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Abstract. Pedestrian detection is one of the most widely applied tasks in industrial computer vision. It en-
capsulates three core challenges of object detection: detecting small objects, handling heavy occlusion, and
balancing speed and accuracy for deployment on mobile devices. In targeting scenarios relating to the Internet
of Things (IoT), we propose a dedicated lightweight pedestrian detector that is robust to occlusions. First, we
redesign the decoupled prediction head with a hierarchical structure, separating classification confidence esti-
mation from bounding box regression. We then decode the offsets from the regression branch, extract features
from high-confidence predictions, and fuse these with classification feature maps to enhance the local reliability
of semantic features. Furthermore, we introduce a label-dynamic matching strategy that increases the number
of high-quality positive samples, particularly improving matching for small and occluded objects. Finally, an
optimized knowledge distillation framework significantly boosts the prediction accuracy of the compact model,
facilitating deployment on edge devices. Experimental results on the CrowdHuman test set show that our pro-
posed approach achieves comparable accuracy to the baseline (53.8 %) with an inference latency of only 7.1 ms
– 281.7 % faster than the baseline.

1 Introduction

Pedestrian detection is a fundamental yet challenging task in
computer vision and object detection (Zaidi et al., 2022). Un-
like generic object categories, pedestrians exhibit high intra-
class similarity, dynamic poses, dense spatial layouts, and
frequent occlusions, and often appear as small-scale objects.
These challenges are especially prominent in real-world ap-
plications such as urban surveillance (Mo et al., 2023; Choi
and Kim, 2023), intelligent transportation, and public safety
monitoring (Hamzenejadi and Mohseno, 2023; Zhu and Ji,
2005; Dong et al., 2023), where detection failures can have
serious consequences.

Despite significant progress in object detection, most
modern detectors are general purpose and struggle with
pedestrian-centric scenarios (Chowdhury et al., 2018). Two-
stage methods like R-CNN (Girshick et al., 2014), Fast R-
CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2016)
achieve high accuracy through powerful backbones and deep

features, but their complex pipelines and high latency hinder
real-time applications. To address efficiency, one-stage de-
tectors such as SSD (Liu et al., 2016) and YOLO (Redmon et
al., 2016) unify detection into a single forward pass. DETR
(Carion et al., 2020) further proposed a transformer-based
end-to-end paradigm that removes handcrafted anchors and
post-processing, although at the cost of slow convergence
and high computational demands.

YOLO-based models have gained popularity for their
speed and simplicity. Over successive versions, the YOLO
family has integrated components like CSPNet (Wang et
al., 2020), new activation functions (Li and Huang, 2024),
advanced augmentation (Lu et al., 2018), and improved
loss functions (He et al., 2015), culminating in YOLOv5
(Jocher, 2020), which has become a strong baseline widely
deployed in both academia and industry. Although later ver-
sions introduce additional modules, particularly transformer-
or attention-based operators, such designs are not well sup-
ported on many industrial edge-computing devices (Khanam
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and Hussain, 2025). Therefore, we adopt YOLOv5 as our
backbone to balance accuracy, efficiency, and hardware com-
patibility.

Nevertheless, lightweight variants such as YOLOv5s still
face difficulties in detecting small and occluded pedestri-
ans in crowded scenes. Direct model compression typically
results in significant accuracy loss, further limiting deploy-
ment on resource-constrained devices. To address these lim-
itations, we propose a pedestrian detection framework based
on YOLOv5s that integrates three core strategies:

1. a hierarchical prediction head with cross-branch guid-
ance, where localization cues enhance classification of
small or occluded pedestrians;

2. a dynamic label assignment strategy combined with a
response-aware feature module to improve representa-
tion learning in lightweight backbones; and

3. a knowledge distillation scheme that transfers rich se-
mantics from a large teacher to a compact student
model, effectively balancing accuracy and efficiency.

The rest of the paper is organized as follows: Sect. 2 re-
views related work, Sect. 3 details the proposed methodol-
ogy, Sect. 4 presents extensive experiments, and Sect. 5 con-
cludes with discussions on future work.

