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Abstract. This paper introduces a mobile mechanism inspired by three-dimensional Hilbert curves, compris-
ing the Hilbert first-order curve mobile mechanism (HFCM) and the second-order curve mobile mechanism
(HSCM). The HFCM, a bipedal system, utilizes seven actuated telescopic joints to replicate the geometric
expansion–contraction behaviour of the first-order Hilbert curve. Featuring an amoeba-like adaptive morphol-
ogy, this mechanism demonstrates high manoeuvrability in confined environments such as narrow pipelines and
rubble zones through sequential segment actuation. Stability analysis, kinematic modelling, and experimental
validation confirmed its capabilities for static walking, rotational motion, and stair negotiation on planar sur-
faces. The HSCM, designed based on the second-order Hilbert curve, underwent comprehensive gait planning
and dynamic stability evaluation. ADAMS simulations validated its planar translation and omni-directional ro-
tation performance under uniform mass distribution. This research establishes a novel design framework for
reconfigurable mechanisms, with future work focusing on developing higher-order Hilbert curve-based systems
and exploring their applications in disaster response robotics.

1 Introduction

The design of the mechanism may be approached in a num-
ber of ways. One such method is to combine the regular geo-
metric patterns found in mathematics as a basis for designing
the mechanism to be made into a physical entity. This may
then be actuated so that it has a variety of motions. Such a de-
sign may be analysed using spiral theory (Gogu, 2005), the
centre of gravity offset method (COG) (Phipps et al., 2008),
the zero moment method (ZMP) (Tian and Yao, 2015), etc.
It is usual for this combined design to be classified into the
following three types.

1. The design of planar mechanisms involves the combina-
tion of planar geometries, with the nodes of these mech-
anisms being designed as rotary joints and the edges or
interior being designed as mobile joints. Sugiyama et al.
(2005) utilized a circle as a reference to design a circu-
lar mechanism for crawling, with the shape of the exter-
nal flexible crawler being controlled through the inter-
nal rigid structure to achieve mobility. Liu et al. (2012a)

employed a triangle as a basis for the design of a new
type of triangular mechanism, with the triangular shape
being a fundamental element of the design. An analysis
was conducted of in-plane linear walking and up-step
movement. Subsequently, the steering function was re-
alized through enhancement of the structure. Liu et al.
(2012b) proposed a series of mobile 4R linkage mech-
anisms to accomplish rolling gait, utilizing the paral-
lelogram as a template. These linkage mechanisms are
capable of performing straight-line movement or turn-
ing movement. Wang et al. (2018) combined the ortho-
five deformation with the circular ring and proposed a
closed five-circle arc rod mechanism for the morpholog-
ical rolling mechanism. Yao et al. designed a hexagonal
mechanism based on the hexagonal shape with multiple
deformations that can be rolled in a manner modelled on
a track. Hao et al. (2020) designed two single-degree-of-
freedom rolling extensible mobile linkage mechanisms
whose shapes can be considered as originating from
hexagonal and octagonal shapes. This combined design
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retains the dimensions of plane geometry, thereby im-
posing limitations on the direction of motion when mov-
ing on a plane.

2. The integration of plane geometry in the design of spa-
tial mechanisms: the combination of multiple plane ge-
ometries results in the formation of a spatial geomet-
ric pattern, wherein the nodes of the plane geometries
are engineered as rotary joints. Böhm et al. (2016) pro-
posed a mobile mechanism based on a tensile mono-
lithic structure, in which two rigidly disconnected bend-
ing members of the system can be regarded as two ver-
tically arranged semi-circles connected by multiple ten-
sile members. These members are capable of movement
in a specific direction, facilitated by the action of inter-
nal mass. Semi-circular rings, connected by several ten-
sile members, can be moved in a certain direction un-
der the action of internal mass. Sugiyama et al. (2005)
arranged three rings in a vertical configuration with re-
spect to each other and proposed a spherical soft mech-
anism that is capable of crawling and jumping. Wei et
al. (2019) arranged three octagons in a vertical con-
figuration with respect to each other in a similar way
to achieve rolling motion. Tian et al. (2015) connected
eight identical isosceles right triangles with rotary joints
to form a rolling eight-bar linkage mechanism. Eight
identical equilateral triangles are connected with rotary
joints in order to create a deformable polyhedral mech-
anism. These two designs can achieve various forms
of rolling. Liu et al. (2012c) designed a basic biped
RCCR mechanism, which can be structurally viewed
as a smaller square inside a square, through the two
squares’ sequentially leaving and landing on the ground
to achieve a walking gait.

3. The design of spatial mechanisms by combining spa-
tial geometry: spatial geometry is integrated into the
structural design by establishing rotational joints, mov-
ing joints, and actuation. Kilin et al. (2015) conceived a
combined spherical mechanism with a spherical shape,
and by moving the centre of mass and altering the mo-
mentum of the internal gyroscope, it can attain an ar-
bitrary trajectory motion along the plane. Chang et al.
(2022) divided the spherical surface into two hemi-
spherical surfaces and set up a jumping structure in
the middle, with the hemispherical surface being de-
signed as a wheel, which can achieve rotation, rolling,
and jumping motion. Bian et al. (2024) proposed a
novel wheeled rolling robot composed of a planar
3-RRR parallel mechanism and spoke-type variable-
diameter wheels and validated its ability to perform lin-
ear rolling, turning, and small-angle climbing through
kinematic/dynamic modelling, simulation, and proto-
type experiments. Building on the theoretical foun-
dation of the planar 6R single-loop chain, Liu et al.

(2024) developed a 4–5R rolling mechanism and in-
troduced a unified gait strategy expression along with
evaluation indices, achieving both high-speed and sta-
ble rolling gaits through simulation and physical valida-
tion. More recently, Xun et al. (2025) designed an anti-
parallelogram ring four-array rolling mechanism capa-
ble of flexibly switching among parallelogram rolling,
anti-parallelogram tumbling, and spherical rolling gaits,
with its feasibility confirmed through dynamic anal-
ysis and experiments. Mahboubi et al. (2013) mixed
the structure of spherical and common quadrupedal
mechanisms and proposed a new hybrid quadrupedal
football-shaped mobile mechanism. Li et al. (2020)
based their deformable tetrahedral rolling mechanism
on a tetrahedron design, comprising four platforms and
six URU chains. Building on this, Liu et al. (2020a)
added four branching tetrahedra to design a new de-
ployable tetrahedral mobile mechanism consisting of an
eight-degree-of-freedom Sarrus link mechanism. Abra-
hantes et al. (2008) also designed a mechanism based
on tetrahedra that can walk. Liu and Yao (2019) pro-
posed a novel nine-degree-of-freedom series parallel
hybrid worm mechanism by combining the worm’s
kinematic mechanism and the combinatorial properties
of the series-parallel structure, which can be conceptu-
alized as a tri-prism with deformation capability. Paul
and Lipson (2005) combined the tensioning mechanism
with the characteristics of tri-prisms and torsion quad-
rangles and designed a mechanism based on the tension-
ing of the whole body by three and four strut prisms,
where the mechanism can move in a straight line under
the motion of the tensioning structure. Liu et al. (2020b)
proposed and analysed a novel spring-containing ten-
sioned integral mechanism by combining the tension-
ing mechanism with rhombohedrons. Cui et al. (2022)
proposed a tensioned integral leg quadrupedal mecha-
nism by designing such a mechanism as the foot of a
quadrupedal mechanism. Tian et al. (2017) designed a
reconfigurable multimodal mobile parallel mechanism,
whose structure can be considered as setting the rota-
tional joints at the vertices of a rectangular body and at
the centres of the prismatic edges. Ding and Yao (2017)
proposed a type of expandable cubes (E-cubes) that can
achieve a variety of mobility functions by combining
multiple E-cubes into different configurations. This was
achieved by combining the mobile joints with a square
body. Ding and Yao (2014) set a large number of mo-
bile joints on a square structure so that the square can
achieve rolling motion. A comparison of HFCM/HSCM
with a similar mechanism as the above is shown in Ta-
ble 2.

