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This paper focuses on the 4-PUU parallel mechanism with Schonflies motion, investigating its kine-
matic analysis and utilizing intelligent algorithms to solve its forward kinematics equations. Using screw theory
as the mathematical framework, the number and nature of the degrees of freedom of the 4-PUU parallel mech-
anism are analyzed, proving that the mechanism can achieve 3T1R motion. The forward and inverse position
kinematics equations are established with link lengths as constraints, and the velocity and acceleration equations
of the mechanism are derived using the vector method. The forward kinematics equations of the mechanism
are transformed into an unconstrained optimization problem, which is solved using an improved beluga whale
optimization (BWO). To enhance the uniformity of the initial population distribution, a chaotic-opposition-based
learning initialization strategy is introduced. Additionally, an elite strategy and a golden-sine-based position up-
date mechanism are incorporated to improve the optimization capability of BWO. The integration of these strate-
gies results in an enhanced optimization algorithm with superior global search ability. Given the mechanism’s
dimensional parameters, theoretical and motion simulations are conducted using MATLAB and Adams. The
results indicate that the motion simulation curves from Adams closely match the numerical simulation curves
from MATLAB, validating the theoretical derivation. Building on this, the improved beluga whale optimization
(IBWO) algorithm, along with comparison algorithms (DEb1, ABC, PSO), is applied to solve the forward kine-
matics equations for interpolation points along the simulated trajectory. Numerical experiments demonstrate that
IBWO outperforms the other comparison algorithms in solving the problem efficiently and accurately.

Compared to 6-degree-of-freedom (DOF) parallel mecha-
nisms (PMs), those with fewer DOFs offer advantages such
as simpler structure, fewer drives, and easier control and have
gradually gained widespread attention from both academia
and industry. Among them, the 3T1R (T representing transla-
tion and R representing revolute) PM is widely used in prac-
tical engineering applications such as packaging and sorting
(Zhu et al., 2022), welding (Wen et al., 2024), assembly (Li
et al., 2021), and rehabilitation (Shi et al., 2024).

The original SCARA — with 3T1R DOF (where T and R
represent translational and rotational degrees of freedom, re-
spectively) — is an extension of the 3-DOF Delta robot. An
additional UPU chain was incorporated between the moving
and fixed platforms to provide rotation about the z axis. The
kinematic analysis, performance analysis, error compensa-
tion, and trajectory planning of the PM are all based on the
integration of its configuration. Therefore, it is evident that
the configuration synthesis of the SCARA of PM forms the
foundation for subsequent theoretical analysis and structural
design.



The configuration synthesis of SCARA PMs has shown
significant research achievements. Company et al. (2003) de-
signed a structure with both symmetric and asymmetric H4
PM based on the motion used to generate Schonflies dis-
placement subgroups. Yang et al. (2017) proposed a config-
uration synthesis method for a 3T1R PM with a variable ro-
tation axis based on screw theory. Salgado et al. (2008) used
the theory of groups of displacements, based on the H4, 14
(Krut et al., 2003), and Par4 (Nabat et al., 2005) mechanisms.
Li et al. (2014) replaced the original parallelogram chains
with R(SS)2 chains, introducing the Cross IV series PMs,
which were later industrialized. Staicu et al. (2018) proposed
a fully symmetric X4 PM where each of the four chains is
composed of R(SS)R, resulting in improved dynamic char-
acteristics and simplified manufacturing. Wen et al. (2024)
designed a 2PUU-2PSS PM with an axially symmetric struc-
ture based on screw theory. Xie et al. (2013), using Grass-
mann line geometry and the Atlas method, designed a class
of PMs with 3T1R (1T3R, 2T2R, and 3T1R) motion.

Kinematic analysis of PMs forms the foundation for er-
ror compensation, trajectory planning, and workspace analy-
sis. It primarily consists of forward kinematics analysis and
inverse kinematics analysis. For coupled PMs, the inverse
kinematics analysis typically involves decoupling the equa-
tions, while the forward kinematics usually leads to a coupled
nonlinear system of equations. The solution to the forward
kinematics equations of coupled PMs is mainly divided into
analytical method and numerical method. Analytical meth-
ods involve eliminating unknowns and reducing higher-order
equations to first-order equations. By solving the first-order
equations and performing inverse substitution of the results,
a high-precision solution to the forward kinematics can be
obtained. However, this method is specific to certain configu-
rations and lacks generality. Numerical methods, on the other
hand, include numerical iteration, machine learning, and in-
telligent algorithms, which can be applied to a wider range of
mechanisms and offer more flexibility in handling complex
kinematic problems.

