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Abstract. Layer jamming structures (LJSs) are widely used as variable-stiffness components in collaborative
robots to ensure safe human–robot interaction. However, existing analytical models often fail to adequately de-
scribe the mechanical behavior of LJSs with a large number of layers, particularly in capturing detailed stress
distributions and deformations. This paper introduces a continuum-based layer jamming model (CLJM), which
treats the LJS as a continuous medium under the assumption of infinitely many thin layers. The CLJM com-
prehensively analyzes internal stress distribution – including both shear and normal stresses – and deformation
across different mechanical states (full jamming, half slipping, and full slipping). The model is validated through
finite-element analysis (FEA) and experimental tests, showing strong agreement in both deformation response
and stress profiles. The results demonstrate that the CLJM provides an effective and accurate theoretical tool for
designing LJSs in variable-stiffness applications.

1 Introduction

For many structures, stiffness – an essential mechanical char-
acteristic – remains constant during operation. However,
as machines increasingly operate in unstructured environ-
ments, variable-stiffness structures are more effective than
constant-stiffness ones in interacting with non-cooperative
targets (Morrison and Su, 2020). The pursuit of variable
stiffness is a pervasive theme in modern mechanical and
robotic design, extending beyond layer jamming to include
innovative mechanisms in various applications. For instance,
in vehicle suspension systems, Anubi et al. (2013) demon-
strated a passive variable-stiffness suspension that outper-
forms constant-stiffness designs by optimally controlling en-
ergy dissipation, highlighting the broad performance bene-
fits of adaptive stiffness. In the realm of robotic joints, Yigit
and Boyraz (2017) designed a cable-driven parallel-series
hybrid variable-stiffness joint, addressing critical needs for
compliance and workspace adaptability in humanoid robotics
through a sophisticated mechanism incorporating elastic el-
ements. These diverse approaches underscore the field’s ac-
tive exploration of variable-stiffness principles. Among var-
ious variable-stiffness techniques, jamming structures have
garnered significant attention from researchers and engineers

and have been applied in numerous fields (Blanc et al., 2017;
Caruso et al., 2022a).

Jamming refers to the physical process in which dis-
crete particles, layers, or fibers confined within a limited
volume transition from liquid-like to solid-like behavior
under increased stress (Brancadoro et al., 2020; Liu and
Nagel, 1998). As a variable-stiffness technique, layer jam-
ming beams offer features such as rapid and reversible tran-
sitions between different stiffness states and ease of fabri-
cation (Blanc et al., 2017; Caruso et al., 2022a). Kawamura
et al. (2002, 2003) and Tabata et al. (2000) were the first to
introduce layer jamming structures (LJSs) into the engineer-
ing field as a variable impedance mechanism for wearable
devices. Subsequently, LJSs have been employed in diverse
applications, including medical endoscopic robots (Kim et
al., 2012, 2013), soft actuators (Wall et al., 2015), grippers
(Elgeneidy et al., 2019; Hou et al., 2019; Zhu et al., 2019),
and cooperative robot arms (Zhou et al., 2020).

To further expand the engineering applications of LJSs,
their mechanical behavior must be well understood to guide
the design process. This area has been the focus of several
studies. However, due to the complex interactions within
jamming structures, effective numerical or analytical meth-
ods for modeling these structures are still needed. Specifi-
cally for LJSs, a widely accepted model focuses on the sec-
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Figure 1. Continuum-based layer jamming model. (a) LJM based
on continuum assumption. (b) The stress state and its deforming
path in the τ–σ stress space of the CLJM. (c) The elastoplastic de-
formation process of the LJM.

