat-
ing that the difference between the predicted value and the
actual value is small, and the friction model exhibits good
performance. The angular velocity and angular position are
further refined to verify the convergence of the established
friction model at non-test points, and the prediction results of
the frictional torque are shown in Fig. 5. The friction at the
non-test point continues the relationship between the friction
at the test point and the angular velocity and angular position.

3.2 Construction of backlash model

A constant-load torque is applied to the servo actuator, and
the bidirectional transmission error of the servo actuator is
tested under different load torques in the velocity closed-loop
mode. The difference between the forward transmission error
and the reverse transmission error is the backlash of the servo
actuator. The relationship between backlash, load torque, and
angular position is shown in Fig. 6.

An order spectrum analysis is conducted on the backlash,
whose spectral components are the same as the transmission
error. To avoid the mutual cancellation of backlash and trans-
mission error due to spectral duplication, the backlash is fil-
tered, and only the low-frequency components are retained,
as shown in the filter results represented by the solid red line
in Fig. 6. The experimental data of backlash, load torque, and
angular position are stored as column vectors and resampled
at equal angular intervals to ensure that the three column vec-
tors have the same length. When modeling backlash using the
BP neural network, the input layer nodes are the load torque
and angular position, the filtered backlash is the output, and
other parameter settings are consistent with the friction mod-
eling process. The backlash model is trained and validated,
with the error indicators shown in Table 2.

The validation error of the backlash is within
±0.04 arcmin, and the MAPE of the validation results
is about 0.26 %, indicating that the backlash model has

good fitting performance. The angular position and load
torque are further refined to verify the convergence of the
established backlash model at non-test points. The predicted
results of backlash are shown in Fig. 7. The backlash model
fully describes the mapping relationship between backlash,
angular position, and load torque. When the load torque is
lower, the backlash at different angular positions becomes
more uneven.

3.3 Construction of transmission error model

In the velocity closed-loop mode, the transmission error of
the servo actuator was tested at different velocities, and the
relationship between transmission error and angular position
is shown in Fig. 8. The order spectrum analysis results of
transmission error are shown in Fig. 9.

According to the test results and order spectrum analysis
results of transmission error, the components of transmission
error are mainly concentrated in the 40th order and its mul-
tiples, which are related to the periodic meshing of internal
gears in precision reducers. By extracting the principal com-
ponents, order, and phase, the transmission error model of
the servo actuator can be constructed according to Eq. (12).
The transmission error model is a linear combination of tens
of harmonics, preserving the high-frequency components of
transmission error. The comparison between the transmission
error model and experimental results is shown in Fig. 10. The
validation error is basically within ±0.1 arcmin. The MSE
of the forward transmission error validation result is only
0.0007314 arcmin2, and the MSE of the reverse transmission
error validation result is only 0.0016247 arcmin2. This indi-
cates that the transmission error model basically coincides
with the experimental results, truly describing the transmis-
sion error of the servo actuator.

4 Dynamic model validation

After completing the construction of three nonlinear factor
models, along with the linear mechanism model, they col-
lectively form the dynamic model of the servo actuator, re-
ferred to as the data model. Compared with a traditional
model composed of a linear model, the Stribeck model, a
dead-zone model, and a second-order harmonic transmission
error model, the data model maximally describes the non-
linear characteristics of the system, which will improve the
modeling accuracy of the system to a great extent.

The same velocity controller is employed in both the ac-
tual system and the simulation model. The velocity controller
adopts a proportional–integral structure, and the detailed de-
sign process of these controllers is elaborated on in Jiang et
al. (2021), where Kp = 16.09 and Ki = 505.38.

By consulting the product manuals of the servo motor, pre-
cision reducer, and encoder, the experimental system param-
eters shown in Table 3 are obtained. Based on the established
servo actuator experimental platform, time-domain response
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Figure 5. The prediction results of forward friction torque (a) and reverse friction torque (b).

Figure 6. Experimental and filter results of backlash.

experiments were conducted on the data model, traditional
model, and actual system in open-loop, velocity closed-loop,
and position closed-loop modes to verify the accuracy of the
established data model.