2 Related work

2.1 General object detection

Pedestrian detection has long been a core task in computer
vision, with early approaches relying on handcrafted features
such as HOG (Dalal and Triggs, 2005) and decision forests
(Dollar et al., 2011). With the advent of deep learning, convo-
lutional neural networks (CNNs) brought significant perfor-
mance gains. Two-stage detectors like Faster R-CNN (Ren
et al., 2016) offer strong accuracy but suffer from high com-
putational cost, limiting deployment on resource-constrained
devices. One-stage detectors, such as SSD (Liu et al., 2016)
and YOLO (Redmon et al., 2016), introduced faster architec-
tures that allow real-time inference. Despite this, pedestrian
detection remains difficult due to the small object size, fre-
quent occlusion, and dense scenes – conditions under which
generic object detectors typically underperform (Zhang et al.,
2017).

2.2 Lightweight detectors and model compression

In latency-sensitive applications such as autonomous driv-
ing and edge surveillance, lightweight detectors are pre-
ferred (Li et al., 2025). Some YOLO variants (Bochkovskiy
et al., 2020; Jocher, 2020; Wang et al., 2023) employ com-
pact backbones like CSPDarknet (Wang et al., 2020) or Mo-
bileNets (Howard, 2017) to reduce model size and accelerate

inference. However, these simplifications often lead to accu-
racy degradation, especially on small or overlapping pedes-
trians. Beyond lightweight design, another mainstream di-
rection for efficient deployment is model compression, such
as pruning, quantization, or designing lightweight operators
(Tan et al., 2020; Chen et al., 2019). While these methods re-
duce memory and computation, they typically require com-
plex tuning and may sacrifice detection robustness. In con-
trast, our framework maintains the YOLOv5 backbone and
instead improves accuracy through label assignment, feature
enhancement, and knowledge distillation, offering a comple-
mentary solution to compression-based strategies. Table 1
presents a brief comparison.

2.3 Occlusion-robust detection

Occlusion remains a primary challenge in pedestrian detec-
tion. Approaches such as part-based models (Tian et al.,
2015) and attention mechanisms (Zhang et al., 2018) im-
prove robustness by focusing on visible regions or contex-
tual cues. Other methods incorporate pose estimation (Fang
et al., 2017) or semantic segmentation (Liu et al., 2019) for
auxiliary supervision, although at significant computational
cost. More recently, mutual learning between classification
and localization branches has shown promise in improving
feature alignment under occlusion (He et al., 2021). Our de-
sign extends this line by explicitly leveraging cross-branch
guidance in the prediction head.

2.4 Knowledge distillation

Knowledge distillation (KD) has emerged as an effective
technique to transfer knowledge from a large teacher model
to a compact student model. Initially explored in classifica-
tion (Hinton et al., 2015), KD has been extended to detec-
tion through feature-level (Chen et al., 2017), response-level
(Li et al., 2017), and relation-based distillation (Wang et al.,
2019). These methods allow compact models to inherit se-
mantic richness from larger networks without increasing the
inference cost significantly. We build on this paradigm to im-
prove lightweight pedestrian detectors for edge deployment.

3 Methodology

To transform YOLOv5 from a general-purpose detector into
a pedestrian-specific model, we introduce three core en-
hancements:

1. a hierarchical decoupled prediction head to improve de-
tection precision;

2. a dynamic label assignment strategy to address occlu-
sion challenges (Zou et al., 2020); and

3. knowledge distillation to boost accuracy while main-
taining a lightweight structure (Chu et al., 2020).
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Table 1. Comparison of different strategies for pedestrian detection on edge devices.

Category Representative methods Advantages Limitations

High-accuracy
transformer-based
models

PedFormer (Rasouli and
Kotseruba, 2022), RT-DETR
(Zhao et al., 2024), MSTF
(Hou et al., 2025)

Strong performance on
small/occluded pedestrians;
robust in dense scenes

High computational cost;
slow inference; not suitable
for edge devices

Lightweight
models

YOLOv4-tiny (Bochkovskiy
et al., 2020), YOLOv5s
(Jocher, 2020), MobileNets
(Howard, 2017)

Fast inference; low memory
footprint; suitable for
real-time edge deployment

Limited accuracy on
small/occluded pedestrians;
struggles in crowded scenes

Our proposed
model

YOLOv5s + hierarchical head
+ dynamic label assignment +
knowledge distillation

Balances accuracy and
efficiency; better handling of
small/occluded pedestrians;
edge-friendly

Depends on teacher model
quality

These methods are elaborated below.