ond moment of the cross-section, yielding I = b(nδ)3/12
for a solid-like state and I = bnδ3/12 for a liquid-like state
(Henke and Gerlach, 2014; Ibrahimi et al., 2021; Kawa-
mura et al., 2002), where n is the number of layers, δ is
the thickness of the layers, and b is the width of the layers.
Narang and colleagues (Narang, 2018; Narang et al., 2018a,
b, 2020) were the first to present a comprehensive model of
two-layer jamming cantilevers using Euler–Bernoulli beam
theory. Their model not only predicts the stiffness of LJSs
but also provides transition criteria, and it has been extended
to multi-layer beams using finite-element methods. Further-
more, Caruso et al. (2022b) developed a model for multi-
layer jamming cantilevers based on stress analysis, result-
ing in a summation form. They also introduced an analyti-
cal model to describe the three-point bending of multi-layer
jamming beams (Caruso et al., 2022a, 2023). LJS beams bear
similarity to composite beams with interlayer slip. Newmark
(1951) studied composite beams with incomplete interaction,
while Schnabl et al. (2007) provided an analytical solution
for two-layer beams with interlayer slip and shear deforma-
tion. Tarsi and Afshin (2022) studied the delamination prop-
agation in composite beams. However, these studies cannot
adequately describe the deformation behavior of LJSs with
significant slip.

The analytical models of LJSs proposed in previous re-
search often lack sufficient detail in stress distribution and
model multi-layer mechanical behavior on a layer-by-layer
basis. This approach becomes impractical when the number
of layers is large. When a sufficient number of thin layers is
present, it is unnecessary to distinguish between individual
layers, and LJSs can be treated as a continuum. The contin-

uum assumption is rigorously justified when the number of
layers is sufficiently large, rendering the discrete effects neg-
ligible. This approach is analogous to methods employed in
modeling laminated composites or granular materials, where
the macroscopic behavior emerges from the collective inter-
action of a large number of constituents. In this work, we
focus on the regime where the layer thickness δ is much
smaller than the beam height h (i.e., δ/h� 1), which means
the number of layers n is large, ensuring the validity of treat-
ing stress and strain as continuous fields across the beam’s
height.

This paper is organized as follows. Section 2 introduces
the basic concept and properties of the continuum-based
layer jamming model (CLJM). Section 3 provides a detailed
analysis of the internal forces and stresses in LJSs. Section 4
describes the deformation behavior of LJSs. Section 5 com-
pares the CLJM results with experimental and FEA data. Fi-
nally, Sect. 6 presents the conclusions.

2 Continuum-based layer jamming model

The transition from a discrete layered system to a contin-
uum is grounded in the limit where the layer thickness δ
approaches zero, while the total height h remains constant,
equivalent to an infinite number of layers. Under this assump-
tion, which holds effectively for n >∼ 10 layers in practical
applications, as shown in the FEA comparison (Sect. 5), me-
chanical quantities such as stress and strain become contin-
uous functions of the spatial coordinate y. When the sheet
is exceptionally thin, the layer jamming structure (LJS) can
be considered to be a beam composed of a special type of
continuous medium, based on the assumption that the layer
thickness approaches zero, while the number of layers be-
comes infinite. In this case, all physical quantities can be
treated as continuous functions along the beam height, en-
abling the use of continuum mechanics in the modeling pro-
cess. The mechanical behavior of the LJS is described in
this section using fundamental concepts from continuum me-
chanics.

From a continuous media perspective, the LJS may be
modeled as a curved beam with a rectangular cross-section.
To facilitate the description, the coordinate system in Fig. 1a
is introduced: the s axis represents the central surface of the
beam, the y axis represents the beam height, and θ is the an-
gle between the y axis at s and at s = 0. The radius of the
curvature at s is r = ds/dθ . To illustrate the relationship be-
tween the LJS and continuum mechanics, the stress state of
the differential volume element at (s, y) in Fig. 1a is ana-
lyzed.

Similarly, Euler–Bernoulli beam theory assumes that all
material points in the beam are in a plane stress state, ne-
glecting interlaminar normal strain. Under this assumption,
the stress state at (s, y) can be fully described by σ and τ ,
where σ represents the tensile force within a sheet, and τ
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represents the friction between sheets. The complete stress
state can be represented as a point in the τ–σ diagram, as
shown in Fig. 1b. Under an applied load, the differential vol-
ume element at (s, y) deforms, as illustrated in Fig. 1a. This
deformation is characterized by normal strain εs and shear
strain γsy . It should be noted that εs arises from the extension
of sheets, while γsy is caused by both the extension of sheets
and the slippage between them.