4.1 Open-loop response comparison

In the open-loop mode of the system, the same sinusoidal or
square excitation signal is input into the actual system and
the simulation model, and the angular velocity of the actual
system and the simulation model are recorded and compared
to verify the accuracy of the simulation model. Under the
excitation of a 1.5 V 1 Hz sine signal, the angular velocity

Figure 7. Prediction results of backlash.

and the velocity error between the simulation model and the
actual system are shown in Fig. 11a. The velocity response
under the excitation of a 1.8 V 0.5 Hz square signal is shown
in Fig. 11b.

The angular velocity of the data model is closer to that
of the actual system, and the velocity error is obviously
smaller than that of the traditional model. The time-domain
responses of the sinusoidal and square signals with different
amplitudes and frequencies are also tested, and the closeness
between the simulation model and the actual system is quan-
titatively characterized by the goodness of fit in nonlinear
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Table 3. The experimental system parameters.

Parameters Value

Voltage conversion factor Ka (A V−1) 0.49
Motor moment coefficient Km (N m A−1) 0.4878
Motor rotor inertia Jm (kg m2) 1.14× 10−4

Equivalent load inertia Jl (kg m2) 5.76
Transmission ratio N 161
Equivalent stiffness Keq (N m rad−1) 5× 105

Number of input encoder lines ninc 2500
Input encoder subdivision factor pinc 4
Number of output encoder lines nh 36 000
Output encoder subdivision factor ph 256

Figure 8. The experimental results of transmission error.

regression analysis. The goodness of fit R is calculated as

R = 1−

√√√√∑(
yi − ŷi

)2∑
y2
i

. (13)

The closer R is to 1, the closer the fitted data ŷ are to the
original data y. Table 4 shows the results of the comparison
of the goodness of fit for the angular response.

Due to the use of simplified analytical models for nonlin-
ear factors such as friction, backlash, and transmission error
in the traditional model, it is not possible to maintain a high
goodness of fit over a large range of angular velocity. Com-
pared to the traditional model, the goodness of fit of the sine
signal time-domain response in the data model reaches an
average of 0.921, an average improvement of 7.3 %, and the
goodness of fit of the square signal time-domain response
reaches an average of 0.956, an average improvement of
7.1 %.

Figure 9. The order spectrum analysis results of transmission error.

4.2 Closed-loop response comparison

Under the velocity closed-loop mode, the excitation signal is
a sinusoidal signal of 10° s−1 1 Hz, and the angular veloc-
ity of the traditional model, the data model, and the actual
system are recorded and compared. The comparison of the
angular velocity is shown in Fig. 12, which shows that the
angular velocity of the traditional model and the data model
is basically the same as that of the actual system, and both
have the phenomenon of a “dead zone” when the angular ve-
locity passes zero. From the partially enlarged image, the an-
gular velocity of the traditional model is relatively smooth,
which is inconsistent with the actual system, while the an-
gular velocity of the data model and the actual system has
better consistency and truly reflects the velocity fluctuation
phenomenon caused by the transmission error.

To compare the accuracy of the friction model, under
a constant-velocity command of 3° s−1, the motor output
torque of the traditional model, data model, and actual sys-
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Figure 10. Comparison of experimental results with (a) forward transmission error model and (b) reverse transmission error model.

Figure 11. Comparison of time domain response under sine voltage signal (a) and square voltage signal (b).

tem is recorded and compared during one reciprocating cy-
cle over the 360° range of the system. The relationship be-
tween the motor output torque and the system angular po-
sition is shown in Fig. 13. The change trend of the motor
output torque in the data model is basically consistent with
the actual system, while the motor output torque of the tra-
ditional model basically remains constant, which is very dif-
ferent from the actual system. The relationship between the
motor output torque and the angular position reflects the non-
uniformity of the friction torque at the output of the sys-
tem, and compared with the Stribeck model, the friction data
model retains this detailed feature, which more realistically
reflects the actual system.