The majority of mechanisms conceived under these three cat-
egories are closed-chain mechanisms and shorter open-chain
mechanisms with predominantly rolling motion. However, in
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our design, the longer open-chain mechanism is employed. In
this paper, we propose a moving mechanism based on Hilbert
curve features. The primary advantage of this mechanism is
its ability to move and rotate smoothly along a straight line on
a flat surface while requiring a relatively simple control strat-
egy. The three-dimensional (3D) Hilbert curve, as a represen-
tative space-filling curve, has attracted increasing attention
in the robotics field due to its advantages in locality preser-
vation and spatial coverage. In path planning, it enables the
generation of continuous and uniformly distributed trajecto-
ries, making it suitable for coverage tasks such as inspec-
tion, spraying, and cleaning. Compared with conventional
approaches, it reduces the number of turns and improves mo-
tion efficiency. In 3D environment modelling and perception,
the 3D Hilbert curve has been utilized for point cloud or-
dering and sparse sampling, thereby accelerating voxel parti-
tioning and data retrieval and enhancing the real-time per-
formance of SLAM and 3D reconstruction. Moreover, its
data-mapping and partitioning capabilities have shown po-
tential for multi-robot systems, particularly in workload dis-
tribution and storage optimization. In addition, researchers
have explored its role in workspace division and coopera-
tive task allocation to improve operational uniformity and
system-level efficiency.In computational modelling and sim-
ulation, 3D Hilbert curves offer advantages in terms of effi-
cient data management and visualization. For example, in the
context of 3D city modelling, 3D Hilbert space-filling curves
(HSFCs) can significantly accelerate spatial queries by pro-
viding a linearized representation of complex 3D data, which
is especially useful for applications in urban planning and
photogrammetry (Ujang et al., 2014). Similarly, in volumet-
ric mesh visualization, an adaptive strategy based on extend-
ing the autonomous leaves graph to 3D, potentially leverag-
ing principles akin to Hilbert curves, can reduce the compu-
tational cost of constructing and visualizing complex volu-
metric data generated from numerical simulations (Robaina
et al., 2010). The Hilbert curve also aids in the visual com-
parison of 3D volumes by linearizing them into 1D Hilbert
line plots, which can reveal subtle differences in ensembles
of 3D data, as shown in applications such as medical imaging
or materials science (Weissenbock et al., 2018).

Despite these promising applications, several challenges
remain. First, the construction of 3D Hilbert curves is com-
putationally complex, and high-order curves impose signif-
icant overhead on real-time generation and embedded sys-
tems. Second, the inherent sharp turns within Hilbert-based
trajectories often conflict with the kinematic and dynamic
constraints of robots, limiting efficiency and feasibility in
practice. Third, the curve is naturally suited to regular cubic
spaces, while real robotic environments are typically irregu-
lar and dynamically changing. Integrating 3D Hilbert curves
with real-time obstacle avoidance and dynamic re-planning
thus remains an open issue. Furthermore, in multi-robot col-
laboration, task division and trajectory scheduling based on

Hilbert curves have yet to fully resolve conflicts and ensure
fairness.

Overall, research on 3D Hilbert curves in robotics is of sig-
nificant value and importance. On the one hand, it provides
a mathematically elegant and computationally efficient ap-
proach for addressing coverage, data organization, and task
allocation problems. On the other hand, it offers a unifying
framework that bridges geometric theory with robotic mo-
tion planning and intelligent decision-making. Future inves-
tigations into adaptive curve optimization, integration with
dynamic perception, and multi-robot coordination are there-
fore not only necessary for overcoming current limitations
but also critical for unlocking the full potential of Hilbert-
curve-based methods in advancing robotic intelligence and
autonomy. Integrating the three-dimensional Hilbert curve
with mechanism design provides a novel perspective for sub-
sequent robotic design.

The contributions of this paper are as follows:

1. A novel design concept integrating the spatial properties
of mathematical curves with the design of mechanical
mechanisms is introduced.

2. A first-order and second-order curve moving mecha-
nism based on the characteristics of Hilbert curves is
proposed. This mechanism exhibits a variety of moving
functions.

The paper is organized as follows: Sect. 2 details the design
of the mechanism; Sect. 3 presents the stability analysis of
the first-order and second-order mechanisms and the motion
analysis of the first-order mechanism; Sect. 4 presents the
simulation analysis; Sect. 5 shows the experiments on the
first-order prototype; and Sect. 6 offers a summary and an
outlook for future work.

2 Design method

The three-dimensional (3D) Hilbert curve originates from the
Hilbert curve proposed by the German mathematician David
Hilbert in 1891 (see Fig. 1), which is a fractal curve capa-
ble of filling a two-dimensional square. As a natural exten-
sion, the 3D Hilbert curve maps a one-dimensional sequence
onto three-dimensional space through a recursive construc-
tion, thereby achieving space-filling within a cubic domain;
see Fig. 2 (Chen et al., 2022).

2.1 Design of HFCM

The Hilbert first-order curve moving mechanism (HFCM)
has been designed based on three-dimensional Hilbert first-
order curves, which exhibit a variety of spatial types (Zhang
and Kamata, 2006). The HFCM has been designed with
the spatial characteristics of the type of Fig. 2, which is a
bipedal mechanism with a three-dimensional Hilbert first-
order curve configuration. The three-dimensional Hilbert
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Figure 1. Hilbert curve. (a) First order, (b) second order, (c) third
order.

Figure 2. 3D Hilbert curve. (a) First order, (b) second order,
(c) third order.

first-order curve consists of seven straight lines and six folds.
The telescoping of the seven straight lines in the curve is re-
alized by seven moving joints with actuators, as illustrated
in Fig. 3c. Utilizing the motorized telescopic rods as moving
joints with actuation enables them to function as reversible
unfolding pillars. The adjustment of the position of the elec-
tric telescopic rod is conducted in accordance with the con-
figuration depicted in Fig. 3c, with the objective of enhancing
the compactness of the overall structure, reducing its dimen-
sions, minimizing its weight, and aligning the spatial char-
acteristics of the HFCM with those of the three-dimensional
Hilbert first-order curve. The addition of linear bearings and
guide shafts serves to enhance the strength and precision of
the mechanism whilst concomitantly reducing the influence
generated by gravity, as illustrated in Fig. 3d. The eight nodes
are labelled A, B, C, D, E, F , G, and H , and the configura-
tion is illustrated in Fig. 3a and b. Between points A and B,
there are two rods connected by a mobile joint with a travel
of 1l. The assembly of points B and C, C and D, D and E,
E and F , F andG, andG andH is identical. The structure of
Foot1 consists of a rod between points A and B and two sup-
port structures fixed below. The second foot (Foot2) consists
of a rod between pointsG andH and three support structures
fixed below. The support structure consists of a support rod
and a base plate in contact with the ground. Seven mobile
joints made of rods are connected to each other at the first
point. Thus, the HFCM is a spatial open-chain mechanism
with eight rods and seven moving joints. In the following,
the foot containing points A and B is designated Foot1, and
the foot containing points G to H is designated Foot2.

2.2 HFCM’s principle of mobility

In light of the gravitational forces at play, the focus is
narrowed to the study of the HFCM’s degrees of free-
dom along the x and y axes within the two-dimensional
plane. The underlying principle governing the act of walk-
ing is elucidated as follows. For the x-axis direction,
consider curve A0B0C0D0E0F0G0H0 shown in Fig. 4a.
ai is the centre of mass of the eight connectors. Fig-
ure 4a shows the initial stance. If Foot1 is the stance
foot, B0C0 and D0E0 are expanded to change the curve
to A0B0C1D1E1F1G1H1. As shown in Fig. 4b, Foot2
lifts, and the EFGH part of the curve is shifted posi-
tively along the x axis by 1l. Then, expanding F1G1, to
change the curve configuration to A0B0C1D1E1F1G2H2,
Foot2 falls. Similarly, Foot2 is the standing foot. The con-
figuration curve A0B0C1D1E1F1G2H2 is transformed into
a curve A1B1C2D2E1F1G2H2 by sequentially contracting
or expanding the straight lines in the curve. Lifting Foot1,
the ABCD part of the curve is shifted positively along
the x axis by 1l. Then, the configuration i changed to
A2B2C2D2E1F1G2H2. As demonstrated in Fig. 4f, at this
particular point, the curve exhibits the same attitude as the
initial curve. The curve as a whole is shifted positively along
the x axis by1l. It is evident that by repeating procedures (b)
to (e) in Fig. 4, the curve can be continuously shifted posi-
tively along the x axis. In a similar manner, by inverting the
trajectory of a curve that is progressing in a positive direc-
tion along the x axis, the curve can be repeatedly shifted in a
negative direction along the same axis.

In Fig. 5, the curve is A0B0C0D0E0F0G0H0. Figure 5a
shows the initial attitude. When Foot1 is the standing foot,
B0C0 and E0F0 expand to change the configuration to
curve A0B0C1D1E1F1G1H1 to lift Foot2. Then, chang-
ing the configuration to curve A0B0C1D1E1F1G2H2, Foot2
falls. At this point, Foot2 is the standing foot, and then
E1F1 and B0C1 contract, expand, and lift Foot1. Then, the
configuration is changed to curve A2B2C2D2E2F2G2H2.
At this point, the curve as a whole advances along the y
axis by 1l. Then, the straight lines in the curve are con-
tracted or expanded in sequence, turning the curve into
curve A4B4C3D2E2F2G3H3, and Foot1 falls. Subsequently,
the configuration is to be altered to A2B2C2D2E2F2G3H3,
with Foot2 then being elevated. Finally, the configuration is
changed to A2B2C3D3E3F3G4H4, as illustrated in Fig. 5g.
When Foot2 falls to the ground, the curve has the same
attitude as the initial curve. At this juncture, the curve is
shifted positively along the y axis by 21l. By repeating pro-
cedures (b) to (f) illustrated in Fig. 5, the curve can be shifted
positively along the y axis in a continuous manner.