From the perspective of continuous media, LJSs can be
viewed as curved beams made of specific elastoplastic ma-
terials, and their similarities are discussed later. Since in-
terlayer normal strain is neglected, no elastic deformation-
induced pressure exists between sheets. Consequently, the
maximum static friction per unit area between sheets is given
byµp, where p is the vacuum pressure acting on the LJS, and
µ is the friction coefficient between layers. When |τ |< µp,
there is no slipping between sheets, only extension, and this
stress state is referred to as the jamming state. Conversely,
when |τ | ≥ µp, slip occurs, and the stress state is referred
to as the slipping state. In the τ–σ diagram, the jamming
state region appears as a gray strip around the σ axis, while
the slipping state region is represented by two yellow strips
above and below. Deformation in the jamming state is en-
tirely reversible upon unloading, indicating elastic behavior.
However, sliding in the slipping state is irreversible and can
be regarded as plastic deformation. The stress state (σ , τ ) ex-
ists only on the boundary or within the jamming state region.

The elastoplastic deformation behavior of the LJS medium
is illustrated in Fig. 1c and can be divided into three stages:
loading, yielding, and unloading. Each stage follows distinct
principles, necessitating clear criteria for stage differentia-
tion. These criteria, as illustrated in Fig. 1b, are as follows: Loading stage : τ < µp and τdτ > 0

Yieldingstage : τ = µp and τdτ ≥ 0
Unloadingstage : τ ≤ µp and τdτ < 0.

It is important to note that shear strain is independent of shear
stress and can take any value in the yielding stage. Aside
from that, there is no one–one mapping between shear strain
and shear stress. All of this suggests that the deformation of
the LJS medium must be solved incrementally.

3 Internal force and stress analysis

3.1 Internal force analysis

From the perspective of the continuum, the mechanical be-
havior of LJS beams can be studied by utilizing the equiva-
lent concentrated internal force on a section, that is, the axial
forceN , shear forceQ, and bending momentM , as in Euler–
Bernoulli beam theory.

By concentrating on the differential beam segment ds in
Fig. 2, the relationship between internal force and the loads
on LJM beams is explored. As shown in Fig. 2, the center
angle corresponding to ds is dθ , and the radius of curvature

Figure 2. The internal forces of a differential segment of a curved
beam.

of the axis s is r . N and N+ dN are the axial forces on
the left- and right-end sections, Q and Q+ dQ are the shear
forces on the left- and right-end sections, and M and M+
dM are the bending moments on the left- and right-end sec-
tions of the differential beam segment, respectively. q is the
distributed load on the curved beam. The arrows in Fig. 2 in-
dicate the positive direction of each mechanical quantity. By
ignoring the second-order small quantities and considering
the approximation of cos dθ ≈ 1 and sin dθ ≈ dθ , the force
and moment balance equations on the left-end section can be
expressed as follows:

dN
ds =−Qθ

′
− qs

dQ
ds =Nθ

′
+ qy

dM
ds =Q

⇔


dN
ds =−

Q
r
− qs

dQ
ds =

N
r
+ qy

dM
ds =Q

, (1)

where qs and qy represent the components of q along the s
and y axes, respectively. The first two equations of Eq. (1)
can give the solution written as[

N

Q

]
=

[
cosθ −sinθ
sinθ cosθ

]([
N0
Q0

]
+

s∫
s0

[
cosθ sinθ
−sinθ cosθ

][
−qs (ξ )
qy (ξ )

]
dξ

)
,

(2)

where N0 and Q0 are the internal forces at s0 that can be
obtained by solving the LJS beams’ reaction force. Following
that, M(s) can be calculated by integrating from Q(s).

It should be noted that the conclusion of this section holds
for the region of both jamming and slipping LJS beams since
its deduction depends only on the continuum assumption.

3.2 Stress analysis

Next, we focus on the shear stress in LJS beams. It is evident
that when the shear forceQ on a section is sufficiently small,
there will be no sliding region, and the section is considered
to be in the full-jamming state, which is shown in Fig. 3a. For
a section in the full-jamming state, the shear stress distribu-
tion of a rectangular straight beam can approximate that of a
curved beam because the radius of curvature r of LJS beams
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Figure 3. The section deformation state of the LJM beam. (a) Full-jamming state. (b) Half-slipping state. (c) Full-slipping state.

is much larger than their height h. This implies that for a sec-
tion with a free surface, the following equation holds:

τ (y,Q)=
3
2
Q

A

(
1−

4y2

h2

)
, (3)

where A is the area of the rectangular cross-section, A= bh,
and b is the width of the beam.

