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Abstract. Traditional spherical robots usually adopt a fixed spherical shell structure, making it difficult to adapt
to complex terrains such as steep slopes, obstacles, or uneven ground. Moreover, most traditional spherical robots
rely on pendulum or wheel-type driving, and this single driving mode limits their applicability in diverse envi-
ronments such as slippery or soft ground. This paper proposes a multi-driving-mode spherical mobile robot that
integrates pendulum driving, a spatial folding–unfolding mechanism, and a rotor mechanism. It has a scaling
and deforming function, breaks through the limitations of the traditional fixed-spherical-shell design, and im-
proves terrain adaptability. It adopts single-pendulum driving and is supplemented by a rotor and wheel-train
mechanism to optimize linear and steering performance. A dynamic model is established based on the Newton–
Euler method, the limit parameters for obstacle crossing are studied, and design principles are proposed. The
rationality of the mechanical system and the performance influence of key components are verified by Adams
simulation. The tests of the experimental prototype show that the robot has excellent terrain adaptability and
versatility in complex environments, providing new ideas for the development of mobile robot technology.

1 Introduction

Traditional spherical robots, characterized by fixed spheri-
cal shell structures, are primarily suitable for flat terrains but
face significant challenges on steep slopes, uneven surfaces,
and obstacle-rich environments (Diouf et al., 2024; Sagsoz
and Eray, 2023; Armour and Vincent, 2006). Most rely on a
single-mode driving mechanism, such as pendulum or wheel
actuation, which constrains their adaptability on slippery or
deformable ground (Zhan and Li, 2019; Wei et al., 2019;
Dwaracherla et al., 2019). These limitations highlight the ur-
gent need for spherical robots with enhanced environmental
adaptability and multimodal locomotion capabilities (Thoe-
sen and Marvi, 2021).

Recent research has attempted to address these issues
through modularity, reconfigurable structures, and deploy-
able polyhedral mechanisms inspired by origami principles
(Zhang et al., 2023; Gu et al., 2024; Wang et al., 2025). For
instance, Hoberman-type expandable trusses and radially re-
ciprocating polyhedral frameworks have demonstrated geo-
metric adaptability (Cai et al., 2013; Wei et al., 2014). How-

ever, these designs either lack integration with multi-mode
actuation systems or fail to maintain stable locomotion un-
der dynamic conditions (Müller, 2021; Matei et al., 2022).
Furthermore, prior reconfigurable mechanisms seldom incor-
porated coordinated control of deformation, locomotion, and
stability, leaving gaps in the application of such concepts to
mobile robotics (Meng et al., 2023; Yang et al., 2021; Li et
al., 2017; Shiota and Saitoh, 2024; Jing and Zheng, 2020).

To overcome these challenges, this paper proposes a novel
self-reconfigurable polyhedral spherical robot (RPSR) that
integrates pendulum-based actuation, a deployable polyhe-
dral shell, and a rotor-assisted mechanism. The unique inno-
vations include the following:

1. a Hoberman-inspired folding–unfolding mechanism en-
abling rapid structural scaling and terrain adaptability;

2. a hybrid actuation system combining pendulum propul-
sion with rotor-assisted stabilization and gear–rack-
based deformation;
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3. a dynamic model established via the Newton–Euler
method and validated through Adams–MATLAB co-
simulation, clarifying motion stability and obstacle-
crossing limits.

Building on these innovations, this study systematically
investigates the RPSR’s structural design, dynamic model-
ing, simulation, and experimental validation, thereby provid-
ing a new framework for adaptive spherical robot design. The
remainder of this paper is organized as follows. Section 1
presents the overall structural design of the robot, including
the reconfigurable polyhedral shell and the drive modules.
Section 2 develops the dynamic model of the robot and ana-
lyzes its motion characteristics under different working con-
ditions. Section 3 provides multi-body dynamic simulations
in Adams to validate the theoretical models. Section 4 de-
scribes the prototype fabrication and experimental verifica-
tion, focusing on locomotion stability and obstacle-crossing
performance. Finally, Sect. 5 concludes the paper by summa-
rizing the main findings and discussing limitations and future
research directions.

2 Overall structural design of the robot

Figure 1 shows the overall mechanism of the RPSR, which
is primarily composed of five components: the polyhedral
shell mechanism that directly contacts the ground to per-
form rolling motion with a single-degree-of-freedom (DOF)
deployable deformation function, the rotating-main-shaft
mechanism that adjusts the RPSR’s center-of-mass position
to generate forward thrust, the pendulum drive mechanism
that rotates around an axis perpendicular to the direction of
the rotating main shaft for steering, the rotor mechanism that
increases the normal contact force between the RPSR and the
ground to assist in linear motion and steering while improv-
ing rolling stability, and the telescopic drive mechanism that
generates synchronous thrust on both sides along the direc-
tion of the rotating main shaft to deform the reconfigurable
polyhedral shell.

2.1 Design of reconfigurable polyhedron mechanism
based on Hoberman sphere

The design method of the reconfigurable polyhedral mecha-
nism usually inserts modular rods into the vertices, edges, or
faces of the polyhedral base to construct a closed spatial ge-
ometric structure. According to the deformation form, com-
mon geometric structures include Hoberman sphere motion
and radial reciprocating motion, which are divided into reg-
ular and semi-regular polyhedral structures according to the
shape of the polyhedron (Wei et al., 2014). Considering the
isotropic characteristics of the spherical structure, this paper
designs a reconfigurable spherical-shell mechanism based on
a regular polyhedron. The design ideas of the reconfigurable
polyhedral mechanism are as follows:

1. Select a regular polyhedron and find the symmetry axes
through its centroid–vertex and centroid–face center
pairs.

2. Design the angle element according to the angle of the
axis.

3. Insert the angle element into the vertices of the polyhe-
dron and their adjacent faces in sequence.

4. Merge the repeatedly inserted transaction elements.

As shown in Fig. 2, the angled element connects the cou-
pler A′Q1D

′ and the coupler B ′Q1C
′ atQ1 through a hinge,

and the coupler C′Q2F
′ and the rod D′Q2E

′ are connected
at Q2 by a hinge. In the deformed state, the two pairs of an-
gled elements are connected at C′ and D′ by revolute joints.
As the mechanism deforms, points A′ and B ′ translate along
line OA′; points E′ and F ′ translate along line OE′; points
Q1 and Q2 translate along lines OQ1 and OQ2, respec-
tively; and points C′ and D′ translate along line OC′. To en-
able the angled elements to realize the folding and unfolding
function, the length and angle of each coupler must meet the
following constraints:
IA′Q1 = n1IB ′Q1
IC′Q1 = n1ID′Q1
IC′Q2 = n2ID′Q2
IF ′Q2 = n2IF ′Q2

, (1)

{
6 A′Q1D

′
= 6 B ′Q1C

′
= α′

6 C′Q2F
′
= 6 D′Q2E

′
= β ′

, (2)

{
φ1+α

′
= π

φ2+β
′
= π

, (3)

where n1 and n2 are the proportional coefficients of the rod
length.