Conversely, the curve can be continuously moved in the
negative direction along the y axis by reversing the configu-
ration of the curve’s gait in the positive direction along the y
axis.
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Figure 3. (a) Settings for first-order curve movement joints. (b) Schematic diagram of the mobile drive setup. (c) Simplified scheme of
HFCM. (d) Diagram of 3D model. (e) 3D model. (f) Axonometric drawing.

Figure 4. Gait diagram of forward movement along the x axis. (a) Gait 1, (b) gait 2, (c) gait 3, (d) gait 4, (e) gait 5, (f) gait 6.

2.3 Design of HSCM

The three-dimensional Hilbert second-order curve depicted
in Fig. 6a comprises eight first-order curves, which are in-
terconnected by 63 straight segments of equal length. As
demonstrated in Fig. 6b, the second-order curves can be ar-

ranged in a more compact configuration within the three-
dimensional square space. The points A1–A64 represent the
centres of 64 small squares, which are arranged in a stacked
configuration to form a large square, and they also serve as
the nodes of the second-order curves, respectively.
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Figure 5. Gait diagram for forward movement along the y axis. (a) Gait 1, (b) gait 2, (c) gait 3, (d) gait 4, (e) gait 5, (f) gait 6, (g) gait 7.

Figure 6. (a) 3D Hilbert second-order curve. (b) Mobile driver configuration diagram.

The Hilbert second-order curvilinear moving mechanism
(HSCM) necessitates a minimum of 30 telescopic rods, the
corresponding positions of which are delineated in Fig. 7a.
The red thick solid line signifies the requirement for a tele-
scopic rod at that specific position. Leveraging this data, the
structural design of the second-order moving mechanism is
executed as follows:

1. The square space that the second-order curvilinear mov-
ing mechanism occupies is designed as the shape of the
mechanism itself.

2. It is important to note that components A1–A10 and
A55–A64 are exclusively implicated in the inverted re-
set motion. Consequently, the geometric characteristics
of these components are streamlined in the structural

design by eliminating components A5–A10 and A55–
A60 and establishing direct connections between com-
ponents A5A10 and A55A60 via straight lines, as illus-
trated in Fig. 7b.

3. The curved node part should be designed as a node con-
nector, with 30 pushrods set between the connectors
and combined with each other if no pushrods are set
between the neighbouring connections and designed as
one connector. Given that the inner part of the mech-
anism is a tandem mechanism, it is also necessary to
add a guide rail structure similar to the first-order curve
mechanism to increase the structural strength.

The three-dimensional diagram illustrating the structure of
the second-order curve mechanism is presented in Fig. 8a
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Table 1. HSCM base gait.

Gait Gait name Gait Gait name Gait Gait name
code code code

G2,1 Positive movement of the x axis G2,7 y-axis positive step up G2,13 x-axis positive uphill
G2,2 Negative shift of the x axis G2,8 y-axis negative upward step G2,14 x-axis negative uphill
G2,3 Positive movement of the y axis G2,9 x-axis positive step down G2,15 y-axis positive downhill
G2,4 Negative shift of the y axis G2,10 x-axis negative downward step G2,16 y-axis negative downhill
G2,5 x-axis positive step up G2,11 y-axis positive down steps G2,17 Turn clockwise
G2,6 Negative x-axis step up G2,12 y-axis negative downward step G2,18 Turn anticlockwise

Table 2. Mechanism comparison.

Contrast
dimension

HFCM/HSCM Existing mobile mechanism Advantages of the HFCM/HSCM

Structural
design

HFCM: bipedal structure, 7
degrees of freedom, using
telescopic joints to achieve
three-dimensional first-order
Hilbert curve morphology.
HSCM: hexahedral frame with
30 telescopic rods to achieve a
second-order curve form.

Planar mechanisms, e.g. circular
(Sugiyama et al., 2005), triangular (Liu
et al., 2012a), 4R link (Liu et al.,
2012b): limited to two-dimensional
movements.
Spatial mechanisms, e.g. tensioned
monoliths (Böhm et al., 2016),
tetrahedra (Li et al., 2020): complex
closed chains or rigid structures.

Space-filling deformation: compact
folding/unfolding by means of
telescopic rods (HSCM for confined
spaces).
Modular expandability: higher-order
curves support multifunctional
adaptation.

Mobile
mode

HFCM: plane straight walk,
rotation in place, climbing
stairs.
HSCM: plane movement,
rotation, climbing.

Rolling mechanism, e.g. spherical
(Chang et al.,2022), octagonal (Wei et
al., 2019): limited to rolling or
jumping.
Footed robots, e.g. RCCR (Liu et al.,
2012c): limited by joint configuration.

Multimodal motion: integrates
walking, rotating, and
obstacle-crossing functions in a single
unit.
Smooth trajectory: Hilbert curve
geometry ensures continuous motion
without abrupt changes.

Application
scenario

HFCM: flat terrain, simple
obstacles (stairs).
HSCM: narrow space
(pipeline), debris search and
rescue.

Spherical robots (Chang et al., 2022):
limited load capacity.
Tetrahedral walkers (Abrahantes et al.,
2008): low speed and manoeuvrability.

Load efficiency: the compact design of
the HSCM allows for carrying sensors
into confined areas.
Environmental adaptability: deformed
structure can travel through rubble or
crevices.

and b. Figure 8a depicts the state in which the mechanism
is fully expanded, exhibiting the spatial characteristics of the
second-order curve. The second-order curve mechanism con-
sists of 31 node connecting blocks Ni (i = 1, 2, . . . , 31). The
state of complete contraction of the mechanism is illustrated
in Fig. 8b, where the mechanism adopts a positive six-sided
configuration comprising 30 telescopic drives, guide rails,
and control boxes. The guide rails are composed of metal
rods and linear bearings, with the node connecting blocks po-
sitioned in groups of four between the guide rails to enhance
the structural integrity of the mechanism. The control boxes
are situated within the first and last node connecting blocks
of the mechanism, serving as storage for the control board.
The control box is located in the first and last node blocks of
the mechanism and is used to store the necessary electronic

components, such as control boards, actuators, and batteries.
The basic gait for designing the HSCM is shown in Table 1.

2.4 HSCM gait design

The initial state of planar walking is illustrated in Fig. 9. By
executing the gait planning of G2,1 and G2,3 in reverse, the
G2,2 and G2,4 gait can be derived. Additionally, due to the
high symmetry of the lower part of the residual curve, G2,2
and G2,4 can also be derived by setting G2,1 and G2,3 sym-
metrically, respectively. In this study, symmetry is employed
for the planning, and the planar walking gait planning is de-
picted in Figs. 10 to 13. As illustrated in Figs. 10 through
13, the subsequent gaits ofG2,5 andG2,18 exhibit symmetry.
Consequently, it is sufficient to plan the various types of mo-
tion along the x-axis positive, y-axis positive, and clockwise
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Figure 7. (a) Second-order curve expansion rod setting position
diagram. (b) Spatial feature graph based on the second-order curve
mechanism.

Figure 8. (a) 3D view of the structure of the second-order curvilin-
ear mechanism (fully expanded). (b) 3D view of the structure of the
second-order curvilinear mechanism (fully contracted).

Figure 9. Schematic diagram of the initial state of planar walking.

motion. Subsequently, the setup should be mirrored, and mi-
nor adjustments should be made to derive the x-axis negative,
y-axis negative, and anticlockwise motion. A comparison of
HFCM and HSCM as above is shown in Table 3.

3 Stability and kinematic analysis

3.1 Static stability analysis

The zero moment point (ZMP) is a key indicator that the
robot remains statically stable and needs to ensure that it is

Figure 10. Schematic representation of the expansion and contrac-
tion of G2,1.

Figure 11. Schematic representation of the expansion and contrac-
tion of G2,2.

Figure 12. Schematic representation of the expansion and contrac-
tion of G2,3.

Figure 13. Schematic diagram of the expansion of G2,4.

located within the support area of the supporting foot. The
area of support is determined by the area of the soleplate at
the end of the foot.

In order to guarantee the stability of the HFCM during op-
eration, the position of the ZMP must be calculated using the
zero moment point (ZMP) principle. The conditions for sta-
ble movement of the HFCM are as follows: the ZMP must
be within the support area of Foot1 and Foot2. The following
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Table 3. Differences between HFCM and HSCM.

Comparison term HFCM HSCM

Structural complexity Seven driven mobile joints, eight links,
bipedal support structure

30 telescopic rods, 31 nodal connecting blocks,
hexahedral frame construction

Space-filling capacity 3D curves consisting of seven segments of
straight lines

Compact 3D filled structure of eight first-order
curves (64 cubic cells)

Support method Bipedal (Foot1 with two supports, Foot2
with three supports)

Multi-node support (distributed support based on
hexahedral base)

Motor function Planar linear travel (x/y axis) – rotate in
place – stair climbing

Planar movement (x/y axis forward and backward)
– in situ rotation (clockwise/anticlockwise) – up
and down slopes

Driving strategy Single-joint independent drive (motorized
telescopic pole)

Multi-joint cooperative drive (distributed control)

Stability analysis Static stability based on the ZMP principle
(neglecting acceleration)

Dynamic stability analysis (with rotation matrix
and coordinate system transformations)

Typical deformation
patterns

Expanding as a first-order curved form,
contracting as a bipedal support structure

Expands to a second-order curvilinear form and
contracts to an ortho-hexahedron (with control
box)

Application scenario Plane walking, simple obstacle crossing
(stairs)

Complex terrain adaptation (rubble, pipelines),
multimodal tasks (search and rescue, detection)

Control complexity Centralized control (single control box) Distributed control (multi-node coordination)

Verification method Physical prototype experiments (walking in
a straight line, rotating, going up stairs)

ADAMS simulation (planar movement, rotation)

Table 4. The rotation angle of step j in G2,13–G2,16.