3.1 Hierarchical guided decoupling prediction head

Classic YOLO models (v1–v5) adopt a coupled prediction
head architecture, in which both classification and bound-
ing box regression tasks share a common feature represen-
tation and a single output layer. Following feature extraction
through the backbone (e.g., CSP-Darknet) and neck modules
(e.g., PANet), a 1× 1 convolutional layer is applied to project
high-dimensional feature maps into final detection predic-
tions (Carion et al., 2020). This output tensor encodes spatial
location, objectness scores, class probabilities, and box off-
sets in a unified structure (Wang et al., 2022). While this de-
sign offers a compact and efficient detection pipeline, it im-
poses significant constraints on task-specific learning. Clas-
sification and regression are inherently different in terms of
learning objectives – classification seeks to separate seman-
tic categories in high-level feature space, whereas regression
requires precise spatial and geometric localization. Forcing
these two tasks to share parameters and gradients within the
same branch can lead to feature interference and sub-optimal
convergence, particularly for small or occluded objects. Mo-
tivated by recent studies (Hiller et al., 2020) emphasizing the
need for decoupled optimization in detection heads, we re-
design the standard YOLO prediction structure and introduce
a hierarchical guided decoupling prediction head (HGDPH).
This architecture explicitly separates the detection head into
two specialized branches – one dedicated to classification
and the other to regression. The decoupled structure allows
each task to learn independent, task-specific features, which
improves generalization and robustness in complex visual
scenes. Moreover, to bridge the semantic gap between the
two branches, we introduce a hierarchical guidance mecha-
nism: regression outputs are utilized to guide the classifica-
tion branch via spatial alignment and foreground enhance-
ment.

As illustrated in Fig. 1, the output feature maps from the
neck are first fed into two independent branches. The re-
gression branch predicts bounding box coordinates and ob-
ject confidence scores. These outputs are then decoded and
passed through a feature extraction module (FEM) to se-
lect top-k high-confidence boxes. These regions are projected
back to the classification branch, where they act as seman-
tic anchors, guiding attention toward informative foreground
areas. This spatial correspondence not only suppresses back-
ground noise but also enriches the semantic representation
through localized feature fusion. Ultimately, the proposed
HGDPH significantly improves detection accuracy and con-
fidence estimation, especially in scenarios involving dense
layouts and occluded objects.

3.2 Revised label assignment strategy

In crowded pedestrian detection scenarios, the challenges
posed by occlusion, small-scale objects, and dense object
overlap remain a persistent obstacle for accurate detection.
Traditional label assignment strategies, such as static IoU
thresholding, are often insufficient under such conditions.
These approaches typically define a fixed intersection-over-
union (IoU) threshold (e.g., 0.5) and assign predicted boxes
to ground truth objects based solely on spatial overlap. How-
ever, in highly congested scenes where occluded or small ob-
jects abound, such rigid strategies fail to generate sufficient
high-quality positive samples, resulting in poor supervision
signals and degraded performance during training (Krish-
naveni, 2023; Sandler et al., 2018). To overcome these limi-
tations, we propose a cost-aware, dynamic label assignment
strategy that reformulates the positive sample selection prob-
lem from the perspective of optimal transport theory. Specif-
ically, we draw an analogy to a transportation cost minimiza-
tion problem (Ge et al., 2021), where predicted bounding
boxes are interpreted as goods to be delivered, and ground
truth boxes serve as destination warehouses. The objective, in
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Figure 1. Illustration of the redesigned YOLOv5 prediction head.

this metaphor, is to minimize the overall delivery cost by op-
timizing the mapping between predicted boxes and their cor-
responding objects. This formulation leads to the construc-
tion of a cost matrix that encodes both spatial and semantic
mismatches. As defined in Eq. (1), the total matching cost
between a prediction and a ground truth box is composed
of two terms: the IoU-based localization loss and the binary
cross-entropy classification loss:

Liou_loss = IoU(Pbbox,Tbbox),

Lcls_loss = BCE(Pcls,Tcls). (1)

Here, Pbbox and Tbbox denote the predicted and ground truth
bounding box coordinates, respectively, while Pcls and Tcls
represent the predicted and target classification scores. A
lower IoU loss indicates better spatial alignment between
predicted and ground truth boxes, thereby increasing the like-
lihood of the prediction being considered a valid positive
sample. To further improve adaptability, we introduce a dy-
namic positive sample selection mechanism. For each ground
truth object, we first project its bounding box across the
multi-scale feature maps generated by the backbone. Then,
we evaluate all anchor points in its vicinity using the joint
cost metric defined as

Ltotal = Lcls_loss+ 3.0×Liou_loss. (2)