The lengths of the rods and the angles are shown in Fig. 2.
Since the spatial folding–unfolding mechanism studied in
this topic is to realize rolling motion, the symmetry of the
mechanism should be considered during design. At this time,
if n1= n2= 1, the angle element mechanism can be transi-
tioned from Fig. 2a to Fig. 2b, and the following relationship
exists:

C′Q2
1−C

′Q2
2 =O

′Q2
1−O

′Q2
2

=

(
tan2φ′1− tan2φ′2

)
OT 2

1 . (4)

Once the size parameters of the mechanism are defined, the
difference between the squared lengths of the coupler links
C′Q1 and C′Q2 remains constant. Additionally, φ′1 and φ′2
are fixed constants, whereasOO ′ acts as a variable parameter
during folding and unfolding. To ensure the validity of the
equation, the following constraints must be satisfied:{
φ′1 = φ

′

2
C′Q1 = C

′Q2
. (5)
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Figure 1. The overall structure of the reconfigurable polyhedral spherical robot.

Figure 2. Structural diagram of two pairs of angular elements. (a) Unfolded configuration. (b) Folded configuration.

Based on the geometric constraints of the mechanism,
1A′Q1B

′∼=1C′Q1D
′. In 1A′OQ1, by the sine theorem,

A′Q1 · sin 6 Q1A
′O =OQ1 · sinφ′′1 . Combining the congru-

ence relation and spatial geometric correlation of the polyhe-
dral shell, sin 6 Q1A

′O = sin 6 Q1D
′C′= sin 6 Q1D

′O. Ap-
plying the sine theorem to 1Q1OD

′ yields OQ1 ·

sinφ′1=Q1D
′
· sin 6 Q1D

′O. If A′Q1=Q1D
′ is satisfied,

φ′1=φ
′′

1 is derived through equation substitution and simpli-
fication, which clarifies the angular coordination law of key
hinge points and provides a theoretical basis for mechanism
control and optimization.

As shown in Fig. 3, a single-degree-of-freedom planar
folding–unfolding mechanism is composed of two pairs of
symmetrically arranged angled elements and three pairs of
inner- and outer-ring sliders, and the folding–unfolding de-
formation of the mechanism can be achieved through only
one drive. The extension lines of the hinge points A1B1 and
C′1D

′

1 intersect at point O1. The angled elements intersect
at Q1. During the folding–unfolding deformation, Q1 is al-
ways located on the straight line Q1O1, and the hinge points

A1,B1 andC′1,D′1 perform reciprocating linear motion along
the straight lines A1O1 and C′1O1, respectively. Similarly,
the design of the angled element on the right is the same
as above. Its deformation mode is as follows: when the dis-
tance between the inner- and outer-ring sliders decreases, the
mechanism expands and unfolds and vice versa (the mecha-
nism shrinks and folds). At the same time, due to the motion
transmission characteristics of the angled-element group, the
change in the distance between any adjacent inner- and outer-
ring sliders is consistent, and the installation position of the
drive device can be flexibly selected according to design re-
quirements.

To ensure the isotropy of the deployable mechanism dur-
ing deformation, the dimensional parameters of the angu-
lated elements should satisfy the following constraint con-
ditions during the design process:

{
O1T

′2
2 +OT

′2
2 =OO

2
1

arctan O1T
′

2
OT ′2
= 6 O1OT

′

2
. (6)
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Figure 3. A three-dimensional structural diagram of angular ele-
ments.

Equation (6) contains four design variables (O1T
′

2, O2T
′

2,
O1Q1, and 6 O1OT

′

2) and two constraint equations, result-
ing in only two independent parameters. To fully determine
all dimensional parameters of the deployable mechanism,
any two variables can be assigned, and the remaining pa-
rameters can be calculated accordingly. It is noteworthy that,
when φ= 2φ′1, the mechanism achieves a higher scaling ra-
tio, and the line O1Q1 coincides with the angle bisector of
6 A1O1C

′

1. From the formula φ+α′=π , the second con-
straint equation can be simplified to

arctan
O1T

′

2
OT ′2

=
φ1

2
=
π −α′

2
. (7)

In the design process of the angular-element group, the size
of α′ can be determined first. Therefore, by arbitrarily de-
signing one of the edges of 1OOT ′, the single-degree-of-
freedom planar-deployable mechanism can be completely
obtained through calculation.

(1) OT ′2 = a0,OT
′

2 = a0/cot
(
α′/2

)
,

OO1 =

√
a2

0
(
1+ cot2 (α′/2)

)
/cot2 (α′/2),

(2) OT ′2 = b0,OT
′

1 = b0 cot
(
α′/2

)
,

OC1 =

√
h2

0
(
1+ cot2 (α′/2)

)
,

(3) OO1 = c0,OT
′

2 = c0/

√
1+ cot2 (α′/2),

OO1 =

√
c2

0cot2 (α′/2)/
(
1+ cot2 (α′/2)

)
.

Based on the above analysis, different types of angular-
element groups can be designed. As shown in Fig. 4, there
are two spatial structural forms, namely the three-angular-
element group and the four-angular-element group. Each
branch chain has two pairs of angular elements, which have
a larger folding ratio compared to a single pair of angular
elements.

Figure 4. Angular-element groups. (a) Triangle-based mechanism
with three angled elements. (b) Quadrangle-based mechanism with
four angled elements.

Figure 5. Polyhedral-spherical-shell mechanism in unfolded state.

By further connecting 16 quadrangular-element groups in
specific parallel and perpendicular configurations and incor-
porating 8 triangular-element groups at the interstitial posi-
tions of the quadrangular framework, a spatial framework
for a polyhedral spherical shell can be constructed. As illus-
trated in Fig. 5, the three-dimensional model demonstrates
the polyhedral-spherical-shell mechanism in its deployed
state. Figure 5 shows the three-dimensional model of the
polyhedral-spherical-shell mechanism in the unfolded state.

2.2 Design of drive modules and deformation units

The deformation units collaborate with the drive modules
through a key design principle: they maintain the stability
of the center of mass during reconfiguration by employing
structural symmetry rather than actively shifting it for loco-
motion. The mechanism adopts a symmetric gear–rack con-
figuration, where a spur gear driven by a motor engages with
two racks in opposite directions. This ensures synchronized
linear displacements, leading to uniform expansion or con-
traction of the polyhedral shell and keeping the center of
mass beneath the geometric center. With this design, defor-
mation and locomotion are decoupled: the deformation unit
alters the robot’s size while preserving a stable mass distri-
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bution, which, in turn, allows the drive modules – such as the
pendulum mechanism – to effectively generate rolling and
steering torques across different configurations. To actuate
the reconfigurable polyhedral shell described in the previous
section for both rolling and deformation and to precisely con-
trol the robot’s motion, a compact and efficient internal drive
and actuation unit is essential. This unit must not only pro-
vide the primary propulsion for locomotion but also execute
the shell’s expansion and contraction commands with preci-
sion. Furthermore, it facilitates motion stability by adjusting
the internal mass distribution. The following section details
the design of this core module, which integrates the pendu-
lum mechanism for primary drive force, the rotor mechanism
for adjusting normal contact forces and assisting steering,
and the gear–rack transmission for synchronous shell recon-
figuration.