Wen et al. (2024) proposed a mean-based dual-strategy
differential evolution algorithm for solving the forward kine-
matics equations of the 2PUU-2PSS PM. It was demon-
strated that the performance of this algorithm surpasses that
of comparison algorithms such as IABC and DErl through
numerical examples. Liu et al. (2019) combined genetic al-
gorithms and backpropagation (BP) neural networks to solve
the forward kinematics equations of the Delta robot, with re-
sults showing better performance than traditional BP neural
networks. Wu et al. (2024) introduced an improved back-
propagation neural network for solving the forward kinemat-
ics equations of redundant PMs, and experimental results in-
dicated a significant improvement in solution accuracy. Wen
et al. (2023) proposed a time-varying differential evolution
algorithm for solving the multiple solution problem of for-
ward kinematics equations in PMs. Using PMs with 3 to 6

DOF as examples, the feasibility and versatility of the algo-
rithm were verified.

This paper is based on the configuration synthesis of PMs
and utilizes screw theory to design a 4-PUU PM with a fully
symmetric structure, which the workspace is unaffected by
the vertical direction. The structure and kinematic analysis
of the 4-PUU PM are presented in the following chapters:
Sect. 2 provides a structural description of the 4-PUU PM
and analyzes its degrees of freedom using screw theory. Sec-
tion 3 derives the kinematic equations of the mechanism
using vector and differentiation methods. Section 4 intro-
duces an improved whale optimization algorithm IBWO) to
solve the forward kinematics equations of the 4-PUU PM.
Section 5 verifies the correctness of the kinematic formula
derivations through motion simulations using Adams soft-
ware and validates the performance of the IBWO algorithm
through numerical examples. Section 6 concludes the paper
and outlines future research directions.

The 4-PUU PM is shown in Fig. 1. This mechanism
mainly consists of a moving platform, a fixed platform,
and four identical structural branches. Each branch is com-
posed of a prismatic pair (P) and universal pair (U), which
are rotational pairs with axes perpendicular to each other.
The topology of the branch can be represented as SCO(-
P ||IR2 LR3 ||R4 LRs}.That is, starting from the fixed plat-
form, the axis of the moving pair 1 is parallel to the axis of
the rotating pair 2, the axis of the rotating pair 2 is perpendic-
ular to the axis of the rotating pair 3, the axis of the rotating
pair 3 is parallel to the axis of the rotating pair 4, the axis of
the rotating pair 4 is perpendicular to the axis of the rotat-
ing pair 5, and the axis of the rotating pair 5 is perpendicular
to the moving platform. In the PUU chain, the intersection
of the axis of the pair (P) with the fixed platform is denoted
as A;(i =1,2,3,4). The center of the first universal joint in-
tersects the axis of the pair at point B;, and the center of
the second universal joint intersects the moving platform at
point C;. To avoid the initial singularity of the mechanism,
the fixed platform is set as a square with the points A; lying
on a circle with radius +/2R. The moving platform is set as a
rectangle with side lengths of 2a and 2b.

— A fixed coordinate system {f}: OXYZ is established on
the fixed platform, where O is the geometric center
of the fixed platform. The OX axis is perpendicular to
A1 A4 and passes through its midpoint, the OY axis is
perpendicular to A1 A; and passes through its midpoint,
and the OZ axis is perpendicular to the fixed platform
and points vertically upwards.



Schematic diagram of PUU branch chain structure.

— A moving coordinate system {m}: Pxyz is established
on the moving platform, where P is the geometric cen-
ter of the moving platform. The Px axis is perpendicular
to C1C4 and passes through its midpoint, the Py axis is
perpendicular to C1C» and passes through its midpoint,
and the Pz axis is perpendicular to the moving platform
and points vertically upwards.