Gait 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

ξ
G2,13
j

0° 9.2° 9.7° 0° 0° 0° 2.6° 5.1° 0° 0°

ξ
G2,14
j

0° −9.2° −9.7° 0° 0° 0° −2.6° −5.1° 0° 0°

ξ
G2,15
j

0° 26.6° 0° 0° 0° 0° 0° 0° 0° 0°

ξ
G2,16
j

0° −26.6° 0° 0° 0° 0° 0° 0° 0° 0°

equations comprise the ZMP calculation:



xZMP =

 n∑
i=1

mi (z̈i+gz)xi−
n∑
i=1

mi ẍizi−

(
n∑
i=0

Jiαi

)
y


n∑
i=1

mi (z̈i+gz)

yZMP =

[
n∑
i=1

mi (z̈i+gz)yi−
n∑
i=1

mi ÿizi−

(
n∑
i=0

Jiαi

)
x

]
n∑
i=1

mi (z̈i+gz)

. (1)

This HFCM travels in a straight line with static stability as it
moves along the x and y axes; therefore, acceleration and an-
gular acceleration are neglected, and the mass of each linkage

is the same. The ZMP of the HFCM is calculated as follows:

xZMP =

 n∑
i=1

mi (z̈i+gz)xi−
n∑
i=1

mi ẍizi−

(
n∑
i=0

Jiαi

)
y


n∑
i=1

mi (z̈i+gz)

yZMP =

[
n∑
i=1

mi (z̈i+gz)yi−
n∑
i=1

mi ÿizi−

(
n∑
i=0

Jiαi

)
x

]
n∑
i=1

mi (z̈i+gz)

. (2)

When the HFCM moves along the x axis and y axis,{
xZMP =

xA+xB+xC+xD+xE+xF+xG+xH
8

yZMP =
yA+yB+yC+yD+yE+yF+yG+yH

8
. (3)

In order to maintain static stability, it is necessary that the
ZMP be located within the support area. When Foot1 is des-
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Figure 14. (a) Motion along the x-axis xh1, xh4, xk1, xk3, and
xZMP trajectory graph. (b) Motion along the x-axis yh1− d1/2,
yh2+ d1/2, yh4− d2/2, yh4+ d2/2, and yZMP trajectory graph.

ignated as the support foot, the support region is generated
by the two base plates contained within Foot1. In order for
this to be satisfied, the following conditions must be met:

xh1 < xZMP < xk1yh1− d1/2< yZMP < yh2+ d1/2. (4)

In the configuration where Foot2 assumes a supportive role,
the supporting area is delineated by the base plate positioned
centrally within Foot2. The conditions that must be met to
ensure the efficacy of this configuration are as follows:

xk3 < xZMP < xh4, yh4− d2/2< yZMP < yh4+ d2/2. (5)

Use the following parameters: LAB = LCD =

LDE = LEF = LGH = 90 mm, LBC = LFG = 80 mm,
L8 = 45 mm, l1 = 68.75 mm, l2 = 55 mm, u1 = 80 mm,
u2 = 10 mm, u3 = 80 mm, t1 = 1 s, d1 = 7.5 mm,
d2 = 65 mm, θ = arctan(55/41.25), and 1l = 50 mm.

As the HFCM traverses the x axis, the trajectories of xh1,
xh4, xk1, xk3, and xZMP are exhibited in Fig. 14a, while the
trajectories of yh1−d1/2, yh2+d1/2, yh4−d2/2, yh4+d2/2,
and yZMP are delineated in Fig. 14b.

As illustrated in Fig. 14, the ZMP consistently resides
within the support range during the movement of the HFCM
along the x axis, thereby satisfying the condition of static
stability.

Figure 15. (a) Motion along the y-axis xh1, xh4, xk1, xk3, and
xZMP trajectory graph. (b) Motion along the y-axis yh1, yh2,
yh3− d2/2, yh3+ d2/2, and yZMP trajectory graph.

As the HFCM traverses the y axis, the trajectories of xh1,
xh4, xk1, xk3, and xZMP are depicted in Fig. 15a, while the
trajectories of yh1, yh2, yh3−d2/2, yh3+d2/2, and yZMP are
illustrated in Fig. 15b.

As demonstrated in Fig. 15, during the movement of the
HFCM along the y axis, xZMP remains within the support
range at all times, while yZMP approaches the line yh3−d2/2
at the 16 s mark. However, it remains above the line yh3−

d2/2, which remains within the support range. This fulfils
the condition of static stability.

Consequently, the HFCM is capable of moving in a
smooth and continuous straight line along both the x axis and
y axis. Furthermore, by integrating the gaits of linear move-
ment along the x axis and y axis, the HFCM is capable of
achieving movement between any position on the plane

3.2 HFCM kinematic analysis

A simplified scheme of the HFCM is shown in Fig. 16. In
the figure, points A, B, C, D, E, F , G, and H are the cen-
tre of mass of each connecting link. Li (i = 1, 2, 3, 4, 5, 6,
7) are the distances to the neighbouring centres of mass, re-
spectively, and are the distances from the support structure
in the middle of Foot2 to the G points. hi (i = 1, 2, 3, 4, 5)
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are the connection points between the support rods and the
base plate in each support structure. k1k2 are the centres of
the ends of the two base plates in Foot1, and k3 is the centre
point of the end of the middle base plate of Foot2. l1 is the
length of the support rods in the support mechanism on both
sides in Foot1 and Foot2. l2 is the length of the support bar
in the Foot2 intermediate support mechanism. θ is the angle
between the support bar and the base plate on both sides in
Foot1 and Foot2. u1 is the length of the bottom plate on both
sides in Foot1. u2 is the length of the bottom plate on both
sides in Foot2. u3 is the length of the middle base plate of
Foot2. The width of the bottom plate on both sides in Foot1
and Foot2 is d1. The width of the Foot2 intermediate base
plate is d2.1l is the travelling distance of each moving joint.
The time for each joint to complete 1l telescopic stroke is
t1. The centre of mass (CM) of the HFCM is located at the
centre of the system. The CM coordinates are as follows:

CM=
[

CMx CMy CMz

]T
. (6)

The objective of the positive kinematic analysis is to as-
certain the coordinates of points h3 and h4 for stationary
footholds and points h1 and h2 for stationary footholds dur-
ing the linear travel of the HFCM along the x axis and y axis,
utilizing the aforementioned parameters.

A=
[
xh1 yh1 + I1 zh1 + I2

]T
B =

[
xh1 yh1 + I1 +L1 zh1 + I2

]T
C =

[
xh1 yh1 + I1 +L1 zh1 + I2 +L2

]T
D =

[
xh1 yh1 + I1 +L1 −L3 zh1 + I2 +L2

]T
E =

[
xh1 +L4 yh1 + I1 +L1 −L3 zh1 + I2 +L2

]T
F =

[
xh1 +L4 yh1 + I1 +L1 −L3 +L5 zh1 + I2 +L2

]T
G=

[
xh1 +L4 yh1 + I1 +L1 −L3 +L5 zh1 + I2 +L2 −L6

]T
H =

[
xh1 +L4 yh1 + I1 +L1 −L3 +L5 −L8 zh1 + I2 +L2 −L6

]T (7)

Here, I1 = l1 cosθ , and I2 = l1 sinθ .
Using the coordinates of the points of the curve, the co-

ordinates of the turning point hi (i = 1, 2, 3, 4, 5) can be
expressed as

h1 =
[
xh1 yh1 zh1

]T
,

h2 =
[
xB yB + I1 zB − I2

]T
,

h3 =
[
xG yG+ I1 zG− I2

]T
,

h4 =
[
xG yG+L8 zG− l2

]T
,

h5 =
[
xH yH − I1 zH − I2

]T
. (8)

When it is a station, the coordinates of the points in the curve
in the world coordinate system can be obtained from the

Figure 16. Simplified scheme of HFCM.

point h4.