This paper investigates the RPSR driven by a dual-
rotational-axis single-pendulum mechanism. The robot
achieves locomotion through internal multi-motor actuation
for center-of-mass adjustment, where the frictional interac-
tion between its polyhedral spherical shell and the ground
critically determines motion stability and terrain adaptability.
To enhance performance, an inverted rotor mechanism has
been designed to improve ground contact and motion stabil-
ity by increasing normal contact forces without adding mass.
The inverted rotor mechanism is illustrated in Fig. 7. This
system simultaneously provides auxiliary propulsion and en-
ables precise steering fine-tuning through angular momen-
tum conservation, comprehensively optimizing the robot’s
dynamic performance.

In rotor operation, as shown in Fig. 6a, the rotor typically
generates upward lift. To increase friction, it is necessary for
the rotor to produce a downward counteracting lift, the mech-
anism of which is illustrated in Fig. 6b. Here, V0 denotes the
velocity of the incoming airflow, FR is the drag force acting
parallel to the airflow direction, and FL is the lift force act-
ing perpendicular to the airflow direction. The magnitudes of
the drag and lift forces can be determined by the following
expressions:{
FR =

1
2

∫
ρ0c
′V 2

0 CRdr
FL =

1
2

∫
ρ0c
′V 2

0 CLdr
, (8)

where ρ0 denotes the air density; c′ is the chord length of the
blade element with thickness dr; and CR and CL represent
the sectional drag and lift coefficients, respectively.

As shown in Fig. 6b, by projecting the aerodynamic forces
FR and FL along the horizontal and vertical directions, the
downward normal force F1 generated by a blade element and
the resistive force F2 opposing the motor rotation can be ob-
tained. Considering a total of K blades, the total axial thrust
Ftotal and the torque M ′ generated by the rotor blades are
given by{
Ftotal =K

∫
(FL cos(θ )−FR sin(θ ))dr

M ′ =K
∫

(FL sin(θ )−FR cos(θ ))dr , (9)

where r denotes the distance from the blade element to the
rotor axis, and θ is the angle between the lift force and its
vertical projection.

The deformation–actuation module was investigated,
and precise control of the center-of-mass (CoM) position
was identified as the fundamental requirement for motion
smoothness. The deformation–actuation module is illustrated
in Fig. 7b. A symmetric involute spur gear–rack transmission
was implemented. In this design, motor-driven rotation of
an involute spur gear generates high-precision, synchronous
linear displacement of two opposing racks, thereby enabling
scalable deformation of the single-degree-of-freedom recon-
figurable polyhedral shell; geometric symmetry exploitation
constitutes the innovative strategy for CoM regulation. Dy-
namic stability is maintained throughout the entire deforma-
tion sequence by ensuring that the CoM remains directly be-
neath the geometric center of the spherical shell without aux-
iliary balancing devices. Moreover, the inherent characteris-
tics of mechanically meshed transmission markedly enhance
structural compactness and operational reliability.

2.3 Design principles and specifications

The integration of the reconfigurable polyhedral shell with
the internal drive and deformation modules was guided by
a set of fundamental principles and performance require-
ments. These criteria constrained the structural design and
also served as the basis for subsequent dynamic analysis,
simulations, and prototype validation. The external shell of
the robot adopts a Hoberman-inspired polyhedral configu-
ration, which ensures large-scale deployment while main-
taining geometric closure in both contracted and expanded
states. The design emphasizes modularity and symmetry so
that the folding–unfolding process can be realized through
coordinated single-degree-of-freedom motion. This guaran-
tees stable geometry during deformation, which is essential
for achieving smooth rolling locomotion.

A key requirement of the system is to preserve stability
by keeping the center of mass close to the geometric center
of the shell during reconfiguration. To achieve this, the de-
formation units employ a symmetric gear–rack transmission
that enables synchronous expansion and contraction. Func-
tionally, the robot combines a pendulum-based drive for pri-
mary rolling locomotion with a rotor-assisted system. The
pendulum provides propulsion on flat and inclined surfaces,
while the rotor enhances normal ground contact force, im-
proves traction, and contributes to steering stability.

The structural design was developed to meet several per-
formance targets. These include maintaining a linear-motion
deviation of less than 5 % during straight-line rolling, a min-
imum obstacle-crossing capability of 30 mm, and a rolling
speed not lower than 0.3 m s−1 on flat ground. In addition,
the deployable shell diameter is adjustable between 400 and
500 mm, while the total mass does not exceed 5 kg, ensuring
compactness and portability.
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Figure 6. Vector diagram of leaf element stress analysis. (a) Front-mounted rotor. (b) Reverse-mounted rotor.

Figure 7. Drive module and deformation unit. (a) Axonometric view highlighting motor–gear–rack layout. (b) Bottom view showing sym-
metric rack displacement.

3 Dynamic analysis of the robot’s rolling
characteristics

To actuate the reconfigurable polyhedral shell described in
the previous section for both rolling and deformation and to
precisely control the robot’s motion, a compact and efficient
internal drive and actuation unit is essential. This unit must
not only provide the primary propulsion for locomotion but
also execute the shell’s expansion and contraction commands
with precision. Furthermore, it facilitates motion stability by
adjusting the internal mass distribution. The following sec-
tion details the design of this core module, which integrates
the pendulum mechanism for primary drive force, the rotor
mechanism for adjusting normal contact forces and assist-
ing steering, and the gear–rack transmission for synchronous
shell reconfiguration.

3.1 Feasibility analysis of the polyhedral spherical
robot’s motion

For a mobile robot with a partially incomplete spherical shell,
its ability to achieve continuous rolling on a planar surface
is analyzed. Figure 8 illustrates the tumbling-roll gait. As-

Figure 8. Rolling of the polyhedral spherical robot: (a) initial con-
figuration, (b) rolling configuration.

suming ideal conditions, the robot obeys the conservation of
mechanical energy: the potential energy is maximal and the
kinetic energy is minimal when the center of mass reaches its
highest point. Continuous rolling is feasible if the minimum
kinetic energy in this configuration is non-negative.

Taking the initial stationary state as a reference, the motor
drives the pendulum to rotate, allowing it to acquire angular
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velocity and gravitational potential energy, which induces a
shift of the overall center of mass and generates a tendency
for rolling in the direction of the displacement. This critical
configuration is defined as E0.