As Q on a section increases, the central region of the sec-
tion transitions from the jamming state to the slipping state
because τ follows a quadratic distribution along the y axis.
Such a section is referred to as being in the half-slipping
state, as shown in Fig. 3b. However, in general, sections with
a free surface in an LJS beam cannot transition entirely into
the slipping state. This is because the outermost layers will
always remain in the elastic (jamming) state. AsQ continues
to increase, the limiting case is reached when no jamming re-
gion remains for |y| ≤ h/2 – δ, where δ is the thickness of a
single layer. This state is referred to as the full-slipping state,
as depicted in Fig. 3c.

The distribution of τsy on a section in the half-slipping
state can then be derived. Within the jamming region, τ fol-
lows a form similar to Eq. (3), but Q is replaced by Qeq,
which is determined by solving τ (ys,Qeq)= µp, where ys is
the boundary between the jamming and sliding regions. The
result is

Qeq = singQ
2
3

µpA

1− 4y2
s /h

2 . (4)

The distribution of τ in the jamming region can then be ob-
tained by substituting Q in Eq. (3) with Qeq as given in
Eq. (4).

The critical shear force Qslip, which represents the thresh-
old between the full-jamming and half-slipping states, can be
determined by solving maxy [τ (y, Q)] = µp. From Eq. (3),
it is evident that τ reaches its maximum value at y = 0. When
the section transitions from the half-slipping state to the full-
slipping state, the boundary ys satisfies ys = h/2− δ. In this
case, substituting Q in Eq. (3) with Qeq in Eq. (4) and inte-
grating τ across the section yield another critical shear force,

Qmax:

Qslip =
2
3
µpbh, (5)

Qmax = µpb
3h2
− 6δh+ 4δ2

3(h− δ)
. (6)

These expressions are derived based on the fact that τ equals
sign(Q)µp in the sliding region |y| ≤ ys.

To summarize, the shear stress τ (y, s) in an LJS beam can
be expressed as follows:

τ (y,s)=



3
2
Q
A

(
1− 4y2

h2

)
, |Q| ≤Qslip

sign(Q)µp, |y| ≤ ys andQslip ≤ |Q| ≤Qmax

sign(Q)µp 1−4y2/h2

1−4y2
s /h2 , |y|> ys andQslip ≤ |Q| ≤Qmax

c2y
2
± c1y+ c0, |y|> ys and |Q|>Qmax.

(7)

Here, the coefficients c0, c1, and c2 can be determined by the
following conditions: τ (h/2, s)= 0, τ (ys, s)= sign(Q)µp,
and

∫ h/2
−h/2τdy =Q. The resulting expressions for c0, c1, and

c2 are as follows:
c2 =−

12(µpbh+2µpbys−2Q)
b(h−2ys)3

c1 =
4
(
3Qh+6Qys−2µpbh2

−4µpbhys−8µpby2
s
)

b(h−2ys)3

c0 =
h
(
µpbh2

+2µpbhys+16µpby2
s−12Qys

)
b(h−2ys)3 .

(8)

Finally, the most critical parameter, ys, can be obtained by
solving

∫ h/2
−h/2τdy =Q. Setting ys = 0 in the full-jamming

state and ys = h/2− δ in the full-slipping state, ys can then
be expressed as

ys =


0, |Q|<Qslip
3Q−2µpA+

√
3(3Q−2µpA)(Q+2µpA)

8µpb , Qslip ≤Q<Qmax
−3Q+2µpA+

√
3(3Q−2µpA)(Q+2µpA)

8µpb , −Qmax <Q≤−Qslip
h/2− δ, |Q| ≥Qmax.