A=
[
xh5 −L4 yh5 + I1 +L7 −L5 +L3 −L1 zh5 + I2 +L6 −L2

]T
B =

[
xh5 −L4 yh5 + I1 +L7 −L5 +L3 zh5 + I2 +L6 −L2

]T
C =

[
xh5 −L4 yh5 + I1 +L7 −L5 +L3 zh5 + I2 +L6

]T
D =

[
xh5 −L4 yh5 + I1 +L7 −L5 zh5 + I2 +L6

]T
E =

[
xh5 yh5 + I1 +L7 −L5 zh5 + I2 +L6

]T
F =

[
xh5 yh5 + I1 +L7 zh5 + I2 +L6

]T
G=

[
xh5 yh5 + I1 +L7 zh5 + I2

]T
H =

[
xh5 yh5 + I1 zh4 + I2

]T (9)

Using the coordinates of the points of the middle curve, the
coordinates of the turning point hi (i = 1,2,3,4,5) can be
expressed as

h1 =
[
xA yA− I1 zA− I2

]T
,

h2 =
[
xB yB + I1 zB − I2

]T
,

h3 =
[
xG yG+ I1 zG− I2

]T
,

h4 =
[
xG yG−L8 zG− I2

]T
,

h5 =
[
xh5 yh5 zh5

]T
. (10)

Using the coordinates of hi (i = 1, 2, 3, 4, 5), the coordinates
of ki (i = 1, 2, 3) can be expressed as

k1 =
[
xh1+ u1 yh1 zh1

]T
,

k2 =
[
xh2+ u1 yh2 zh2

]T
,

k3 =
[
xh4− u3 yh4 zh4

]T
. (11)

In accordance with the established principles of motion (a)
to (e) as illustrated in Fig. 4, the equation for the variation of
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Li (i = 1, 2, 3, 4, 5, 6, 7) with time in the continuous motion
of the HFCM along the x axis is as follows:

L1 = LAB
L2 = LBC + (t − T1− T2+ 2T3)v
L3 = LCD
L4 = LDE + (t − T1− T2+ T3)v
L5 = LEF
L6 = LFG+ (T1− T2)v
L7 = LGH

Ti =
|t−it1|+(t−it1)

2 (i = 1,2,3. . .) , v = 1l
t1

,

t ∈ [0,4t1] (12)

where LAB , LBC , LCD , LDE , LFG, and LGH are the dis-
tances of each point in the initial state. From the simplified
scheme of the mechanism and the motion principle (Fig. 4a–
e), it can be seen that when the HFCM moves continu-
ously along the x axis, Foot1 is a stationary footing when
t ∈ [0,2t1], which corresponds to Eqs. (7) and (8):

h1 =
[
xh1 yh1 zh1

]T
=
[

0 0 0
]T
. (13)

When t ∈ (2t1,4t1], Foot2 is station-based, corresponding to
Eqs. (8) and (9):

h5 =
[
xh5 yh5 zh5

]T
=
[
LDE +1l 0 0

]T
. (14)

From Eqs. (7)–(10), (12), and (13), the trajectories of the
points in the continuous motion of the HFCM along the x
axis in space and the displacements in the direction of the z
axis are calculated. These are calculated using Eqs. (7), (8),
(12), and (13) when t ∈ [0,2t1]. In the event of t ∈ (2t1,4t1],
the calculation and plotting of Eqs. (9), (10), (12), and (14)
as images is to be conducted using MATLAB. Figure 17a
demonstrates the trajectory of hi when the HFCM is moving
along the x axis, and Fig. 17b illustrates the displacement of
hi in the direction of the z axis when the HFCM is moving
along the x axis.

According to motion principles (a)–(f) shown in Fig. 5,
the equation of variation of Li with time in the continuous
motion of the HFCM along the y axis is

L1 = LAB
L2 = LBC + (t − T1− T2+ 2T3− T4)v
L3 = LCD + (T2− T3)v
L4 = LDE
L5 = LEF + (t − T1− T2+ T3)v
L6 = LFG+ (T1− T2− T4)v
L7 = LGH

.

t ∈ [0,5t1] (15)

In a similar manner, an examination of the motion schematic
(see Fig. 5a–f) reveals that when the HFCM moves continu-
ously along the y axis, Foot1 is the stationary footing when
t ∈ [0,2t1], which corresponds to Eqs. (7) and (8):

h1 =
[
xh1 yh1 zh1

]T
=
[

0 0 0
]T
. (16)

Figure 17. (a) Trajectory of g during motion along the x axis.
(b) Displacement of j in the direction of the z axis during motion
along the x axis.

When t ∈ [2t1,5t1], Foot2 is station-based, corresponding to
Eqs. (9) and (10):

h5 =
[
xh5 yh5 zh5

]T
=
[
LDE 1l 0

]T
. (17)

From Eqs. (7)–(10) and (15)–(17), the trajectory of the point
hi in space and the displacement in the direction of the z
axis are calculated for the continuous motion of the HFCM
along the y axis. When t ∈ [0,2t1], Eqs. (7), (8), (15), and
(16) are used, and when t ∈ [2t1,5t1], Eqs. (9), (10), (15),
and (17) are used, and the image is plotted. Figure 18a shows
the trajectory diagram of hi when the HFCM moves along
the y axis, and Fig. 18b shows the displacement of hi in the
z-axis direction when the HFCM moves along the x axis.

3.3 Analysis of HFCM rotational kinematics

It is evident that HFCM is equipped with multiple base plate
mechanisms in its two feet. The substantial contact area of
these base plates with the ground can generate friction, which
is introduced into the motion of HFCM. The rotating walking
gait of HFCM is designed, and the principle of walking gait
is explained as follows.

As demonstrated in Fig. 19, the curve undergoes a trans-
formation to the configuration depicted in Fig. 19a through
the deformation process illustrated in Fig. 4a and b. Subse-
quently, the mobile mechanism situated between EF under-
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Figure 18. (a) Trajectory of hi when moving along the y axis.
(b) Displacement of hi in the direction of the z axis during motion
along the y axis.

goes an extension, resulting in an expansion of EF . During
the extension of the mobile mechanism between EF , this re-
sults in the application of a driving force of magnitude N to
the FGH portion of the HFCM, causing the FGH portion
to move forward. The reaction force, N ′, is generated by this
driving force and acts on theABCDE portion of the HFCM,
leading to its backward movement. The reaction force, N ′, is
generated by this driving force and acts on the ABCDE por-
tion of the HFCM, causing the portion to move backward.
Consequently, Foot1 and Foot2 will move in opposite direc-
tions under the action of the driving force N . The base plates
in contact with the ground in Foot1 and Foot2 will generate a
sliding friction force, fi (i = 1, 2, 3, 4, 5), at this movement.

It is evident that points f1 and f2 are oriented in a direction
that is contrary to that of points f3, f4, and f5. Furthermore,
it is notable that these points do not intersect with the centre
of mass of the machine. This configuration results in the gen-
eration of a moment M , which is exerted under the influence
of fi . The consequence of this interaction is the rotation of
the HFCM in a specific axis, designated as axis l′. The direc-
tion of rotation along this axis is defined as clockwise.

The establishment of CM-xyz, set l′, is to be executed over
the centre of mass of the HFCM, with the subsequent perpen-
dicularity to theXWY plane being a requisite element of this
process. The initial coordinates and attitude of the CM-xyz

coordinate system in theO-xyz coordinate system are repre-
sented as follows:

O
CMP =


rCMxx rCMyx rCMzx pCMx
rCMxy rCMyy rCMzy pCMy
rCMxz rCMyz rCMzz pCMz

0 0 0 1

 . (18)

The initial χ2 coordinates of hi in the CM-xy coordinate sys-
tem are expressed as

CM
hi
P =

[
xi yi 0 1

]T
. (19)

In this particular gait, the motion of CM-xy is characterized
as a translational transformation, whereas hi is designated as
a rotational transformation with respect to CM-xy. Conse-
quently, the transformation of hi is identified as a composite
transformation. The transformation matrix during rotation is
expressed as follows:

T
(
O
CMP

)
=


1 0 0 1x

0 1 0 1y

0 0 1 1z

0 0 0 1


T

,

CM
hi
R (Z,α)=


cα −sα 0 0
sα cα 0 0
0 0 1 0
0 0 0 1


T

, (20)

where α is the angle of rotation.
Therefore, the coordinates of hi after the rotational trans-

formation with respect to the O-xyz coordinate system are

O
hi
P = T

(
O
CMP

)O
CM
PCM
hi
R(Z,α)CM

hi
P . (21)

When the EF is fully extended, the position of the HFCM
undergoes a transformation as depicted in Fig. 19b. Through
the repetition of this process, the HFCM can be made to ro-
tate continuously clockwise.

A similar effect can be achieved by expanding theDC part
in the attitude of Fig. 19a, thereby inducing an anticlockwise
rotation of the HFCM.

3.4 HSCM stability analysis

It is evident that gaits G2,1–G2,18 in G2,1–G2,17 and G2,18
are executed in an upright position. It is discernible that the
equivalent support range is considerably more extensive than
that of the G2,13–G2,16 mechanism in a tilted state. Conse-
quently, it is reasonable to conclude that theG2,13–G2,16 gait
is more prone to tilting than the other gaits during operation.
Therefore, the primary objective of the stability analysis of
the HSCM is to ascertain the stability of G2,13–G2,16. As
demonstrated in Figs. 6b and 20, the origin O of the fixed
coordinate system O −XYZ is consistently located on the
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Figure 19. (a) Sketch of initial attitude of rotation. (b) Sketch of completed rotation.