In order to compare the effects of different backlash mod-
els on the angular position response of the system, backlash
tests are conducted under different load conditions accord-
ing to the definition of backlash. In the position closed-loop

mode, a constant load is applied to the output of the system,
and the excitation signal is a position ramp signal with a con-
stant slope. When the angular position of the system reaches
a certain angle and then reverses the motion, the angular po-
sitions of the traditional model, the data model, and the actual
system are recorded and compared. The comparison results
of the angular position response under different load condi-
tions are shown in Fig. 14.

The backlash tests are conducted under 0, 30, and 60 N m
load torque to compare the effect of the backlash model on
the angular position response of the system. The actual sys-
tem test values are plotted as solid blue lines, and as the load
torque increases, the larger the angular hysteresis and the
slower the angular position response as the system changes
from forward to reverse rotation. The backlash model with a
fixed value is used in the traditional model, ignoring the phe-
nomenon of increasing backlash caused by the load inside
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Table 4. Comparison of goodness of fit for open-loop response.

Sine signal Goodness of fit R Square signal Goodness of fit R

Traditional model Data model Traditional model Data model

1.5 V 1 Hz 0.884 0.912 1.5 V 1 Hz 0.878 0.953
1.6 V 1 Hz 0.844 0.933 1.6 V 1 Hz 0.883 0.941
1.7 V 1 Hz 0.898 0.947 1.7 V 1 Hz 0.856 0.957
1.8 V 1 Hz 0.861 0.962 1.8 V 1 Hz 0.893 0.946
1.5 V 0.5 Hz 0.787 0.851 1.5 V 0.5 Hz 0.881 0.936
1.6 V 0.5 Hz 0.886 0.940 1.6 V 0.5 Hz 0.929 0.978
1.7 V 0.5 Hz 0.783 0.877 1.7 V 0.5 Hz 0.913 0.961
1.8 V 0.5 Hz 0.883 0.945 1.8 V 0.5 Hz 0.866 0.973

Figure 12. Comparison of velocity closed-loop response.

the transmission parts. The angular position response curve
of the traditional model is shown as a solid green line, and
the angular position curves under different load conditions
largely overlap, which is a big difference from the actual
system. The data model establishes the relationship between
backlash and load torque and dynamically adjusts the size of
backlash with the change in load torque. The angular posi-
tion response curve of the data model, marked by the solid
red line, has a high degree of agreement with the actual sys-
tem, which accurately reflects the angular position response
of the actual system.

5 Conclusions

Based on data-driven theories and methods, this study suc-
cessfully constructs a servo actuator dynamic model com-
posed of a linear mechanistic model and a nonlinear factor
model. The linear mechanistic model is established through
an in-depth analysis of the internal electromagnetic force and

Figure 13. Comparison of motor output torque.

Figure 14. Comparison of angular position response.
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motion variation mechanisms within the actuator. To address
nonlinear factors such as friction, backlash, and transmis-
sion error, a data-driven model for friction and backlash is
developed based on a BP neural network, while a transmis-
sion error model is built using order spectrum analysis and
the principle of dominant order invariance. A series of ex-
perimental validations demonstrate the significant effective-
ness of the proposed modeling method. Compared with tra-
ditional models, the data-driven model achieves a goodness
of fit with the actual system exceeding 0.92, representing an
average improvement of over 7 %. The model not only ac-
curately reflects velocity fluctuations caused by transmission
errors, velocity dead zones induced by friction, and dynamic
changes in backlash under varying loads, but also captures
uneven friction torque at the same velocity, providing a valu-
able reference for precise modeling and controller design of
servo actuators.

Looking ahead to future research, several promising di-
rections and challenges remain to be explored. Firstly, more
complex nonlinear factors should be incorporated to more
comprehensively describe the dynamic characteristics of
servo actuators. Secondly, further investigation into the time-
varying nature of these nonlinear factors is essential, as ac-
curately capturing their temporal evolution is crucial for
enhancing model accuracy. Moreover, combining the data-
driven model with advanced methods such as online identifi-
cation and online gradient descent to achieve online updates
of the data-driven model, thereby sustainably ensuring the
accuracy of the data-driven model under different operating
conditions, is also an important direction for future research.
At the same time, how to reduce the computational complex-
ity of the model and improve its real-time performance is one
of the challenges that need to be overcome.
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