(9)

Next, we turn to the distribution of normal stress in LJS
beams. The distribution of normal stress σ varies depending
on the deformation state. For the full-jamming state, σ dis-
tribution is equivalent to that of an elastic beam. In the jam-
ming regions of the half-slipping and full-slipping states, the
normal stress follows a linear distribution for reasons previ-
ously discussed. Considering an LJS beam subject to a bend-
ing moment only, each layer can be treated as a beam. Con-
sequently, the function σ (s, y) in the sliding region can be
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Figure 4. The normal stress analysis in the jamming region.

represented as a series of polylines, as shown in Fig. 4. The
amplitude of these polylines decreases to zero as the layer
thickness approaches zero, indicating an infinite number of
layers. Combining these observations, the normal stress dis-
tribution can be expressed as

σ =

{
NJ /AJ +KJ (y∓ ys) , |y|> ys
σS (y) , |y|< ys.

(10)

Here, the subscript J denotes quantities defined in the jam-
ming region; that is, NJ represents the axial force in the jam-
ming region, AJ is the cross-sectional area of the jamming
region (AJ = b(h− 2ys)), and KJ is a proportional coeffi-
cient. In addition, the symbol ∓ in Eq. (10) takes the minus
sign when y ≥ ys and the plus when y ≤−ys. σS denotes
the normal stress distributing on the sliding regions, which is
discussed in detail later.

The relationships between NJ , MJ (for momentum on
the jamming region) and N , M are
N =

∫
Jamming

σJ bdy+
∫

Sliding
σSbdy

M =
∫

Jamming
σJ ybdy+

∫
Sliding

σSybdy ⇒
N =NJ +

ys∫
−ys

σSbdy

M =MJ +

ys∫
−ys

σSybdy,
(11)

where σS denotes the normal stress in sliding regions. And
MJ can be determined by integrating Eq. (10) over the jam-
ming region:

MJ =
b

12
(h+ ys) (h− 2ys)2KJ . (12)

To determine the distribution of σS in the sliding region,
we apply the differential equation of stress balance:

∂σS

∂s
+
∂τS

∂y
= 0. (13)

Since τS in the sliding region is a constant sign (Q)µp, we
have ∂τS/∂y = 0. Solving Eq. (13) yields σS = f (y), where
f is an unknown function, indicating that σS depends only on
s in the sliding regions. This implies that σS takes the same
value at all points with the same y in the sliding region (e.g.,

Figure 5. The normal stress analysis in the sliding region. (a) The
normal stress distribution in the sliding region. (b) Neither of the
sliding region’s end sections is in the half-slipping state. (c) At least
one of the end sections is in the half-slipping state.

all points on the red line in Fig. 5a). Consequently, σS(y)
dy = σS(ys) dys and σS(y)y dy = σS(ys)ys dys.

Using this property and the relation dys = ys
′ ds, the inte-

grals over y in Eq. (11) can be transformed to integrals over s
for sections in the half-slipping state. There are two cases. (1)
Neither end of the sliding region is in the half-slipping state,
as shown in Fig. 5b. (2) At least one end of the sliding re-
gion is in the half-slipping state, as shown in Fig. 5c. For the
first case, the original integral over y (domain indicated by
the red line in Fig. 5b) can be divided into two integrals over
s (domain indicated by the blue curves), as mathematically
described:

ys∫
−ys

σSbdy =

s0∫
s

σS (−ys)bys
′ (ds)+

s∫
s0

σS (ys)bys
′ds

=

s∫
s0

[
σS (ys)+ σS (−ys)

]
bys
′ds

ys∫
−ys

σSybdy =

s0∫
s

σS (−ys) (−ys)bys
′ (ds)+

s∫
s0

σS (ys)ysbys
′ds

=

s∫
s0

[
σS (ys)+ σS (−ys)

]
ysbys

′ds,

(14)

where s0 is one end of the half-slipping state segment. Based
on the continuum assumption, the normal stress should re-
main continuous across the boundary, which means that
there are σS(ys)= σJ (ys) and σS(−ys)= σJ (−ys). Substitut-
ing Eqs. (14) and (10) into Eq. (11) and noticing σJ (ys)−
σJ (−ys)= 0 can give N =NJ +

s∫
s

2NJ
AJ
bys
′dξ

M =MJ .