Figure 20. Establishment of the HSCM coordinate system.

ground at points e2, e7, e12, and e13 and at the midpoint of the
straight line segment A32A33. Initially, this coincides with
the bottom vertex e13 of the robot. The x axis corresponds to
e13e2, the y axis corresponds to e13e12, and the z axis corre-
sponds to e13e30. The origin of the coordinate system Si-xyz
is always located at e2, e7, e12, and e13, the origin of g-xyz is

always located at the centre of the line segment A32A33, and
the node connector at the corresponding position is N16. In
the initial state, the x, y, and z axes of all dynamic coordinate
systems are parallel to the x, y, and z axes of the fixed coor-
dinate system, respectively. The centre of mass (CM2) of the
HSCM in the coordinate system g-xyz can be solved by the
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centre of mass coordinates as follows:

x
g

CM2
=

n∑
i=1
Mix

g

CMi′

n∑
i=1
Miy

g

CM2

=

n∑
i=1
Miy

g

CMi′

n∑
i=1
Miz

g

CM2

=

n∑
i=1
Miz

g

CMi′

n∑
i=1
Mi

, (22)

where xgCM2
, ygCM2

, zgCM2
is the centre of mass coordinate

of the mechanism in the coordinate system g-xyz. n is the
number of HSCM node connection blocks. xgCMi

, ygCMi
, zgCMi

denotes the centre of mass coordinates of the ith node con-
nector in the coordinate system g-xyz. Under the coordinate
system O-xyz, the initial position and attitude of the coordi-
nate system Si-xyz are represented as follows:

O
Si
R =

 rsi ,xx rsi ,yx rsi ,zx
rsi ,xy rsi ,yy rsi ,zy
rsi ,xz rsi ,yz rsi ,zz

 ,
O
Si
P =

 psi ,x
psi ,y
psi ,z

 . (23)

Under the coordinate system Si-xyz, the initial position and
attitude of the coordinate system g-xyz are represented as
follows:

Si
g P =

[
xi yi zi

]T
,

Si
g R =

 rgxx rgyx rgzx
rgxy rgyy rgzy
rgxz rgyz rgzz

 . (24)

In the coordinate system g-xyz, the initial coordinates of ver-
tex Ai are expressed as follows:

g
Ai
P =

[
xi yi zi

]T
. (25)

When certain telescopic rods are extended or shortened, the
relative displacement of point Ai in the coordinate system
g-xyz is expressed as follows:

1Ai =
[
1xi 1yi 1zi

]T
. (26)

The initial coordinates of vertex ei in the g-xyz coordinate
system are expressed as follows:

g
eiP =

[
xi yi zi

]T
. (27)

When certain telescopic rods are extended or shortened, the
relative displacement of point ei in the coordinate system g-
xyz is expressed as follows:

1ei =
[
1xi 1yi 1zi

]T
. (28)

From the gait planning, it can be concluded that when the
robot performs G2,13–G2,18 gaits, the coordinate system Si-
xyz will do only translational motion in the coordinate sys-
tem O-xyz, while the coordinate system g-xyz will do com-
posite motion in the coordinate system Si-xyz. Therefore,

the translation matrix of the coordinate system Si-xyz in the
coordinate system O-xyz at the j th step can be expressed as

si
g Pj+1 = Tj (sig P )+sig Pj ,

si
g Rj+1 = R

(
ψ
G2,i
j+1 ,ξ

G2,i
j+1

)si
g
Rj . (29)

The translation matrix of the coordinate system g-xyz in the
coordinate system Si-xyz at step j can be expressed as

Tj

(
si
g P

)
=
[
1dx 1dy 1dz

]T
. (30)

After its own deformation, the representation of the position
of the coordinate system Si-xyz in step j+1 is updated under
the coordinate system O-xyz as

si
g Pj+1 = Tj

(
O
si
P
)
+
O
si
Pj , (31)

O
si
Rj+1=

O
si
Rj . (32)

After the first step, the position of the coordinate system g-
xyz in the coordinate system Si-xyz is calculated as follows:

si
g Pj+1 = Tj

(
si
g P

)
+
si
g Pj , (33)

si
g Rj+1 = R

(
ψ
G2,i
j+1 ,ξ

G2,i
j+1

)si
g
Rj . (34)

R
(
ψ
G2,i
j+1 ξ

G2,i
j+1

)
is the rotation matrix, ψG2,i

j is the rotation

axis of G2,i at step j , and ξG2,i
j is the rotation angle of G2,i

at step j . From the gait planning, we can derive the rota-
tion axis of step j corresponding to gait G13–G16 when the
mechanism performs the G13–G16 gait. The rotation matrix
for rotation around the x axis and y axis of the coordinate
system Si-xyz is

R(xsi ξ
G2,i
j )=


1 0 0 0
0 cξ

G2,i
j −sξ

G2,i
j 0

0 sξ
G2,i
j cξ

G2,i
j 0

0 0 0 1

 ,

R(ysi ξ
G2,i
j )=


cξ
G2,i
j 0 sξ

G2,i
j 0

0 1 0 0
−sξ

G2,i
j 0 cξ

G2,i
j 0

0 0 0 1

 . (35)

The coordinates of points Ai and ei of the organization at
step j + 1 under the coordinate system O-xyz are computed
as

O
Ai
Pj=

O
si
Pj+1+

O
si
R
(
Si
g Pj+1+

si
g Rj+1

(
P
g
Ai
P +1Ai

))
, (36)

O
ei
Pj+1=

O
si
Pj+1+

O
si
R
(
Si
g Pj+1+

si
g Rj+1

(
P
g
eiP+1ei

))
. (37)

From the obtained O
Ai
Pj , we can determine the coordinates

of CM2 at step j under the coordinate system O-xyz. From

https://doi.org/10.5194/ms-16-851-2025 Mech. Sci., 16, 851–876, 2025



866 K. Shi et al.: Design and analysis of mobile mechanism based on three-dimensional Hilbert curve

Table 5. The parameters of Mi .

Mi Parameter Mi Parameter Mi Parameter Mi Parameter Mi Parameter

M1 1 M8 1 M15 1 M22 1 M29 2
M2 1 M9 1 M16 1 M23 1 M30 1
M3 2 M10 1 M17 1 M24 1 M31 1
M4 1 M11 1 M18 1 M25 1
M5 1 M12 2 M19 1 M26 1
M6 1 M13 1 M20 2 M27 1
M7 1 M14 1 M21 1 M28 1

the obtained O
ei
Pj , we can determine the support polygon of

the robot in the state at step j under the coordinate system
O-xyz.

Based on the above analysis, a set of Mi parameters con-
sistent with G2,1–G2,18 is derived, as shown in Table 5.

4 Simulation analysis

4.1 HFCM gait simulation

In the simulation, the parameters were configured as follows:
the gravitational acceleration was set to 9.8 m s−2, the static
friction coefficient was 0.8, the dynamic friction coefficient
was 0.7, and the material was specified as polylactic acid
(PLA).

The rotational simulation of the HFCM is shown in
Fig. 21. The change in angular velocity of point A during the
rotation with respect to the coordinates of CM is shown in
Fig. 22. The angular velocity increases steadily and then de-
creases steadily, and CMx and CMy have only small changes
in the overall motion, which is mainly caused by the defor-
mation of the HFCM. For CMz, no change occurs. During
each cycle (6.3 s), a rotation angle of 14.2° was achieved.
The average rotational speed was measured to be 2.25° s−1

in the clockwise direction and 2.3° s−1 in the anticlockwise
direction. This indicates that the HFCM can rotate stably.

4.2 HFCM step-up gait simulation

It is evident that the HFCM will be affected by gravity, which
will likely result in its descent when the process of ascend-
ing the stairs reaches the point of lifting Foot1, as depicted in
Fig. 23b. This occurrence renders the stair-climbing process
impractical. To address this issue, the distribution of mass
must be optimized to ensure the forward movement of the
centre of gravity. Subsequently, the HFCM can elevate Foot1
in a stable manner, thereby completing the stair-climbing op-
eration. The simulation depicted in Fig. 23 validates the fea-
sibility of the proposed gait. Upon reaching Fig. 23e, it can be
deduced that the HFCM has successfully ascended the stairs.

The coordinate change of CM over time during the sim-
ulation is shown in Fig. 24, which shows that the range of
variation of CMx during the motion is small and produces

only a small change throughout the completion of the step-
up gait. CMy is the forward direction of the HFCM going
up the step; after contacting the step, it increases gradually
with the operation of the HFCM. The change in CMz is re-
lated to the change in the HFCM’s own shape and the height
of the step. The change in the HFCM has a certain regular-
ity, so the change in CMz after contacting the step also has
a certain regularity, and the change in CMz after contacting
the step has always been in a small range. According to the
simulation results, the maximum step height achieved by the
mechanism was 25 mm. This shows that the HFCM can sta-
bly complete the step-up operation.