In the E0 state, the system possesses a total mechanical
energy Etotal, expressed as

Etotal = Tini+Vini =
∑(

1
2
miν

2
i + Jjω

2
j +mkghk

)
, (10)

where Tini denotes the total kinetic energy of the system, and
Vini denotes the total potential energy of the system. At this
moment, both gravitational potential energy and kinetic en-
ergy are zero. Therefore, the following relation holds:

Etotal =
1
2
J2ω

2
d + (mdhd +mbhb)g

=md

[
1
2
l2ω2

d + (R− l cosα0)g
]
+mbRg, (11)

where J2, wd , and md denote the moment of inertia of
the pendulum about the geometric center of the polyhedral
spherical robot, the angular velocity of rotation, and the mass
of the pendulum, respectively; hb and α0 represent the verti-
cal height of the mobile robot from the ground and the critical
rotation angle at the rolling threshold state E0; mb, hb, and
R denote the mass of the spherical shell of the mobile robot,
the vertical height of its centroid from the ground, and the ra-
dius of the shell, respectively; and l and g are the pendulum
length and the gravitational acceleration.

As shown in Fig. 8b, when the overall center of mass of the
robot reaches its highest critical position, the gravitational
potential energy attains its maximum value. At this moment,
the total mechanical energy of the system, denoted as E′total,
is expressed as follows:

E′total =md

[
1
2
l2ω2

d + (R+1h− l cosα1)g
]

+mb (R+1h)g

+
1
2

[
md

√
(R+1h)2

+ l2− 2l (R+1h)cosα1

+mb (R+1h)
]
ω2
b, (12)

where1h represents the dimensional difference between the
approximate spherical radius of the polyhedral shell and the
external polygonal diagonal radius, ωb denotes the angu-
lar velocity of the polyhedral spherical mobile robot during
rolling, and α1 is the angle between the pendulum and the
vertical line through the centroid of the spherical shell when
the center of mass reaches its highest position.

The variation of the system’s mechanical energy before
and after this process is caused by the combined work of
the motor driving force and the frictional resistance, denoted
as Wdriveand Wfric, respectively. If the rolling velocity of the

spherical robot is v, the total work W ′ is expressed as fol-
lows:

W ′ = (Pw/ν+Fm)s, (13)

where Pw denotes the motor power, Fm is the magnitude of
the frictional force, and s represents the displacement of the
robot.

From the above analysis, it can be concluded that the nec-
essary condition for the polyhedral spherical mobile robot to
achieve smooth rolling is ωb ≥ 0. To further examine whether
rolling can occur, we assume ωb= 0. In this case, the me-
chanical energy E′′total is given by

E′′total =md

[
1
2
l2ω2

d + (R+1h− l cosα1)g
]

+mb (R+1h)g. (14)

The variation in mechanical energy, denoted as 1E, is ex-
pressed as follows:

1E = E′′total−Etotal = (md +mb)1hg

+mdgl (cosα0− cosα1) . (15)

The variation of mechanical energy before and after rolling
is caused by the combined work of the internal system and
the external environment. Therefore,

1E =W ′. (16)

By combining Eqs. (14) and (16), the following relation can
be obtained:

cosα0 =
[
(Pw/v+Fm)s−mb1hg

]
/mdgl+1h/l

+ cosα1. (17)

This equation represents the critical condition for the poly-
hedral spherical mobile robot to initiate rolling. The factors
influencing this condition include the motor power parame-
ters, ground friction, and the mass and structural parameters
of the spherical robot. Specifically, the critical condition re-
quires that the cosine value of α0 on the left-hand side of the
equation must not exceed that of the right-hand side. Since,
within the interval (0,90°), the cosine function is inversely
related to the angle, the minimum critical value of the initial
swing angle can therefore be determined based on Eq. (18).

As illustrated in Fig. 9, the factors influencing the crit-
ical swing angle α0 of the polyhedral spherical robot dur-
ing critical rolling are as follows. The critical swing angle is
negatively correlated with the motor power Pw, the contact
friction force Fm of the polyhedral shell, and the geomet-
ric shape parameter1h, while it is positively correlated with
the pendulum mass md . Therefore, to enhance the motion
responsiveness and maneuverability of the polyhedral spher-
ical robot, one may increase the motor power, improve the
contact friction between the shell and the ground, or adjust
the pendulum mass.

https://doi.org/10.5194/ms-16-887-2025 Mech. Sci., 16, 887–906, 2025
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Figure 9. Factors influencing the critical rolling condition:
(a) power parameters, (b) friction parameters, (c) mass parameters,
(d) geometric parameters.

It should be noted that swing angles greater than 90° are
invalid for effective rolling. As shown in Fig. 9b, when the
contact friction force is less than 1.6 N, loss of control occurs.
Thus, a minimum friction force must be ensured to achieve
continuous rolling. In addition, the geometric parameter 1h
reflects the outer contour shape of the polyhedral shell. Once
the shell structure is determined, the number of polygonal
edges in the outer contour is fixed. A larger 1h corresponds
to a smaller inscribed circle diameter. From the relationship
between the critical swing angle and 1h shown in Fig. 9d,
it can be concluded that a smaller robot diameter makes it
easier for rolling to occur.

3.2 Analysis of the motion performance of the
polyhedral spherical robot on the flat ground

The outer shell of RPSR was maintained in multipoint con-
tact with the ground, whereby the frictional forces arising
at the interface were harnessed as the primary driving trac-
tion. An inverted rotor assembly was implemented and com-
bined with the pendulum-driven actuation principle to gen-
erate an obliquely downward force along the forward axis;
this force both increased the normal contact pressure between
the spherical shell and the ground – thereby enhancing loco-
motion stability – and provided a forward thrust to improve
travel speed.

As shown in Fig. 10, a simplified model of the polyhe-
dral spherical robot is established in a Cartesian coordinate
system, where the horizontal and vertical directions are de-
fined as the x and y axes, respectively. The robot shell is rep-
resented by six identical non-circular arc polyline segments
approximating a sphere of radius R, with geometric center
B and counterweight offset distance l. The robot’s motion
can be described as successive rotations around six critical

contact points (S1–S6), each at a distance R′ from B. The
pendulum angle relative to the vertical line through B is de-
noted as α. s is determined by the geometric parameters of
the polyhedral spherical shell.

1s =
√
R′2−R2 (18)

A comprehensive force analysis of the reconfigurable
polyhedral spherical robot was conducted by means of the
Newton–Euler method. The force vectors acting on the poly-
hedral shell are illustrated in Fig. 11a, and the corresponding
force diagram for the pendulum mechanism is presented in
Fig. 11b.