(15)

The derivative of Eq. (15) gives the differential equation
about NJ :

N ′ =NJ
′
+NJ

ys
′

h/2− ys
=−Qθ ′. (16)
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Considering that at s0 there is NJ =N , the solution of
Eq. (16) is

NJ = (2ys/h− 1)

 s∫
s

−
Qθ ′

2ys/h− 1
dξ +N (s0)/ (2ys (s0)/h− 1)

 .
(17)

For the second case, the original integral over y, whose do-
main is indicated by the red line in Fig. 5c, can be divided
into three parts: two integrals over s, whose domain is in-
dicated by the blue curves, and an integral over y, whose
domain is indicated by the purple line. Applying the same
transformation technique used in Eq. (14), we can obtain a
differential equation that is the same as Eq. (15), and it can
also give a similar solution to the first case, but the values
of NJ at s0 should correspond to the distribution of σJ at s0.
Supposing that the axial force at s0 is evenly distributed on
the section gives the normal stress distribution at s0:
σJ (s0) = N (s0)

A
+KJ (s0) (y∓ ys)

=
N (s0)
A
+

12M(s0)
b(h+ys)(h−2ys)2 (y∓ ys)

σS (s0) =N (s0)/A,
(18)

where KJ is solved by combining Eqs. (12) and (15). It is
then easy to compute that NJ (s0)=N (s0)2ys (s0)/h.

4 Deformation analysis

The goal of the deformation analysis is to obtain 1θ (s) un-
der a given load q. Using q and θ (s), the internal forces can

be obtained from Eq. (2). Notably, the deformation of an LJS
beam derived from the jamming region and sliding region
is consistent. This consistency allows the deformation of an
LJS beam to be calculated solely based on the internal mo-
ment within the jamming region.

For small deformations of an LJS beam, the following
relationship holds in the jamming region, based on Euler–
Bernoulli beam theory:

1θ =

s∫
0

M

EIJ
dξ, (19)

where IJ represents the moment of inertia of the jamming
region in LJS beams. Its value can be calculated as follows:

IJ =

{
bh3

12 , ys = 0
2
3

[(
h
2

)3
− y3

s

]
, ys 6= 0.

(20)

The mechanical response of the LJS beam under a large load
q must be solved incrementally, based on the small deforma-
tion assumption. A detailed algorithm for this step-by-step
procedure is presented in the Algorithm.

5 Results

To further validate the mechanical behavior predicted by the
proposed method, stress distributions obtained using finite-
element analysis (FEA) provide a more detailed compari-
son. The LJS cantilevers analyzed in FEA measure 40 mm
in length, 20 mm in thickness, and 5 mm in height. These
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Figure 6. FEA analysis of straight LJM cantilever’s stress distribution. (a) Distribution of σ and τ under 3N load. (b) Distribution of σ and
τ under 4N load. (c) Distribution of σ and τ under 5.5N load.
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Figure 7. Experimental analysis of straight LJM cantilever’s defor-
mation. (a) The measuring device. (b) Experimental result.

cantilevers consist of 10 and 25 layers, with assumed mate-
rial parameters of a friction coefficient µ= 0.5 and Young’s
modulus E = 0.3 GPa. The finite-element models were con-
structed in Abaqus, utilizing CPS4R elements with a side
length of 0.1 mm. A pressure of 0.1 MPa was applied on
the upper and lower surfaces, and a concentrated force was
evenly distributed along the free ends of each layer to facili-
tate convergence.

The shear and normal stress distributions predicted by the
continuum-based model and FEA are shown in Fig. 6. For
full-jamming sections, Fig. 6a illustrates the stress distribu-
tion at s = 30 mm under a 3N load. Here, the stress distri-
butions predicted by FEA and the continuum-based model
align closely, supporting the assumption that the jamming re-
gion behaves like an elastic material. However, near the ends
of the cantilever, such as at s = 1 mm under a 3N load, the
shear stress distribution changes significantly depending on
the number of layers. As the number of layers increases, the
amplitude of τ (y) predicted by FEA decreases and becomes
more continuous, though it deviates from the parabolic shape
due to boundary effects.