4.3 HSCM simulation

4.3.1 HSCM plane shift simulation

The simulation process ofG2,1–G2,4 completes one cycle, as
shown in Figs. 25–28, respectively, and then repeats the cy-
cle for five cycles, and the value of the centre of mass of N16
on the coordinate axis changes as shown in Fig. 29. From
Figs. 25–28, it can be concluded that when moving along the
x axis, the x-axis coordinates change smoothly and regularly,
and there is no obvious change in the y-axis coordinates;
when moving along the y axis, the y-axis coordinates change
smoothly and regularly, and there is no obvious change in
the x-axis coordinates, which indicates that the HSCM can
move along the x axis and y axis smoothly and continuously
on the plane, and there will be no deviation. According to the
simulation results, the maximum planar motion speed of the
mechanism was 19 mm s−1.

4.3.2 HSCM rotary motion simulation

The movement of G2,17 and G2,18 during a simulation cycle
is illustrated in Figs. 30 and 31, respectively. Subsequent to
measuring and executing a rotation of 15°, G2,17 and G2,18
will each complete 10 cycles. The trajectory of the centre
of mass of N16 movement in the ground projection is de-
picted in Fig. 32. During each cycle (72 s), a rotation angle
of 180° was achieved. The average rotational speed was mea-
sured to be 2.5° s−1 in the clockwise direction and 2.5° s−1

in the anticlockwise direction. The projection of the trajec-
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Figure 21. Rotational gait. (a) Gait 1, (b) gait 2, (c) gait 3, (d) gait 1 top view, (e) gait 2 top view, and (f) gait 3 top view.

Figure 22. (a) Angular velocity of point A during rotation. (b) CM
coordinate change during rotation.

tory indicates that the robot’s rotational motion planning is
sustainable and stable.

5 Prototypes and experiment

5.1 Construction of first-order robot prototype

Due to the specially designed and complex structure of the
components, conventional machining methods proved both
costly and technically challenging. To address this issue, sev-
eral non-standard parts were fabricated using the laboratory’s
3D printer.

DC motors were selected as the robot’s drive system be-
cause they offer high efficiency under normal operating con-
ditions, excellent speed regulation, a wide and smooth speed
range, a simple structure, convenient control, and ease of
maintenance. Furthermore, the linear relationship between
input and output makes them highly suitable for precise ac-
tuation. Accordingly, DC motor pushrods were chosen as the

driving mechanism, as shown in Fig. 33a. A pushrod length
of 50 mm was determined to be sufficient for supporting var-
ious gaits of the mechanism.

The L6201 driver module was employed as the motor
driver, as shown in Fig. 33b. This full-bridge driver chip is
based on multi-source BCD (Bipolar, CMOS, DMOS) tech-
nology. It integrates independent DMOS field-effect transis-
tors, CMOS circuits, and diodes on a single chip, thereby
ensuring efficient and reliable motor control. The Arduino
MEGA2560 R3 development board served as the main con-
trol unit, as shown in Fig. 33c. For wireless communication,
HC-06 Bluetooth 2.0 slave modules were used, as illustrated
in Fig. 33d.

Mechanical connections were reinforced by installing lin-
ear bearings and metal rods in the corresponding positions of
eight 3D-printed connecting blocks. The metal rods acted as
guide rails, ensuring precise alignment and improving struc-
tural strength. They were inserted into the linear bearings,
and the DC motor pushrods were firmly attached to the con-
necting blocks to complete the assembly.

All electronic components – including the power supply,
battery, Arduino MEGA2560 R3 development board, HC-
06 Bluetooth module, and multiple L6201 driver modules –
were integrated within a control box, as shown in Fig. 33e.
Based on the designed gaits, a control program was devel-
oped and uploaded to the control board. Finally, the assem-
bled mechanical structure was connected to the control box,
yielding the complete prototype model shown in Fig. 33f.

5.2 HFCM linear mobility gait

In order to validate the HFCM structure and kine-
matic analysis, prototypes were developed and experi-
ments were conducted. The geometry of the prototype
is as follows (initial attitude): overall, a square with a
prism length of 195 mm, mi = 218.75 g, LAB = LCD =
LDE = LEF = LGH = 90 mm, LBC = LFG = 80 mm, t =
8 s, L8 = 45 mm, u1 = 8 mm, u2 = 1 mm, u3 = 8 mm, d1 =

7.5 mm, d2 = 65 mm, and1l = 50 mm. The course of the ex-
perimental forward walking gait along the x axis is shown in
Fig. 34. The process of the forward walking gait along the y
axis is shown in Fig. 35.

Figures 36 and 37 illustrate the linear locomotion of the
HFCM in rocky and sandy environments. The experimental
results demonstrate that both the stability and the errors of the
HFCM remain within a controllable range, thereby validating
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Figure 23. Step-up gait simulation. (a) t = 0 s. (b) t = 6 s. (c) t = 10.2 s. (d) t = 14.4 s. (e) t = 18.6 s. (f) t = 22.6 s.

Table 6. Gait feasibility analysis form.

Motion type Experimental Theoretical Measured Theoretical Gait
period period value value feasibility

x-direction motion 8.5 s 8.4 s 49.8 mm 50 mm Feasible
y-direction motion 8.6 s 8.4 s 49.8 mm 50 mm Feasible
Rocky environment 8.7 s 8.4 s 49.5 mm 50 mm Feasible
Sandy environment 8.8 s 8.4 s 49.2 mm 50 mm Feasible
Clockwise rotation 6.2 s 6.2 s 14° 14.2° Feasible
Anticlockwise 6.3 s 6.2 s 14° 14.2° Feasible
Going up the steps 22.8 s 22.6 s 25 mm 25 mm Feasible

Figure 24. CM coordinate changes during step ups.

the feasibility of the proposed gait. These findings provide
a foundation for subsequent analysis and discussion of the
mechanism’s adaptability under varying terrain conditions.

5.3 HFCM rotational gait

The process of rotational gait in the experiment is shown in
Fig. 38. The angle of rotation of the HFCM in the clockwise
direction after the completion of a rotational gait is shown in
Table 4.

5.4 HFCM step-up gait

The process of rotational gait in the experiment is shown in
Fig. 39. The mass of mG is increased by 200 g. The step
height is designed to be h= 25 mm, and the initial distance
between the HFCM and the step is 0. The detailed feasibility
analysis of the gait is summarized in Table 6.

6 Conclusion and Prospects

6.1 Sporting advantage

The space-filling property of the three-dimensional Hilbert
curve enables compact deformation through the contraction
and extension of joints, offering a unique advantage in con-
fined environments. For example, the second-order mech-
anism can transform within a 64-cell cube, and its “fold–
open” capability allows effective deployment in constrained
settings such as pipelines and disaster ruins.

The Hilbert curve mechanism (HFCM) also supports di-
verse modes of movement. Dynamic gait adjustment allows
adaptation to varying terrains. Alternating support feet en-
able stable planar walking. Step-crossing enhances its ability
to overcome obstacles, while joint-driven actuation enables
360° in situ rotation.

Overall, the Hilbert curve mechanism represents a signif-
icant advancement in mobile robotics through its seamless
integration of mathematical theory and engineering practice.
By overcoming the conventional limitations of wheeled and
legged robots, it demonstrates strong potential for applica-
tions in confined spaces, complex terrains, and specialized
operational scenarios.

6.2 Application expansion

In the aftermath of a disaster, emergency response efforts
primarily focus on rescue operations, including both post-
disaster recovery and search-and-rescue missions. Conven-
tional wheeled or legged robots are often hindered in con-
fined environments such as ruins or pipelines due to struc-
tural limitations. By contrast, the Hilbert curve mechanism
(HCM) offers the unique ability to transition between com-
pact and expanded forms through continuous deformation.
For example, it can contract to pass through narrow gaps in
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Figure 25. G2,1 simulation. (a) t = 5.25 s. (b) t = 10.4 s. (c) t = 15.6 s.

Figure 26. G2,2 simulation. (a) t = 5.25 s. (b) t = 10.4 s. (c) t = 15.6 s.

Figure 27. G2,3 simulation. (a) t = 5.25 s. (b) t = 10.4 s. (c) t = 15.6 s.

Figure 28. G2,4 simulation. (a) t = 5.25 s. (b) t = 10.4 s. (c) t = 15.6 s.

earthquake rubble and then expand to deploy sensors or res-
cue equipment. This adaptability significantly enhances the
efficiency of search-and-rescue operations. The multi-legged
support design further ensures stability on uneven terrain and
enables navigation around complex obstacles.

In minimally invasive surgery, the flexibility of deformable
mechanisms can be applied to retractable interventional in-
struments. HSCM-based serpentine robots, for instance, can
be inserted into the body through natural cavities to perform
precise operations in the heart or gastrointestinal tract. This
approach reduces trauma, shortens recovery time, and mini-
mizes surgical risk by avoiding rigid collisions with tissue.