The branch coordinate system is established as shown in
Fig. 2: A;j—x;y;zi, where the z; axis coincides with A; B; and
points toward B;, the y; axis coincides with A; O and points
toward O, and the x; axis is determined by the right-hand
rule. The angle between the revolute pair R3 and the x; axis

is 07, and the angle between the link B;C; and the axis of the
prismatic joint P is ¢;. Thus, in the branch coordinate system,
the motion screw of the PUU branch can be expressed as

$1=(0,0,0; 0,0, 1)

$2,=(0, 0, 1; 0, 0, 0)

$,'3 2(6‘9,', S@,’, 0; /’l,’SQ[, —h,’C@,’, 0)

Sia =(cO;, 56, 05 (Isgi — hy)s6, ’ M

(hi —1sg)cb;, —lcg;)
$i5 =(0, 0, 1; —lC(SiC@i, —lCSiSQ,', 0)

where cosf; = cb;, sinf; = s0;, cosé; = c&;, and sing; = s§&;.
Therefore, the constraint screw of the PUU chain can be
expressed as

"$; = (0, 0, 0; s6;, —c6;, 0). 2

Equation (2) represents a reciprocal screw pair, which indi-
cates that the branch constrains the moving platform’s rota-
tion around the direction parallel to (sinf;, —cos6;, 0). The
constraints imposed by the four symmetrically distributed
PUU branches on the moving platform can be expressed us-
ing the two reciprocal screws $|; and $/. Clearly, these two
reciprocal screws are linearly dependent. Therefore, a linear
combination of the following two reciprocal screws can be
used to obtain

"$1=(0,0,0; 1,0, 0) 3)
"$3=(0,0,0;0,1,0) -

According to Eq. (3), the constraint screws applied to the
moving platform by the four branches are

$cws2=1(0, 0, 0; 0, 1, 0)

$cws.1 and $cws 2 represent the constraint wrenches around
the X axis and Y axis, respectively, applying rotational con-
straints around the X and Y axes to the moving platform, thus
causing the platform to lose its rotational freedom around the
X and Y axes. Therefore, the 4-PUU PM proposed in this
paper has 4 DOF(3TIRz). In general configurations (except
for singular poses), the motion pairs of each branch maintain
their original geometric relationships due to structural con-
straints. The coordinate relations shown in Fig. 2 can still be
established, and the resulting motion screws and the com-
puted reciprocal screws remain unchanged. The constraint
wrenches of the four reciprocal screw systems remain in the
same plane, and their linear independence and rank remain
constant. That is, the virtual constraints of the mechanism
remain unchanged. Thus, the DOFs correspond to full rota-
tional freedom.



The forward kinematics solution of the mechanism is to cal-
culate the output position P = (X p, Yp, Zp) and the attitude
angle y of the moving platform’s reference point P, given the
scale parameters of the mechanism and the input link lengths
h; (fori =1, ..., 4) of the prismatic joints. The structural
parameters of the platform are set as o; = (2i — 1)7 /4, and
the coordinates of point A; in the frame { f} are defined as

YIA; = R(coi, soi, 0). (5)
The coordinate vector of point C; in the frame {m} is
tmbc, = (sign(co;)a, sign(so;)b, 0r. 6)

The unit vector of the axis of the driving arm A; B; in the
frame { f} is

fy; = (0, 0, )T, 7

Assume the coordinate vector of the reference point P on the
moving platform in the fixed frame { f} is

VIP=(Xp, Yp, Zp)T. (8)

The attitude matrix of the moving platform is

cy —sy O
M=| sy ¢y O
0 0 1
Then, the coordinate vector of point C;(i =1, ..., 4) in the

fixed coordinate system { f'} is
Ne=p+ M =A; + 0y + 1w ©)

The unit vector of the axis of the moving arm B;C; in the
fixed frame { f} is

P LM C A —p Ny,
- 1 .