For half-slipping sections, Fig. 6b shows the stress dis-
tribution at s = 10, s = 10, and s = 30 mm. In the middle
segments of the cantilever, the stress distributions predicted
by FEA and the continuum-based model show minimal dif-
ferences. However, the sliding region predicted by FEA is
narrower than that predicted by the continuum-based layer
jamming model (CLJM). This discrepancy arises from the
CLJM’s neglect of normal stress along the y axis. Ignoring
this stress leads to an overestimation of the sliding region, as
the normal stress along the y axis can raise the critical shear
stress, reducing the extent of sliding. Consequently, the slope
of the normal stress in the jamming region predicted by FEA
is smaller than that predicted by CLJM.

For full-slipping sections, Fig. 6c highlights the differ-
ences in stress distributions. Similar to the half-slipping sec-
tions, the sliding region predicted by FEA is narrower than
that predicted by CLJM, and the shear stress in the sliding re-

gion obtained by FEA fluctuates around the values predicted
by CLJM. However, a significant discrepancy exists in the
jamming region’s shear stress between FEA and CLJM. This
error likely occurs because LJS beam segments in the full-
slipping state behave more like curved beams, while CLJM
assumes that the shear stress distribution in the jamming re-
gion follows the pattern of elastic straight beams, introducing
notable inaccuracies.

The relationship between load and deflection in a straight
LJS cantilever can be easily measured using a tensile ma-
chine. The experimental setup used in this study is shown in
Fig. 7a. In this setup, the straight LJS cantilever is fixed to a
frame that slides freely along a rail to eliminate horizontal re-
straints. A flexible PVC membrane encasing 20 PVC sheets
forms the test specimen, which measures 100 mm in length,
20 mm in thickness, and 5 mm in height.

The load-deflection results under 60 kPa pressure are rep-
resented as gray dots in Fig. 7b. The orange curve denotes the
experimental mean, while the error bars spanning ±1 stan-
dard deviation are shown as the yellow-shaded area. The an-
alytical results, depicted by the red curve in Fig. 7b, were ob-
tained using the previously discussed algorithm and the ma-
terial parameters: Young’s modulus E = 755 MPa and fric-
tion coefficient µ= 0.55. The analytical curve lies entirely
within the 1σ interval, demonstrating the validity of the pro-
posed analysis method for describing the mechanical behav-
ior of the LJS cantilever.

These discrepancies, particularly near the boundaries and
in the full-slipping state, highlight the inherent limitations of
the current continuum assumption, which does not explicitly
account for end effects or the curved beam behavior under
large slip. Nevertheless, the proposed CLJM demonstrates
high accuracy in predicting global deformation and stress
distribution in the central regions of the beam under small-
to-moderate slip conditions, which are of primary interest in
most practical applications. Future refinements could incor-
porate boundary correction factors or a more detailed treat-
ment of curvature in the jamming region.

6 Conclusions

In this study, an analytical model based on continuum me-
chanics is presented to describe the mechanical behavior of
LJS beams. Previous works typically treated each layer in the
LJS beam as an independent beam, which is inadequate for
handling LJSs with numerous layers and describing stress
distribution in detail. In contrast, the continuum layer jam-
ming model presented here treats the LJS as a continuous
medium, assuming that all mechanical quantities are continu-
ous across the material. This model enables the description of
various mechanical behaviors of the LJS beam, such as stress
distribution, deformation, and other related phenomena. The
effectiveness of CLJM is validated through experiments and
FEA. The deformation predicted by CLJM aligns well with

Mech. Sci., 16, 821–830, 2025 https://doi.org/10.5194/ms-16-821-2025



S. Zhang et al.: A continuum-based model for a layer jamming beam 829

experimental measurements, and the stress distribution pre-
dicted by CLJM closely matches the results obtained from
FEA. Ultimately, it can be concluded that the assumption of
treating LJSs as a continuum is reasonable, providing engi-
neers with a valuable tool for designing materials to meet the
specific demands of various engineering applications.

The CLJM provides a robust analytical foundation for de-
signing LJSs with a large number of layers. It is most ac-
curate for predicting global mechanical behavior away from
constraint boundaries and under partial-slip conditions. The
model’s simplicity and computational efficiency make it par-
ticularly suitable for preliminary design and optimization,
while FEA remains recommended for final verification, es-
pecially near free ends or under extreme loading leading to
full slipping.
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