The factor of 3.0 emphasizes the importance of spatial align-
ment in positive sample matching. All candidate anchors are
ranked in ascending order of this composite cost. The number
of positive samples, denoted as K , assigned to each object
is dynamically determined based on the size and quality of
the candidate anchors. Larger or well-aligned predictions are
granted more positive samples, reflecting their greater learn-
ing potential, while smaller or poorly aligned anchors receive
fewer to reduce noise, illustrated in Fig. 2. This adaptive sam-
pling strategy offers several benefits: (1) it increases robust-
ness to spatial ambiguity in crowded scenes, (2) it avoids
over-penalizing small objects, and (3) it enhances the di-
versity and relevance of the positive sample pool. Collec-

Figure 2. Illustration of the dynamic positive sample allocation
strategy.

tively, these enhancements enable the detector to more effec-
tively learn fine-grained distinctions between foreground and
background, ultimately boosting both precision and recall in
dense pedestrian environments.

3.3 Knowledge distillation based on labels

Despite the significant accuracy gains from the hierarchical
guided decoupling head (HGDPH) and dynamic label assign-
ment strategies in Sect. 3.1 and 3.2, challenges remain. A
key issue is the trade-off between model size and perfor-
mance, especially for deployment on edge devices or em-
bedded systems. To address this, we adopt knowledge dis-
tillation (KD) to compress the model without compromising
accuracy and to accelerate convergence. KD, introduced by
Hinton et al. (2015), transfers knowledge from a large teacher
network to a smaller student model using soft output proba-
bilities. These soft targets provide more informative supervi-
sion than one-hot labels by capturing inter-class relationships
and confidence levels, helping the student to learn more gen-
eralizable features. In classification-based object detection,
the teacher’s logits zi are converted to soft labels qi using a
temperature-scaled softmax:

qi =
exp(zi/T )∑
j exp(zj/T )

. (3)
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Table 2. A comparative analysis for the YOLOv5 series on the cus-
tom dataset.

Model Input size AP50 (%) AP95 (%)

YOLOv5s 640 56.7 33.4
YOLOv5m 640 64.2 38.5
YOLOv5l 640 64.9 41.1

Here, T is a temperature parameter that controls the sharp-
ness of the softmax distribution. When T = 1, the output re-
duces to a standard softmax distribution. As T increases, the
output distribution becomes softer, exposing subtle differ-
ences among class probabilities. These softened outputs are
particularly beneficial for improving generalization in low-
capacity student networks. The temperature T thus serves as
a crucial hyperparameter, enabling the tuning of the supervi-
sory signal’s granularity during distillation.

To realize label-based knowledge distillation, we adopt a
response-based feature extraction strategy, where only the fi-
nal logits of the teacher network are used to supervise the
student. This form of distillation is computationally efficient
and easy to implement, as it avoids the need to match inter-
mediate feature maps or attention weights. The primary goal
is to enhance the semantic sensitivity of the student network
while maintaining a favorable speed–accuracy trade-off.

3.3.1 Dataset configuration and training setup

We conduct experiments on a custom pedestrian detec-
tion dataset of 10 000 images from public scenes (ports,
campuses, transport hubs) with dense crowds, occlu-
sions, and cluttered backgrounds – conditions challeng-
ing for lightweight detectors. A randomly sampled valida-
tion set of 1500 images covers diverse occlusions, light-
ing, and pedestrian scales. For knowledge distillation, we
use three YOLOv5 variants – YOLOv5s (small), YOLOv5m
(medium), and YOLOv5l (large) – as teacher and student
candidates. Table 2 shows baseline performance: YOLOv5l
yields the best accuracy due to its depth, YOLOv5s offers the
fastest inference for real-time deployment, and YOLOv5m
strikes a balance between accuracy and complexity. We
adopt YOLOv5s as the student and test both YOLOv5m and
YOLOv5l as teachers to assess optimal distillation under pa-
rameter constraints.

3.3.2 Effectiveness of knowledge transfer

As shown in Table 3, YOLOv5s without distillation achieves
79.4 % AP50 and 48.5 % AP95. With YOLOv5m as teacher,
soft-label distillation improves AP50 by 4.5 % and AP95 by
2.9 %. Although a 3 % AP50 gap remains, this demonstrates
effective transfer. Using YOLOv5l as the teacher yields less
gain due to the semantic gap from its deeper architecture –
hindering the student’s ability to replicate high-level features.

This supports prior findings that over-large teacher models
can reduce transfer effectiveness. Thus, YOLOv5m proves
to be the optimal teacher, balancing knowledge richness and
transferability.