(10)

w;
The constraint equation of the link B;C; is
Afpminic; -1, — hl{.f}u,-)T({f}P+M{m}Ci

A =y =12, (11)
According to Eq. (11), we can obtain

(R—acy —bsy —Xp)* +(R+acy —bsy —Yp)? 4 (hy — Zp)> = 1>

(=R +acy —bsy —Xp)> +(R—acy —bsy —Yp)? +(ha — Zp)* =12
(=R+acy +bsy —Xp) +(—R—acy +bsy —Yp) +(h3— Zp* =1* ~
(R—acy +bsy —Xp)* +(=R+acy +bsy —Yp)* +(ha — Zp)* =1?

12)

Equation (12) is a system of coupled nonlinear equations,
which can be solved using both numerical methods and ana-
lytical methods. The analytical method involves substitution
and elimination to obtain a single high-order equation. By
solving this high-order equation and performing backward
substitution, a high-precision forward kinematics solution for
the mechanism can be obtained. However, this method has
limited applicability and is only suitable for special config-
urations of PMs. The numerical method, on the other hand,
solves the equations using intelligent algorithms or numeri-
cal iteration, offering advantages such as simplicity and effi-
ciency. Therefore, in this paper, a numerical method is em-
ployed to solve the forward kinematics equations, as detailed
in Sect. 4.

The inverse kinematics analysis of the mechanism involves
the process of solving for the input /; given the output po-
sition and orientation of the mechanism (Xp, Yp, Zp, y).
Thus, it can be deduced that, according to Eq. (12), we ob-
tain

hi=Zp=E,/I2—2} — )% (13)
In the equation, A;; is a coefficient (i =1,2,3,4; j =1,2),

and its expression is

Ao = Yp +sign(cos;)asiny —sign(sing;)bcosy — Rsing;

Ai1 = X p +sign(cos¢j)acosy —sign(sing; )bsiny — Rcos¢;
2 =Yp+s . (14)
L s el

Let the inputs of the four driving joints of the mechanism
be h = (hy, hz,h3,h4)T, the output quantities of the moving
platform be X = (Xp, Yp,Zp, y)T, the input velocities of
the four driving joints be v = (hl, f12, /"13, fl4)T, the output
velocities of the moving platform be X = (Xp, Xp, Zp)?,
and the angular velocity output vector of the moving platform
be y =(0,0,9)7.

Taking the derivative of Eq. (11) with respect to time 7, we
get

[P+y x (Mc;)—hul’w; =0i =1,2,3,4. (15)
By simplifying this, we obtain
ol P+ [(Mci) x oi]"y = hiw! u. (16)

Letk; = a)l-Tu and take Ji, = diag(ky, k2, k3, ka):

T
Jout = %‘
3
T
4



It can be seen that Eq. (16) can be rewritten as

Jinh = JouX. an
If Jout is non-singular, then

X = J-130h. (18)
If Jin is non-singular, then

h= 3 JouX. 19)

Equations (22) and (23) are the forward and inverse velocity
solutions of the 4-PUU PM, respectively.

Let the input accelerations of the mechanism’s driving joints
be h = (le, hz, h3, ﬁ4)T and the output acceleration of the
moving platform be X = ()'fp, Yp, ZP)T, with the output an-
gular velocity being 7 = (0,0, )T . Taking the derivative of
equation with respect to time ¢, we get

[P+7 x (Me;)+ 7 x [y x (Me;) — hul}’ o
1 . . .
+ P+ (Mc;) — hu]" [P+ x (Mc;)
— A =o0. (20)

ki = (i x )Ty x Mcp)]+
, then we have K=

If o owe denote
HIP 47 x Me) — hiu
(1, k2, k3, k4)T .

It can be seen that Eq. (20) can be simplified to

Jinh = JouX + . @n
If Jou: is non-singular, then

X = Jo o Jinh + Ik (22)
If Ji, is non-singular, then

h=J TouX+ T, k. (23)

Equations (22) and (23) are the forward and inverse acceler-
ation solutions of the 4-PUU PM, respectively.