The following symbols are used in the dynamic equations:

mb – mass of the polyhedral spherical shell

md – mass of the pendulum

F ′1 – vertical component of the resultant force generated
by the rotor-assisted mechanism

F ′2 – horizontal component of the resultant force gener-
ated by the rotor-assisted mechanism

abx , adx – translational accelerations of the spherical
shell and pendulum in the x-axis direction

aby , ady – translational accelerations of the spherical
shell and pendulum in the y-axis direction

M – reaction torque of the drive motor

FN – support force from the ground

f – friction force from the ground

Fx , Fy – action forces from the pendulum on the shell

f ′x , f ′y – reaction forces from the shell on the pendulum

α0 – rotation angle of the spherical shell around point
Si (i= 1, 2,. . ., 6)

J1 – moment of inertia of the spherical shell around
point Si

J2 – moment of inertia of the pendulum around the ge-
ometric center B of the spherical shell.

Force analysis of the polyhedral spherical shell is as fol-
lows:
f +F ′2− f

′
x =mbabx

mbg+ f
′
y +F

′

1−FN =mbaby
M +

(
FN −mbg− f

′
−F ′1

)
1s+

(
F ′2− f

′
x

)
R = J1β̈0

.

(19)
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Figure 10. Simplified model of planar motion for the polyhedral spherical robot.

Figure 11. Simplified planar motion model of the RPSR. (a) Force distribution on the polyhedral shell. (b) Force and torque analysis of the
pendulum mechanism.

Force analysis of the pendulum is as follows: fx =mdadx
fy −mdg =mdady
M −mdgl sinα−md l

(
abx cosα+ aby sinα

)
= J2α̈− J1β̈0

. (20)

By combining Eqs. (19) and (20), the dynamic equations of
the polyhedral spherical mobile robot moving in the horizon-
tal plane can be obtained:{
M −mdgl sinα−md l

(
abx cosα+ aby sinα

)
= J2α̈+ J1β̈0

M −mbaby1s+
(
F ′2−mdadx

)
R = J1β0

.

(21)

3.3 Analysis of the obstacle-crossing performance of
the polyhedral spherical robot

To investigate the obstacle-traversal performance of the re-
configurable polyhedral spherical robot, a dynamic model of
the crossing process is established under the following sim-
plifying assumptions:

1. Obstacles are fixed, with known geometry and dimen-
sions.

2. During traversal, no slip occurs at the contact points
between the spherical shell and either the horizontal
ground or the obstacle, and the shell remains rigid.

3. The robot has sufficient power and maneuverability to
execute the maneuverer.

As in the obstacle-free rolling analysis, the robot is parti-
tioned into two subsystems for force analysis, as shown in
Fig. 12, where the obstacle height is h and the reaction force
at the obstacle contact is N .

The force equilibrium of the polyhedral shell was estab-
lished by applying the Newton–Euler method under the no-
slip assumption. Taking moments about the obstacle contact
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Figure 12. Force analysis of obstacle crossing. (a) Force distribution on the polyhedral shell. (b) Force and torque interaction of the pendu-
lum.

point leads to the following kinematic relationship:


mbg+ f

′
y +F

′

1−N
R−h
R
=mbaby

F ′2− f
′
x −N

√
R2−(R−h)2

R
=mbabx

M −
(
mbg+ f

′
y +F

′

1

)√
R2− (R−h)2

+
(
F ′2− f

′
x

)
(R−h)= J1β̈1

, (22)

where N is the support force exerted by the obstacle on the
polyhedral spherical shell, and β̇1 is the angular velocity of
the robot around the obstacle-crossing contact point.

By combining Eqs. (20) and (22), the dynamic equation
of the polyhedral spherical mobile robot when crossing an
obstacle in the plane can be obtained:


g+ 1

mb

(
mdg−mdady +F

′

1−N
R−h
R

)
= aby

1
mb

(
F ′2+mdadx −N

√
R2−(R−h)2

R

)
= abx

J2α̈+mdgl sinα+md laxy −Ft
√
R2− (R−h)2

+
(
F ′2+mdadx

)
(R−h)= 2J1β̈1

, (23)

where axy =
(
abx cosα+ aby sinα

)
, and Ft =mbg+fy+F ′1.

Environmental adaptability is exhibited by the RPSR’s
scalable, partial-spherical-shell architecture; however,
obstacle-climbing performance remains constrained by
both obstacle height and motion stability factors. Although
size adjustment for different obstacles is enabled via shell
self-reconfiguration, the finite deformation range precludes
surmounting excessively tall barriers, and unintended lateral
rolling or attitude tilt is induced by the partial-spherical-shell
structure upon obstacle contact, presenting dynamic-
instability risks. Hence, path planning must integrate
deformation strategies for pre-evaluating obstacle height
thresholds, and obstacle traversal stability must be enhanced
through optimized structural symmetry and center-of-mass
regulation.

3.4 Influence of the telescopic drive mechanism and
rotor mechanism on the obstacle-crossing ability

Below, a theoretical analysis of obstacle height capability and
traversal stability is conducted. Taking moments about the
contact point S between the RPSR’s polyhedral shell and the
obstacle yields

mdg
(
l sinα−

√
R2− (R−h)2

)
+F ′2(R−h)2

=
(
mbg+F

′

1
)√
R2− (R−h)2. (24)

The rotor-assisted mechanism of the RPSR generates an
external force, F ′1 6= 0 and F ′2 6= 0. Let (R−h)2

= t ; then
Eq. (24) can be simplified to

mdg
(
l sinα−

√
R2− t

)
+F ′2t =

(
mbg+F

′

1
)√
R2− t . (25)

Let
√
R2− t = t , and the solution is

t0 =
(√

1+ 4R2− 1
)
/2. (26)

That is, when 0≤ (R−h)2
≤

(√
1+ 4R2− 1

)
/2 holds, the

inequality
√
R2− t ≥ t always holds, and we have

t ≤
mdgl sinα

mbg+mdg+F
′

1−F
′

2
. (27)

Furthermore, the following can be obtained:{
h≥ R−

√
mdgl sinα

mbg+mdg+F
′

1−F
′

2
h≤ R

. (28)

When (R−h)2
≥

(√
1+ 4R2− 1

)
/2 is satisfied, the in-

equality
√
R2− t ≤ t always holds. From Eq. (25), this can

be rearranged to get

h≤ R−

√
mdgl sinα/

(
mbg+mdg+F

′

1−F
′

2
)
. (29)

Considering the effect of the rotor-assisted mechanism,
the obstacle-crossing conditions of the RPSR change. The
spherical-shell radius R can be adjusted as follows:
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Figure 13. Minimum obstacle-crossing height during rotor action.
(a) Influence of vertical force component F ′1. (b) Influence of hori-
zontal force component F ′2.