In the context of spaceflight and deep-space exploration,
where launch space is highly constrained, the folding prop-
erty of the Hilbert curve mechanism allows significant vol-
ume reduction. For example, the HSCM can serve as a

deformable arm for a Mars rover, unfolding into a three-
dimensional structure after landing to integrate functions
such as sampling and drilling. Its modular architecture also
supports in-orbit self-repair and mission reconfiguration.

In industrial and agricultural inspection, the mechanism’s
adaptability is particularly valuable for navigating narrow
passages and performing maintenance tasks in complex envi-
ronments. The HFCM’s straight-line extension enables non-
destructive inspection within pipelines, while the HSCM’s
multi-step adaptability supports precision spraying or crop
harvesting in greenhouses by traversing ridges and obstacles.

6.3 Conclusion

This paper introduces a novel integration of mathemati-
cal curves with mechanical structures, establishing a new
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Figure 29. Change in the centroid coordinates of N16 in plane motion. (a) G2,1. (b) G2,2. (c) G2,3. (d) G2,4.

Figure 30. G2,17 simulation. (a) t = 0 s. (b) t = 14.4 s. (c) t = 29 s. (d) t = 43.2 s. (e) t = 57.6 s. (f) t = 72 s.

Figure 31. G2,18 simulation. (a) t = 0 s. (b) t = 14.4 s. (c) t = 29 s. (d) t = 43.2 s. (e) t = 57.6 s. (f) t = 72 s.

paradigm for structural innovation. The proposed mobile
mechanism is based on three-dimensional Hilbert curves. It
incorporates seven straight lines connected by seven driven
mobile joints, which enable the mechanism to expand and
contract.

A comprehensive kinematic analysis is conducted to de-
termine the parameters of the HFCM, followed by a de-
tailed stability assessment. The biped demonstrates multiple
gaits, including static walking, rotation, and stair climbing
on flat surfaces. The feasibility of these motions is confirmed
through both simulations and experiments.

The stability analysis is grounded in the zero moment
point (ZMP) assumption, where acceleration and angular ac-
celeration are neglected. This assumption is reasonable for

static or quasi-static gaits at low speeds. However, it imposes
limitations when the mechanism performs dynamic or high-
speed motions. In such cases, the static ZMP approach may
underestimate instability, making dynamic stability criteria
more appropriate in the future.

To further validate the design, the HSCM model is imple-
mented in ADAMS for motion simulation. Kinematic simu-
lations are carried out using the derived mass configurations
and motion planning. The results confirm the operational sta-
bility of all motion modes under a uniform mass configura-
tion, thereby demonstrating the feasibility of the HSCM de-
sign.

Mech. Sci., 16, 851–876, 2025 https://doi.org/10.5194/ms-16-851-2025



K. Shi et al.: Design and analysis of mobile mechanism based on three-dimensional Hilbert curve 871

Figure 32. Trajectory projection of the centre of mass of N16 in two rotational motions. (a) G2,17. (b) G2,18.

Figure 33. (a) DC motor pushrod. (b) L6201. (c) Arduino MEGA2560 R3. (d) HC-06 Bluetooth module. (e) Control box interior diagram.
(f) The prototype.

6.4 Prospects

In future research, prototypes of second-order curve-based
mechanisms will be further developed. Experimental stud-
ies will continue to verify the feasibility and stability of their
structural configuration, mass distribution, and gait planning.
These efforts will provide stronger evidence for the viabil-
ity of mechanism designs derived from second-order three-
dimensional Hilbert curves.

The extension of this mechanism to higher-order curves
will require more driving joints. Under such conditions, tra-
ditional centralized control systems are likely to encounter

delays and coupling problems. To overcome these chal-
lenges, distributed control architectures that combine edge
computing with real-time path gauging will need to be de-
veloped. Such approaches will enable dynamic joint coordi-
nation and ensure reliable performance in complex environ-
ments.

At the same time, higher-order mechanisms will in-
evitably increase system mass. This will create a demand for
lightweight materials and optimized structural designs that
can enhance stiffness without compromising mobility. The
integration of energy recovery systems – such as springs that
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Figure 34. Positive movement of the prototype along the x axis. (a) Initial state. (b) Foot1 lifts. (c) Foot1 falls. (d) Foot2 lifts. (e) Foot2
falls.

Figure 35. Positive movement of the prototype along the y axis. (a) Initial state. (b) Foot1 lifts. (c) Foot1 falls. (d) Foot2 lifts. (e) Foot2
falls.

Figure 36. Linear locomotion of the HFCM in a rocky environment. (a) Initial state. (b) Foot1 lifts. (c) Foot1 falls. (d) Foot2 lifts. (e) Foot2
falls.

Figure 37. Linear locomotion of the HFCM in a sandy environment. (a) Initial state. (b) Foot1 lifts. (c) Foot1 falls. (d) Foot2 lifts. (e) Foot2
falls.

Figure 38. Clockwise rotation of the prototype. (a) Gait 1, (b) gait 2, (c) gait 3, (d) gait 1 top view, (e) gait 2 top view, and (f) gait 3 top
view.

store and release energy during deformation – will also be
essential to improving overall efficiency.

From the perspective of motion stability, current zero mo-
ment point (ZMP) analyses are limited to static gaits. Future
work will incorporate dynamic stability analysis to account

for inertial effects and angular accelerations. Moving beyond
the static ZMP assumption will make it possible to evalu-
ate gait robustness under dynamic conditions and ensure sta-
ble locomotion in more complex and high-speed scenarios.
For example, fuzzy PID controllers could be introduced into
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Figure 39. Going up the steps. (a) Initial pose. (b) Foot1 is out. (c) Foot2 is out. (d) Foot1 is out. (e) Foot2 takes a step up. (f) Gait
completion.

Hilbert curve-based mechanisms to compensate for terrain
disturbances in real time and enhance adaptability.

Ultimately, Hilbert curve mechanisms demonstrate strong
potential to transcend the morphological constraints of con-
ventional mobile robots by integrating mathematical theory
with engineering practice. With continuous progress in con-
trol strategies, material technologies, and interdisciplinary
applications, these mechanisms are expected to evolve from
laboratory validation toward real-world deployment, estab-
lishing a new paradigm for the development of intelligent
robotic systems.
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Appendix A: Symbol implication

A, B, C, D, E, F , G, H Eight nodes of the HFCM / centre of mass of each connecting rod
Ni (i = 1, 2, . . . , 31) HSCM’s 31 node connection block
hi (i = 1, 2, 3, 4, 5) Connection point of support rods to the base plate in HFCM support

structures
k1, k2, k3 HFCM support base plate end point centre
LAB , LBC , LCD , LDE , LEF , LFG, LGH Distance between nodes in the initial state of the HFCM
Li (i = 1, 2, 3, 4, 5, 6, 7) Distance between neighbouring centres of mass in HFCM to point G
l1 Length of support rods of the support mechanism on both sides of Foot1

and Foot2 in the HFCM
l2 Length of support rods for intermediate support mechanism of Foot2 in

the HFCM
u1 Length of base plate on both sides of Foot1 in the HFCM
u2 Length of base plate on both sides of Foot2 in the HFCM
u3 Length of intermediate base plate of Foot2 in the HFCM
d1 Width of Foot1 and Foot2 base plates on both sides of the HFCM
d2 Width of intermediate base plate of Foot2 in the HFCM
1l HFCM travel distance per travelling joint
t1 HFCM time to complete t1 extension/retraction strokes per joint
θ Angle between the support bar and the base plate on both sides of Foot1

and Foot2 in the HFCM
CM Centre of mass
CMx , CMy , CMz HFCM coordinates of the centre of mass in the direction of the x, y, and z

axes
CM2 HSCM centre of mass
x
g

CM2
, ygCM2

, zgCM2
HSCM coordinates of the centre of mass in the x, y, and z directions in the
coordinate system g-xyz

ZMP Zero moment point
xZMP, yZMP ZMP coordinates in the x, y directions
mi Quality of connecting blocks at each node of the HFCM
Mi Quality parameters of HSCM connecting blocks for each node
Ji Moment of inertia (mechanics)
αi Angular acceleration
ẍi , ÿi , z̈i Acceleration of each centre of mass in the x, y, and z directions
gz Component of gravitational acceleration in the z-axis direction
O-xyz Fixed coordinate system (terrestrial coordinate system)
Si-xyz Dynamic coordinate system
g-xyz Dynamic coordinate system
O
CMP HFCM chiral coordinates of the centre of mass CM in the O-xyz

coordinate system
CM
hi
P Initial coordinates of point hi in the CM-xy coordinate system

T
(
O
CMP

)
Translation transform matrix

CM
hi
R(Z,α) Rotational transformation matrix around the z axis

O
Ai
Pj , OeiPj Coordinates of points Ai , ei in the O-xyz coordinate system at step j

1Ai , 1ei Relative displacement of points Ai , ei in the g-xyz coordinate system
O
Si
R, Sig R Rotation matrix between coordinate systems

ψ
G2,i
j Axis of rotation of gait G2,i at step j

ξ
G2,i
j Angle of rotation of gait G2,i at step j
G2,1–G2,18 The 18 basic gaits of HSCM
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