3.3.3 Training strategies for enhanced distillation

To further reduce the teacher–student gap, we test train-
ing strategies like early stopping and supervision decay (Ta-
ble 4):

1. ES-1: disable distillation in the final five epochs;

2. ES-2: disable it in the final 40 epochs;

3. DS-1: linearly decay the teacher supervision to zero
(YOLOv5m as teacher); and

4. DS-2: same as DS-1 but with YOLOv5l as the teacher.

ES-2 leads to early convergence with minimal gain
(< 0.1 %), suggesting early stopping impairs learning. In
contrast, DS-1 with YOLOv5m reduces the AP50/AP95 gap
to 2.4 %/1.3 %. ES-1 achieves a 1.9 %/1.5 % gap, showing
that late-stage independent learning can refine task-specific
features. DS-2 underperforms DS-1, reaffirming the incom-
patibility between YOLOv5l and YOLOv5s. These results
highlight the role of teacher–student compatibility in effec-
tive distillation.

3.3.4 Discussion and implications

A promising finding is the potential of a hierarchical ap-
proach: introducing an intermediate “teaching network”
(e.g., YOLOv5l-m) as a semantic bridge to ease capac-
ity transitions. This could benefit multi-stage compression
pipelines. Although YOLOv5m has twice as many param-
eters than YOLOv5s, our ES-1-trained student approaches
its accuracy with half the size, delivering strong trade-offs
in compactness and speed. Overall, knowledge distillation
emerges not just as a compression method but as a cru-
cial strategy for designing accurate, efficient detectors in
resource-limited settings.

4 Experiments

4.1 Datasets and experimental setup

In this study, we adopt YOLOv5s as the baseline detector
due to its efficient trade-off between size, speed, and ac-
curacy, making it suitable for resource-constrained applica-
tions like embedded or mobile systems. Leveraging COCO-
pretrained weights, we apply transfer learning to accelerate
convergence and improve generalization. Training is con-
ducted using stochastic gradient descent (SGD) with an ini-
tial learning rate of 0.01. For bounding box regression, we
use complete-IoU (CIoU) loss, which incorporates center
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Table 3. Distillation experiment based on the YOLOv5.

Teacher model Student model AP50 (%) Gap (%) AP95 (%) Gap (%)

YOLOv5m YOLOv5s 61.2 (+4.5) 3.0 36.3 (+2.9) 2.2
YOLOv5l YOLOv5s 57.8 (+1.1) 7.1 35.1 (+2.7) 6.0

Table 4. Experimental results of different distillation strategies.

Distillation strategy Teacher model Student model AP50 AP95
(%) (%)

Assistant network YOLOv5l-m YOLOv5s 61.1 36.1
Early stopping strategy – 1 YOLOv5m YOLOv5s 62.3 37.0
Early stopping strategy – 2 YOLOv5m YOLOv5s 61.3 36.3
Decay strategy – 1 YOLOv5m YOLOv5s 61.8 36.8
Decay strategy – 2 YOLOv5l YOLOv5s 61.4 35.6

distance, aspect ratio, and overlap, enabling more accurate
localization than simpler IoU-based losses. To ensure robust-
ness, our training dataset integrates three sources: CrowdHu-
man (Shao et al., 2018) for dense pedestrian detection and
a custom pedestrian-vehicle dataset from real-world scenes
for comprehensive evaluation. The implementation is based
on Python and C++ using PyTorch 1.7.1, running on Ubuntu
20.04 with an NVIDIA RTX 3090 GPU (24 GB RAM).
CUDA 10.1, NumPy, OpenCV, and Pandas support efficient
preprocessing and data handling.

4.2 Ablation study and competitive experiment

To comprehensively evaluate our model in dense pedestrian
detection, we conducted comparative experiments against
several mainstream lightweight real-time detectors on the
CrowdHuman dataset – a challenging benchmark featuring
dense human instances and heavy occlusion. Our evaluation
adopts two standard metrics: average precision at IoU= 0.5
(AP50) and at IoU= 0.5–0.95 (AP95), which together assess
both coarse and fine-grained localization accuracy.

Besides detection accuracy, we assessed computational
cost, including parameter count, network depth, and in-
ference speed. Reported inference time reflects only the
network’s forward pass on a single GPU image, exclud-
ing preprocessing, decoding, and non-maximum suppres-
sion (NMS), ensuring a fair comparison of architectural ef-
ficiency. Notably, inference speed depends on more than pa-
rameter count alone – it also reflects the design of convolu-
tion types, fusion strategies, input resolution, activation func-
tions, and memory patterns (Li et al., 2024). Models with
similar parameter sizes can differ significantly in graph com-
plexity, resulting in practical speed gaps. Hence, a multi-
dimensional evaluation across accuracy, efficiency, and scal-
ability offers a fairer and more informative performance
benchmark (Li, 2024).