1. There is a parameter related to the radius R of the poly-
hedral spherical shell, denoted as t0. When the square
of the difference between the obstacle height h and the
spherical-shell radius R is not greater than the param-
eter t0, the polyhedral spherical robot has a minimum-
limit value for the height of crossing the obstacle. This
limit value is related to the mass parameters, size pa-
rameters, aerodynamic parameters generated by the ro-
tor mechanism, and pendulum angle parameters of the
robot. That is, when the spherical-shell radius is close
to the obstacle height, there is no need to overly in-
crease the spherical-shell radius for the robot to success-
fully cross the obstacle. Since it has a minimum-limit
crossing height, only the spherical-shell radius needs to
be adjusted so that the minimum-limit height is greater
than the obstacle height.

2. When the square of the difference between the obsta-
cle height h and the spherical-shell radius R is greater
than or equal to a certain parameter t0 related to the
radius R of the polyhedral spherical shell, the poly-
hedral spherical robot has a maximum-limit value for
the height of crossing the obstacle. That is, when the
spherical-shell radius is much larger than the obstacle
height, the spherical-shell radius cannot be overly re-
duced for the robot to cross the obstacle stably. Since
it has a maximum-limit obstacle-crossing height, if the
spherical-shell radius is adjusted too small, the robot
will not be able to cross the obstacle smoothly. As
shown in Fig. 13, this depicts the influence of the verti-
cal component F ′1 and the horizontal component F ′2 of
the force generated by the rotor on the obstacle-crossing
height of the robot. Here, the spherical-shell radius
R= 0.2 m. The minimum obstacle-crossing height rises
with the increase in F ′1, showing a positive-correlation
trend, while F ′2 has a negative effect on the obstacle-
crossing height and is not conducive to the increase in
the obstacle-crossing height.

Assume that the pendulum rotates at a constant speed; that
is, the torque of the pendulum relative to the geometric center
of the polyhedral spherical shell is balanced with the torque

Figure 14. Driving torque during rotor action M: (a) vertical com-
ponent force F ′1, (b) horizontal component force F ′2.

generated by the motor. The limiting condition of the driving
torque can be derived from Eq. (24).

M =
(
mbg+mdg+F

′

1
)√
R2− (R−h)2−F ′2(R−h)2 (30)

The maximum value of the motor driving torque of the
single-pendulum spherical robot is mdgl. As can be seen
from Eq. (30), the larger the overall mass of the RPSR, the
greater the driving torque required for the motor. Similarly,
the rotor mechanism will also affect the driving torque re-
quired when the robot crosses an obstacle, imposing higher
requirements on the motor driving torque. Figure 14 shows
the influence of the rotor mechanism on the driving torque of
the RPSR. At this time, the radius of the polyhedral spherical
shell R= 0.2 m, and the obstacle-crossing height h= 0.02 m.

4 Simulation of polyhedral spherical robot based on
Adams

The rationality of the RPSR’s structural design and the va-
lidity of its dynamic model were verified via simulation ex-
periments. Owing to the large number of components in the
polyhedral shell, the shell was simplified for computation.
Figure 15 shows the simplified robot model as implemented
in the simulation software. Unlike typical spherical robots
that roll through single-point contact, the RPSR’s locomo-
tion occurs via multipoint contact.

In this simulation model, the polyhedral shell has a mass
of 0.8 kg and a radius of 0.25 m, the drive mechanism has a
mass of 1.2 kg, and the pendulum arm length is 0.2.

4.1 Linear-motion simulation on flat ground

Due to the incomplete-shell configuration of the RPSR, a
lateral-drift tendency is induced during forward rolling. The
robot’s motion trajectory is shown in Fig. 16, where the path
exhibits translation along the y axis accompanied by a posi-
tive displacement along the z axis.

Figure 17 presents the post-processed simulation results
for z-axis displacement. From the Z1 curve, it is observed
that, during the first 2.5 s of motion, no significant displace-
ment along the z axis occurs. Between 2.5 and 5 s, a self-
correctable drift takes place, and, by 5 s, the trajectory closely
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Figure 15. Simplified simulation diagram of model.

Figure 16. Trajectory simulation of linear motion.

Figure 17. Movement direction deviation and correction.

aligns with the desired path. However, from 5 to 7.5 s, the
z-axis displacement increases rapidly and continues to grow
until 10 s. Although the trajectory partially self-corrects from
2.5 to 12.5 s, the robot is no longer able to maintain stable
straight-line motion thereafter, and a sharp increase in z-axis
drift is observed at 15 s.

Further analysis reveals that the maximum offset from the
target distance during the process is 0.23 m. However, within
the same time period, the effective traveling displacement

of the robot in the y-axis direction is 5.3 m. The maximum
offset displacement accounts for approximately 4.3 % of the
effective displacement. Therefore, the robot has a relatively
good linear-motion ability.

As the rolling distance of the robot increases, it becomes
more difficult for it to maintain linear motion. Thus, timely
correction of the moving direction is necessary. The robot’s
steering task is mainly accomplished by the pendulum swing-
ing around an axis perpendicular to the direction of the main
rotation axis. In this research project, a rotorcraft mecha-
nism is designed. Based on the principle of conservation of
angular momentum, during the traveling process, the robot
can make fine-tuned turns through the rotorcraft mechanism,
which can further improve its linear-motion ability. The re-
sults after fine-tuning are shown as curves Z2, Z3, and Z4 in
Fig. 17. The displacement of the offset in the positive z-axis
direction gradually decreases. The adjustment process is as
follows.

To mitigate the negative z-direction drift observed around
7.5 s, the rotor mechanism was actuated at 7 s to reorient
counterclockwise, thereby reducing the z-axis deviation as
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shown in curve Z2 in Fig. 16. A residual offset at 12.5 s
necessitated a second fine adjustment of the rotor, yielding
the Z3 trajectory. After these two interventions, the RPSR’s
straight-line rolling capability was enhanced, and subsequent
incremental corrections further converged the motion toward
true linearity, as indicated by curve Z4; the center-of-mass
z coordinate at the beginning and end of the trial remained
essentially unchanged.

4.2 Simulation of obstacle-crossing motion

Obstacle traversal capability is a key indicator of a mobile
robot’s environmental adaptability. In this section, obstacle-
climbing straight-line maintenance, traversal stability, and
traversal adaptability were evaluated via simulation. The ob-
stacle height was set to 0.015 m, and the pendulum’s angular
velocity was set to 60° s−1. The simulation was divided into
three phases – speed adjustment, obstacle crossing, and sta-
bility recovery – as shown in Fig. 18.

In the speed adjustment phase, as shown in Fig. 18a and b,
the pendular bob was driven by the main shaft to swing for-
ward, imparting initial kinetic energy to the RPSR and reduc-
ing the gap in relation to the obstacle. During the obstacle-
crossing phase, as shown in Fig. 18c and d, the shell lever-
aged inertial force to vault over the barrier; the maximum
climbable height was determined by both rolling velocity
and shell radius. In the stability recovery phase, as shown
in Fig. 18e and f, corrective pendular actuation was applied
following obstacle clearance to restore stable, straight-line
motion.