When solving the forward kinematics (Eq. 12) of the PM us-
ing a swarm intelligence algorithm, it is necessary to first
convert it into an unconstrained optimization problem and

then use the swarm intelligence algorithm to iteratively opti-
mize the unconstrained optimization equation. Thus, we de-
fine x = (x1, x2, x3, x4)T = (Xp, Yp, Zp, )T, and Eq. (12)
can be transformed into

fi®) = (R —acy —bsy — Xp)* + (R +acy —bsy — Yp)?
+(hy — Zp)* =1

f2(x) = (=R +acy —bsy — Xp)* + (R —acy —bsy — Yp)?
+(ha — Zp) =12

f3(x) = (=R +acy +bsy — Xp)> +(—R —acy + bsy — Yp)?
+(hs — Zp)* — 12

fa(x) = (R —acy +bsy — Xp)? +(—R +acy + bsy — Yp)?
+(ha — Zp)* =17

(24)

The nonlinear system of equations in Eq. (24) can be trans-
formed into an unconstrained optimization problem as fol-

4
lows: minF(x) = > fi(x).
i=1

The BWO (Zhong et al., 2022) is a bio-inspired optimiza-
tion algorithm that simulates the hunting behavior of the bel-
uga whale. The BWO algorithm has characteristics such as a
simple structure, easy expandability, few control parameters,
and strong robustness. The main process of this algorithm
includes the following steps: population initialization, encir-
cling prey, bubble-net attacking, and searching for prey.

1. Population initialization

The initialization of the population in the BWO is sim-
ilar to other optimization algorithms. It involves gener-
ating an initial population of Np individuals (where Np
is the population size) randomly within the search space
of the optimization variables. Specifically, the process is
as follows:

0
XE:Z{ = Xmin,d + 1and()(Xmax,d — Xmin,d)

n=1,2,...,Np. (25)

In the equation, Xmin,4 and xmax,4 represent the lower
and upper bounds of the dth variable, respectively. Here,
d=1,2,..., D, where D is the total number of decision
variables (the dimensionality of the search space).

2. Encircling prey

In the BWO, since the optimal solution in the search
space is not known in advance, it is assumed that the
best solution obtained so far is the target prey or an ap-
proximation of the global optimum. Once the optimal
solution’s position is determined, the other whale indi-
viduals in the population move towards this optimal po-
sition. The position update for each whale is then given



by the following equation:

T=|C -x*® —xD| (26)
XD —x* 0 _ A g, 27)

In the equation, 7 represents the current iteration num-
ber, x) denotes the position of the whale population at
the rth iteration, x*) is the position of the best solu-
tion (prey) in the whale population at iteration ¢, A -1
represents the update step size for the whale population,
and A and 7 are the update coefficients. Their specific
expressions are as follows:

(28)

A=2ar; —a
C=2nr

In the equation, | and r, are random numbers between
[0,1]; this convergence factor is used to balance the
global search ability and local search ability. It is given
by the following formula: a =2 —2¢/T, where T is the
maximum number of iterations.

. Bubble net attack

In the BWO, the bubble net attack is a crucial phase
that combines two different movement strategies: shrink
encircling and spiral updating. These two strategies al-
low the whales to explore the solution space globally
and locally, respectively. The choice of which strategy
to use is determined by a probability p, which controls
the switching between the two methods. The specific
operations are as follows:

(t+1) X0 — At
X = /bl *(1)
/e’ cos2ml) +x

p<0.5

p>05 (29

In the equation, b is the spiral shape parameter; 77 is the
Euclidean distance between the current global best solu-
tion and the current whale’s position; / is a random num-
ber uniformly distributed between [—1,1], used to in-
troduce randomness into the movement; and p is a ran-
dom number uniformly distributed between [0,1], which
controls the probability of selecting a specific update
method (shrink encircling or spiral updating).

. Search for prey

The BWO updates the positions of the whales based on
the distance between the individual whales, thereby per-
forming a random search. When |A| > 1, the BWO al-
gorithm randomly selects a whale position as the target
whale xg)nd, and the other whales update their positions
relative to this target in search of a better prey. The up-
dated formula is as follows:

x(+D — 5@ g—AT (30)

ran

In the equation, t” represents the step size coefficient,

= |C~x£;)nd —x0.
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Distribution diagram of rand population initialization
methods showing (a) value and (b) frequency.