As shown in Table 5, YOLOv3-tiny, the most lightweight
baseline, features a shallow architecture and achieves the
fastest inference time (4.6 ms per image) due to its simplified
backbone and detection heads. However, this speed comes
at the cost of low accuracy (30.5 % AP50), with high false-
negative and false-positive rates in crowded scenes, making
it unsuitable for safety-critical applications. YOLOv5-Ghost
(Han et al., 2020) improves upon YOLOv3-tiny by using
Ghost convolution modules to reduce redundancy and en-
hance speed. It cuts over 50 % of parameters and improves
AP50 by 9.7 points. However, its precision remains insuffi-
cient for detecting occluded pedestrians. Among all tested
models, YOLOv5l achieves the highest accuracy (52.7 %
AP95) due to its deep architecture with 607 layers and 76.8M
parameters, enabling fine-grained localization. However, its
heavy design limits real-time deployability on edge devices
due to increased memory and computation costs. To address
this, we propose a lightweight yet high-performance model
with re-parameterization (Ding et al., 2021), Ours-reparam,
which incorporates knowledge distillation and structural re-
parameterization. The former enables a compact student
model to mimic a larger teacher’s predictions, while the latter
merges multi-branch structures into an efficient single-path
model at deployment. By removing 75 redundant layers via
re-parameterization, our model reduces the parameter count
to 9.8M, making it more suitable for edge platforms. Despite
its lightweight nature, it achieves 83.9 % AP50 and 53.8 %
AP95, outperforming all lightweight baselines. Moreover, its
7.1 ms inference time is 281.7 % faster than YOLOv5l, set-
ting a new benchmark for real-time pedestrian detection in
dense and occluded scenarios.

4.3 Visual comparison

To assess model performance visually, we compare
YOLOv5l and our detector on representative images from
CrowdHuman, VisDrone2019, and our custom dataset in
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Table 5. The competitive experiments on the CrowdHuman dataset.

Model Layers Weight size AP50 AP95 Latency
(MB) (%) (%) (ms)

YOLOv3 (Redmon and Farhadi, 2018) 333 61.9 81.6 49.4 30.2
YOLOv3-tiny (Redmon and Farhadi, 2018) 59 8.9 60.5 30.5 4.6
YOLOv4-csp (Wang et al., 2020; Bochkovskiy et al., 2020) 513 52.9 81.2 49.5 27.8
YOLOv4-tiny (Bochkovskiy et al., 2020) 93 6.1 65.7 35.6 4.9
YOLOv5l (Jocher, 2020) 607 76.8 83.9 52.7 27.1
YOLOv5s-ghost (Han et al., 2020; Jocher, 2020) 453 3.9 73.9 40.2 5.8
YOLOv7-tiny (Wang et al., 2023) 255 6.2 75.1 41.6 5.0
Ours-m 396 28.9 85.7 53.1 16.0
Ours-s 297 10.2 83.9 53.8 8.4
Ours-s-reparam 222 9.8 83.9 53.8 7.1

Figure 3. The visual prediction comparison of five test images. All images are from CrowdHuman (Shao et al., 2018).

https://doi.org/10.5194/ms-16-877-2025 Mech. Sci., 16, 877–886, 2025
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Fig. 3. The baseline fails to detect heavily occluded pedes-
trians, often missing partially hidden targets. In contrast, our
model, with a compact structure, effectively detects occluded
pedestrians and maintains high confidence for large unoc-
cluded objects.

5 Conclusions

In this work, we address the challenges associated with
pedestrian detection in crowded scenarios, including the in-
creased number of small-scale objects, severe occlusions,
and the deployment limitations imposed by edge-computing
devices. To tackle these issues, we propose a model optimiza-
tion scheme that integrates several key strategies: a hierar-
chical structure that decouples classification confidence pre-
diction and bounding box regression into separate branches,
a dynamic matching strategy to enhance positive sample
assignment for small and occluded objects, and a knowl-
edge distillation framework to balance speed and accuracy in
lightweight models. Our proposed detection model achieves
an accuracy of 53.8 % AP95 and an inference speed of 7.1 ms
per image on the CrowdHuman test set, delivering state-of-
the-art performance among real-time detection models.
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