During the obstacle-crossing process, the robot moves for-
ward along the transverse y axis. Due to the characteristics
of the polyhedral spherical shell’s shape, vibration will oc-
cur along the vertical x axis, and there will also be an offset
along the longitudinal z axis. Its position change can be re-
flected by the geometric center of the polyhedral spherical
shell. Figure 19 shows the motion trajectories of the geomet-
ric center in the transverse and longitudinal directions.

As indicated by the simulated trajectory results, the RPSR
completes obstacle traversal within 3 s, covering 2.8 m of
forward displacement with a maximum lateral deviation of
0.08 m, thereby demonstrating excellent straight-line perfor-
mance during both planar motion and obstacle crossing. Fur-
thermore, according to the geometric-center position curve,
the traversal process can be partitioned into two phases: in
phase I, from 0 to 1.25 s, the robot attains its initial veloc-
ity and approaches the obstacle; in phase II, lasting approx-
imately 0.75 s, the process of contact and vaulting occurs,
after which the RPSR continues in straight-line motion and
preserves its intrinsic motion stability.

Figure 20 shows the post-simulation results of the geomet-
ric center of the RPSR jittering along the x-axis direction. To
test the impact of speed on the obstacle-crossing stability of
the robot, a control group with a pendulum angular veloc-
ity of 70° s−1 is set. From the displacement curves, it can be

seen that the maximum jitter displacement amounts are 0.018
and 0.020 m, which are higher than the height of the obsta-
cle at 0.015 m. The vibrational jitter of the geometric center
in this direction affects the motion stability of the robot and
the reliability of its internal structure. Therefore, it should be
controlled within a certain range as much as possible. From
the comparison of the two curves, it can be found that an in-
crease in the moving speed will increase the maximum jitter
displacement amount, which is not conducive to the motion
stability of the robot. However, it will shorten the contact
time between the polyhedral spherical shell and the obstacle,
enabling the robot to climb over the obstacle more quickly.

Through the analysis of the above-mentioned simulation
results, the main influencing factors of the obstacle-crossing
height and obstacle-crossing stability of the RPSR can be
found. Following this, it is necessary to analyze the obstacle-
crossing adaptability. Under the condition that other param-
eters remain unchanged, the height of the obstacle is set to
0.03 m, and the simulation result of the component of the mo-
tion trajectory of the polyhedral spherical robot on the x axis
is shown in Fig. 21a.

The maximum fluctuating displacement is only 0.021 m.
However, under ideal conditions, this displacement should be
no less than the actual height of the obstacle, which is 0.03 m.
Therefore, in this case, the robot cannot cross the obstacle,
and the obstacle-crossing process fails. To successfully com-
plete the obstacle-crossing motion, taking advantage of the
deformable structural characteristics of the polyhedral spher-
ical shell, the radius of the robot is increased from 0.2 to
0.25 m. The post-processing results of its motion simulation
are shown in Fig. 21b. The maximum displacement along the
direction of the obstacle height is 0.037 m, which is greater
than the height of the obstacle itself. Therefore, under the
condition of an increased obstacle height, the polyhedral
spherical robot can still effectively complete the obstacle-
crossing motion. During the smooth-motion process, a fixed
angle α is maintained between the pendulum and the ground.
The normal force F1 and thrust F2 exerted by the rotor on
the structure of the main rotation axis have the following re-
lationships with the vertical force F ′1 and horizontal force F ′2
acting on the RPSR:

{
F ′1 = F1 cosα0−F2 sinα0

F ′2 = F1 sinα0+F2 cosα0
. (31)

Based on the formula for the obstacle-crossing driving torque
M in Eq. (30) and the parameters of the simulation envi-
ronment, assume that the radius of the spherical shell of
the RPSR R= 0.25 m, the height of the obstacle h= 0.02 m,
F ′1= 2, and F ′2= 0.1. Then, the driving torqueM required for
the robot to cross the obstacle can be calculated. Moreover,
the correctness of the theoretical analysis is verified through
simulation experiments. The post-processing results of the
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Figure 18. Obstacle-crossing motion simulation. (a–b) Speed adjustment phase. (c–d) Obstacle-crossing phase. (e–f) Stability recovery
phase.

Figure 19. Position change of the geometric center. (a) Lateral dis-
placement. (b) Longitudinal displacement.

Figure 20. Vertical vibration of the geometric center at two speeds.
Figure 21. Simulation of obstacle crossing at h= 0.03 m.
(a) R= 0.20 m. (b) R= 0.25 m.
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Figure 22. Simulation experiment of driving torque.

simulation are shown in Fig. 22.

M = [(0.8+ 1.2)9.8+ 2]
√

0.252
− (0.25− 0.02)2

− 0.1× (0.25− 0.02)2
= 2.068Nm (32)

5 Fabrication and experiment of the robot prototype

The simulation results have verified the feasibility of the
RPSR’s design and its significant motion potential in a vir-
tual environment. However, to ultimately confirm the robot’s
performance in the real physical world – accounting for prac-
tical factors such as manufacturing tolerances, friction, and
material properties – the fabrication and testing of a physi-
cal prototype are indispensable. This chapter details the as-
sembly of the prototype and presents a series of experi-
ments designed to test its linear motion, steering control,
and obstacle-crossing capabilities. The goal is to compare the
theoretical analysis and simulation data with real-world per-
formance, thereby fully evaluating the practical value of this
self-reconfigurable spherical robot.

By assembling all components, the overall prototype of the
RPSR can be obtained. It is mainly composed of seven parts,
namely the battery counterweight block, the rotating main
shaft, the rotor, the polyhedral spherical shell, the telescopic
deformation crossbar, the frame, and the pendulum rod, as
shown in Fig. 23.

5.1 Linear-motion experiment

The RPSR was placed in an experimental field with
side lengths of 2.0 m× 2.0 m, and its radius was set to
R= 250 mm. The rolling motion of the robot on the ground
was then observed, as shown in Fig. 24.

At T = 0 s, the robot was in a stationary state. By control-
ling the 42-step-by-step motor, the rotating main-shaft mech-
anism was made to swing at a motor speed of 30° s−1. As
the swing angle increased, the center of mass of the robot
moved forward, and, at this time, the robot had a tendency
to roll forward. At T = 1.6 s, the robot had traveled 600 mm,
and there was no significant deflection in the moving direc-
tion. At T = 2.7 s, the robot continued to travel 400 mm. At
T = 3.7 s, the robot was approaching the edge of the experi-

mental field. The swing angle of the motor was controlled to
slow down the robot and gradually stop its rolling.

During the experiment, the RPSR kept rolling close to the
edge of the experimental field. It showed good linear-motion
retention and met the requirement of a linear-deviation navi-
gation error during short-distance movement.