The initial population of the basic differential evolution al-
gorithm is randomly generated using Eq. (25), which can
lead to an uneven distribution and clustering of the gener-
ated initial population. The use of chaotic mapping can ef-
fectively address the issue of population initialization. Com-
monly used chaotic maps include the Kent map (Xiang et
al., 2007), Circle map (Arora et al., 2019), and Logistic map
(Herbadji et al., 2019). According to the reference (Sankalap
et al., 2019), the Circle map generates a more evenly dis-
tributed initial population compared to other chaotic maps.
However, the initial population generated by the Circle map
still tends to be denser in the range [0.2, 0.6] compared to
other values. Therefore, in this paper, the Circle map is im-
proved to achieve a relatively uniform distribution across the
entire solution space. The improved Circle map formula is as
follows:

0.7
k,,p = mod (an—l,D +0.35 - z—sin(an,,_LD), ]). 31
T

In the equation, n = 1,2,..., Np; whenn =2, k,—1 p =rand
(1,D). Combining with Eq. (25), the initial population is gen-
erated using the following method:

'x n = Xmin + Xmax — Xmin)Kn- (32)

As shown in Figs. 3-5 to clearly and intuitively demonstrate
the advantages of the improved Circle map, the initial popu-
lation distributions for random initialization, Circle map, and
improved Circle map are plotted for n = 1000, along with a
frequency statistical analysis.

As shown in Fig. 3, the improved Circle chaotic map re-
sults in a more evenly distributed chaotic value. Therefore,
the improved Circle chaotic map is used to generate the ini-
tial population, which enhances the population diversity and,
in turn, improves the optimization ability of the algorithm.

Backward learning can improve the quality and diversity
of the population solutions. However, the distance between
the solutions generated by backward learning and the current
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solution is fixed, which is detrimental to population diversity
and lacks a certain degree of randomness. Therefore, based
on the improved Circle map, a dynamic backward learning
strategy is employed to further increase population diversity
and the number of elite individuals, thereby expanding the
search range of the algorithm. The dynamic backward learn-
ing strategy is as follows:

"X, =X, + rand(rand(Xmax + Xmin — 'Xn) — 'X5). (33)

Combining Egs. (32) and (34), for the minimization opti-
mization problem, the chaos-backward learning population
initialization can be expressed as

X;m:{ X fOX)<fOX ) 34)

"x , else

According to Eq. (29), the BWO algorithm updates positions
based on the current optimal position of the whale. If the
current optimal whale position becomes trapped in a local
optimum, all the whales will converge around the local opti-
mal individual, causing the algorithm to stagnate. In the gray
wolf optimization algorithm (GWO), to increase population
diversity, a hierarchical system is proposed. This involves ap-
plying weighted processing to the three individuals with the
best fitness values in the current population, using them as
the current optimal position. This approach helps to avoid
the risk of the population getting trapped in a local optimum.

Inverse kinematics of the 4-PUU PM.

Num. Driving rod length

lll/mm 121/mm 131/mm l41/mm
1 22.0013  49.0150 59.4375 36.7018
2 149987 —9.0150 —19.4375 3.2982

Based on the hierarchical system of the GWO algorithm
(Ghalambaz et al., 2021), this paper introduces the concept
of an elite pool. Specifically, the three best individuals in the
population, along with the weighted individuals of high qual-
ity, are stored in the elite pool. During the position update
process, an individual is randomly selected from the elite
pool to serve as a guide, enhancing the algorithm’s ability
to escape local optima. The elite strategy is as follows:

s () (0 (") ()
Elite™ = [Xbest, 1’ Xbest,Z’ Xbest,3 4 Xmean]' (35)

xge)st’l , Xge)st,Z’ andx](fe)st, 5 are the top three individuals ranked

in descending order based on their fitness values. xgl)ean is
considered to denote the weighted individuals, and the cal-
culation method is as follows:

02Np _
Xgl)ean = Z fixgt)

i=1
— : . (36)
fi= 0.21va

g/&

The BWO algorithm uses the spiral position update strategy
from Eq. (30). During the later stages of the algorithm, all
individuals in the population gather near the optimal indi-
vidual, which accelerates the convergence speed of the al-
gorithm but can lead to getting stuck in local optima, re-
sulting in poor population diversity. The golden sine algo-
rithm (Golden-SA) is a new metaheuristic algorithm (Lu
and Zhang, 2023) that has strong global search capabilities.
Golden-SA introduces a golden ratio coefficient in its po-
sition update process, allowing the algorithm to thoroughly
search regions that can produce excellent solutions during
each iteration, thereby accelerating the convergence speed
and escaping local optima. Therefore, when updating posi-
tions in the BWO algorithm, the position update strategy
from Golden-SA can be adopted to enhance the global search
ability and accelerate its convergence speed. Thus, the new
position update strategy is as follows:

XY = x| sin Ry | + 7y sin@7ra) e Elite® — exx]. (37)
In the equation, r; and 7, are random numbers between [0,
1]; Ry is a random number between [0, 2]; and &; and &, are



golden ratio coefficients, and their specific expressions are

er=—nal4+x(1-T)
{ eo=—a(1-T)+xal (38)

In the equation, I" is the golden ratio coefficient, and its value

V5-1

s = 5

In this section, MATLAB numerical examples and Adams
motion simulation are used together to verify the correct-
ness of the kinematic equations derived for the 4-PUU PM.
First, a numerical example of the mechanism’s position anal-
ysis is provided. The mechanism’s scale parameters are set
as R =38,a=18.75, b =12.5,1 = 43 mm. The initial posi-
tion of the fixed platform is setas (X p, Yp, Zp, y)T =(—20,
20, 20mm, —25°)7; the final position of the moving plat-
form is set as (Xp, Yp, Zp, )T =(20, —10, 50, —45°)7.
The initial and final positions of the moving platform are
substituted into Eq. (13) to determine the corresponding sub-
configurations of the mechanism (h,z{f }Zc,-) and the input
rod lengths. The change in the driving pair of each limb is
calculated as Ah; = (65.3012, 31.5674, 13.5590, 48.1959).
To avoid motion shocks caused by sudden changes in veloc-
ity and acceleration, which could affect the kinematic simu-
lation results, the four moving driving pairs follow a 3—4-5
polynomial motion law, expressed as

T\3 T\4 T\5

H; = h; + Ah; <1O(T) 15(T) +6(T) ) (39)
In the equation, H; is the function representing the varia-
tion of the driving pair rod length of the ith limb with re-
spect to time, and A; is the initial rod length of the ith limb.
h; =[25.0013, 49.0150, 59.4375, 36.7018]: 7 is the time
variable, and its value range is [0,5]; T is the maximum sim-
ulation time.

The total motion time of the mechanism is set to 5s, and
the continuous motion time 7 is discretized with a time inter-
val of 0.1s. Based on this, the position forward kinematics of
the mechanism is solved using the method from Sect. 3.1.2.
Then, the velocity and acceleration forward kinematics are
obtained using Eqs. (18) and (22). Based on this, the angu-
lar displacement, angular velocity, and angular acceleration
of the moving platform under the given motion law are ob-
tained as MATLAB theoretical numerical curves, as shown
in Fig. 6. At the same time, a three-dimensional model of the
mechanism is established based on the mechanism’s scale pa-
rameters and assembled. The assembly is then imported into
Adams software, where the driving parameters from Eq. (39)
are set, resulting in the output motion curve of the moving
platform, as shown in Fig. 6.

As shown in Fig. 4a and f, the mechanism has translational
DOF in the X, Y, and Z directions, as well as a rotational

DOF around the Z axis, thereby validating the correctness of
the mechanism’s DOF analysis in Sect. 2.2. At the same time,
the Adams simulation results are in good agreement with the
MATLAB theoretical results, confirming the correctness of
the position, velocity, and acceleration equations derived for
the 4-PUU PM in this paper.

The mechanism scale parameters are consistent with those
in Sect. 5.1. The coordinates of the end-effector reference
pointare (Xp, Yp, Zp, y)T = (=20, 20,20 mm, —25°)7. By
substituting these values into Eq. (13), the inverse kinematics
of the mechanism can be solved, as shown in Table 1.