The rolling speed is an important indicator for measuring
the motion performance of a spherical robot. In view of the
target performance parameters of the RPSR, its rolling speed
on hard and smooth ground was tested. Table 1 shows the
time required for the robot to travel every 0.35 m during the
process of rolling 1.4 m.

From the test results, it can be seen that, at this mo-
tor speed, the minimum moving speed of the robot is
313.2 mm s−1, which meets the preset target performance pa-
rameter of 300 mm s−1. It is close to the Adams simulation
value of 353.3 mm s−1, with a relative error of 11.4 %.

5.2 Steering-motion experiment

The steering-motion experiment of the RPSR is shown in
Fig. 25. At T = 0 s, the robot starts to roll along the dotted-
line direction from a stationary state. At T = 1.4 s, it contin-
ues to move in a straight line. To test the influence of the ro-
tor mechanism on the motion, when it travels to T = 2.6 s,
the brushless motor is controlled to rotate clockwise at a
high speed. The polyhedral spherical shell instantaneously
contracts slightly and remains stable. At the same time, the
entire robot rotates slightly in the direction opposite to the
motor rotation. At T = 3.1 s, the servo is controlled to make
the pendulum swing around the direction of the rotating
main shaft, and the moving direction of the robot changes.
At T = 4.4 s, the robot maintains a straight-rolling state. At
T = 5.7 s, when it approaches the edge of the experimental
field, the robot and the rotor mechanism stop moving.

5.3 Obstacle-crossing motion experiment of the RPSR

To verify the obstacle-crossing ability of the RPSR, two sets
of obstacles are set up in the experimental field in this sec-
tion. The heights of the obstacles are 15 and 30 mm.

Shown in Fig. 26 is the experimental process of the
robot crossing the 15 mm obstacle. At T = 0 s, the robot is
in a stationary state. At T = 0.6 s, the robot gradually ap-
proaches the obstacle. At T = 1.8 s, the robot comes into
contact with the obstacle, and the obstacle-crossing process
begins. At T = 2.2 s, the robot climbs over the obstacle. At
T = 3.5 s, the robot descends from the obstacle. At T = 4.3 s,
the obstacle-crossing process is completed.

Figure 27 shows the experimental process of the robot
crossing the 30 mm obstacle. The radius of the polyhedral
spherical shell is expanded to 250 mm before crossing the
obstacle. The two obstacle-crossing processes are basically
the same, indicating that the polyhedral spherical robot has
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Figure 23. Polyhedral spherical mobile robot.

Figure 24. Linear-motion experiment.

improved its obstacle-crossing ability and has good terrain
adaptability by scaling the size of the spherical shell.

5.4 Error analysis

Based on the theoretical values, using the simulation values
of the motion performance of the RPSR in Sect. 3, the rela-
tive error between the simulation values and the test values
is calculated based on the test values. The radius of the robot

is 250 mm, and the comparison of the robot’s motion perfor-
mance parameters is shown in Table 2.

As can be seen from Table 2, although there is a certain rel-
ative error between the test values and the simulation values,
considering the facts that the structure of the RPSR was sim-
plified when solving the simulation values and that the en-
ergy losses caused by factors such as mechanical friction and
transmission efficiency during the actual prototype’s move-
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Table 1. Rolling speed on hard and smooth ground.

Number Time for Time for Time for Time for Velocity
0.35 m 0.70 m 1.05 m 1.40 m

1 1.02 s 2.09 s 3.15 s 4.26 s 328.6 mm s−1

2 0.98 s 1.97 s 3.04 s 4.15 s 337.3 mm s−1

3 1.12 s 2.35 s 3.41 s 4.42 s 316.7 mm s−1

4 1.05 s 2.13 s 3.24 s 4.37 s 320.4 mm s−1

5 1.08 s 2.23 s 3.36 s 4.47 s 313.2 mm s−1

Figure 25. Steering-motion experiment.

Figure 26. The 15 mm obstacle crossing experiment
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Figure 27. The 30 mm obstacle crossing experiment.

Table 2. Analysis and comparison of robot motion performance parameters.

Rolling speed Turning radius Obstacle-crossing height

Simulation value 353.3 mm s−1 520 mm 33 mm
Test value 313.2 mm s−1 500 mm 30 mm
Relative error 11.4 % 3.8 % 9.1 %

ment were not taken into account, the design scheme of the
actual prototype based on the simulation model is feasible.

6 Conclusion

This study proposes an RPSR designed to overcome the in-
herent limitations of traditional fixed-shell spherical robots
in terms of terrain adaptability. The core contribution lies in
the successful design and validation of an innovative scheme
that integrates a deployable polyhedral shell with a hybrid
actuation system, thereby significantly enhancing mobility in
complex environments.

The effectiveness of this reconfigurable design has been
quantitatively verified through numerical simulations and
physical prototype experiments. Its key innovation – the abil-
ity to dynamically adjust the shell radius – proved to be
highly effective in obstacle-crossing tasks. Experimental re-
sults demonstrated that the prototype could expand its ra-
dius to traverse obstacles up to 30 mm in height, directly
addressing the performance bottleneck of fixed-shell robots.
Meanwhile, the hybrid pendulum–rotor actuation system en-
abled stable and reliable locomotion: the prototype achieved
a maximum rolling speed of 313.2 mm s−1 in experiments,

while simulations indicated a lateral deviation of less than
4.3 % during linear motion, confirming its motion stability.

Strong consistency between Adams simulation and exper-
imental results further validated the reliability of the theoret-
ical framework. Comparative analysis revealed that the rel-
ative errors of key performance indicators remained within
acceptable limits: 11.4 % for rolling speed, 3.8 % for turning
radius, and 9.1 % for obstacle-crossing height. These find-
ings confirm the predictive accuracy of the Newton–Euler-
based dynamic model and the feasibility of the mechanical
design.

Nevertheless, the proposed model and prototype still ex-
hibit certain limitations. From a theoretical perspective, the
dynamic model relies on several idealized assumptions, such
as non-slip ground contact and perfectly rigid shell be-
havior during obstacle traversal. While these assumptions
simplify the analysis, they fail to fully account for energy
losses caused by slippage or deformation. From a practical
standpoint, the structural complexity of the multi-loop kine-
matic chains poses challenges to manufacturing precision
and structural robustness. Furthermore, the energy efficiency
of the hybrid actuation system, particularly the additional ro-
tor, was not evaluated, leaving the endurance of the robot
under extended operation as an open issue.
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In summary, this work establishes a validated framework
for a new class of adaptive spherical robots. By quantita-
tively demonstrating the advantages of structural reconfigu-
ration, it provides both theoretical and practical foundations
for future designs and shows broad application potential in
exploration, inspection, and automation within unstructured
environments. Future research should focus on incorporating
non-ideal conditions into the dynamic model and optimizing
the mechanical design to improve both energy efficiency and
manufacturability.
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