For the first set of parameters in Table 1, the mechanism
scale parameters are consistent with those in section 5.1.
The range of the variables to be determined is x i, = (—50,
—50mm, 0, —)T, Xmax =(50, 50, 100 mm, 77)T . In order to
evaluate the computational performance of the IBWO algo-
rithm in the forward kinematics of the PM, the algorithm is
compared with the DEb1, PSO, and GWO algorithms. The
acceptable error for all five algorithms is fuc = 1073, the
population size is Np = 40, and the maximum number of it-
erations is 7 = 500. The algorithm is independently run 50
times, and the average evolution curve of the objective func-
tion is shown in Fig. 7. Table 2 presents the results of the four
algorithms for the forward kinematics problem with indepen-
dent random runs. fy, fm, fb, fstd, and ng represent the worst
value, average value, best value, standard deviation, and the
number of times the algorithm successfully found the for-
ward kinematics solution, respectively, after 50 independent
runs of the algorithm.

From Table 2, it can be observed that the values of f;, and
ng in the IBWO algorithm are the same as those in the PSO
algorithm. However, the values of fy, fm, and fq obtained
by the IBWO algorithm are better than those of the PSO al-
gorithm. At the same time, as shown in Fig. 7, the IBWO
algorithm exhibits faster convergence speed and greater ro-
bustness. In summary, the performance of the IBWO algo-
rithm is superior to the other three comparison algorithms.

To calculate the error of the IBWO algorithm in solving
the forward kinematics equation of the 4-PUU PM, the 51
end-effector output poses from Fig. 6a are substituted into
Eq. (13) to obtain the corresponding input driving rod lengths
h;. These are used as the mechanism scale parameters. The
IBWO algorithm is then independently run five times to solve
for the output poses. The difference between the output poses
obtained by the IBWO algorithm and the theoretical parame-
ters is considered the error of the IBWO algorithm. The spe-
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Performance statistical results of the four algorithms.
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cific calculation expression is as follows:

n

>_(Fiwo — Fr)
AEr=720 (40)

n

In the equation, AEr is the error generated by the IBWO al-
gorithm in solving the forward kinematics equation of the
PM, n is the number of independent runs of the IBWO al-
gorithm, Fipwo is the output position of the PM obtained by
the IBWO algorithm, and Fr is the theoretical output pose of
the PM.

Based on this, the average error curve of the IBWO al-
gorithm in solving the forward kinematics equation of the
4-PUU PM is shown in Fig. 6.

As shown in Fig. 8a, when the IBWO algorithm is used
to solve the forward kinematics equation for the continuous
trajectory of the 4-PUU PM, the maximum error generated is
approximately 2 x 10~7 mm. However, in practical engineer-
ing applications, an error of 0.01 mm is sufficient to meet the
requirements. In conclusion, the roots of the forward kine-
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matics equation of the 4-PUU PM solved by the IBWO algo-
rithm meet the practical requirements. To improve the accu-
racy of the IBWO algorithm, it is only necessary to increase
the acceptable root accuracy fyc. in the algorithm to achieve
higher-precision roots.

This paper presents a 4-PUU PM with 3T1R DOF, whose
workspace is unaffected by the actuated joints. The mech-
anism’s DOF characteristics are analyzed using screw the-
ory. Based on the constraint of link lengths, the forward and
inverse kinematics equations of the mechanism are derived.
On this basis, the first and second time derivatives of the for-
ward kinematics equations are obtained, yielding the veloc-
ity and acceleration equations of the mechanism. Given the
scale parameters and actuator parameters of the mechanism,
simulation experiments are conducted using both MATLAB
and Adams software. The experimental results validate the
correctness of the kinematic analysis of the 4-PUU PM. An
IBWO is proposed to solve the forward kinematics equa-
tions of the 4-PUU PM, and comparative algorithm experi-
ments are performed. The experimental results show that the
IBWO algorithm outperforms other comparison algorithms.
Finally, based on the forward kinematics solutions for the in-
terpolation points of continuous trajectories, it is found that
the IBWO algorithm meets the accuracy requirements for the
mechanism’s practical applications.

In the future, the IBWO algorithm will be used for the op-
timization of the scale parameters of the 4-PUU PM. Based
on the optimization results, a prototype will be designed, and
the IBWO algorithm will be applied to the prototype for kine-
matic trajectory planning of the mechanism.

No data sets were used in this paper.
Readers interested in the MATLAB implementation of the IBWO
algorithm may contact the corresponding author via email to request
the source code.
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