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Traditional machine defect identification methods have problems such as poor adaptability and low
accuracy. As for solving the problems, a large number of improved machine defect identification techniques
based on artificial intelligence have been developed; however, all of these methods focus on the neural networks
and ignore the connections and influences of the data nodes. This paper proposes a feature-enhanced method
based on a data dynamic network for bearing defect identifications. The research preprocesses the data by means
of optimization algorithms and defines nodes and edges of data for the construction of a data dynamic network.
In order to further improve the accuracy of the machine bearing defect identification, the data are also washed for
the energy analysis to be coupled with the data dynamic network for feature enhancement. The training sets and
test sets are defined with different data coupling techniques. A performance evaluation of the proposed method
is carried out by means of the evaluation function for more effective detection of bearing defects.

As one of the key parts in mechanical equipment, the im-
portance of bearings cannot be ignored, and they play a key
role in motion control and support. Due to the low accuracy
and poor adaptability of the traditional defect identification
methods and the heavy reliance on manual experience, it is
necessary to continue to develop intelligent defect identifi-
cation methods based on machine learning. In the context
of today’s rapid development of artificial intelligence and
machine learning technology, convolutional neural network
technology has been widely used in the field of machinery
defect identification. Traditional mechanical defect identifi-
cation methods usually require a large amount of experience
and professional knowledge, while convolutional neural net-
works can automatically identify the type and location of me-
chanical defects by learning and analyzing a large amount of
mechanical operation data and, at the same time, generat-

ing feedback results. This method can not only improve the
efficiency and accuracy of mechanical system defect identi-
fication but also largely reduce the cost and risk of manual
identification.

Mechanical equipment defect identification technology is
a scientific and technological means to ensure the stable oper-
ation of equipment and to maintain safe production. Using all
kinds of sensors or intelligent sensing equipment, through ef-
fective work and cooperation, real-time monitoring, the col-
lection of machinery and equipment running parameters, the
use of a variety of signal processing and analysis methods for
research, and accurate identification of the equipment and by
doing a good job of protecting the corresponding work, we
can greatly improve the safety and stability of machinery and
equipment operation.

To improve defect identification accuracy and to under-
stand the different reasons for and types of defects, many re-
searchers have focused on this area. Wu (2020) conducted



a detailed study on the rotor crack defect monitoring and
identification technology for large-scale equipment such as
turbine generators and formed a systematic and comprehen-
sive rotor crack defect identification, analysis, and elimi-
nation method for turbine generators by establishing a re-
lationship model related to different types of defects and
two specific frequency components, as well as four specific
working-condition parameters, which can effectively help to
eliminate the rotor crack defects and provide an innovative
and effective diagnostic method for the actual on-site defect
identification. It can help effectively in troubleshooting ro-
tor cracks and in providing an innovative and effective diag-
nostic method for on-site defect identification. Wang et al.
(2013) designed a turbine rotor defect detection and diag-
nostic analysis method based on deep convolutional neural
networks, which can realize end-to-end detection of large-
scale equipment such as turbine rotor defects and can effec-
tively classify different kinds of single simple defects and,
at the same time, carry out multi-task collaborative detec-
tion and analysis of different degrees and locations, further
applying the theory of deep learning to the actual identifica-
tion of turbine rotor defects and directly mapping the multi-
measurement point vibration data signals to the desired de-
fect characteristics, which has the advantage of strong gener-
alizability and high accuracy. The deep learning theory is fur-
ther applied to the actual steam turbine rotor defect identifi-
cation, and the vibration data signals from multiple measure-
ment points are directly mapped to the desired defect charac-
teristics, which has the advantages of strong generalizability
and high accuracy. Zhong et al. (2022) further improved the
diagnostic algorithm by applying the fuzzy-proximity algo-
rithm to analyze and calculate the precise proximity between
the data to be identified and the standard clustering centers
and realized effective defect identification of the ground ro-
tor imbalance under the working condition of variable speed.
Zhang et al. (2022) combined the energy of the effective in-
trinsic mode function (IMF) component of the original sig-
nal and the energy entropy of the signal obtained after using
the empirical modal decomposition method as new feature
vectors, proposed an innovative feature vector combination,
and optimized the back-propagation (BP) error of the back-
propagation neural network using the DPSO algorithm to fur-
ther improve the BP neural network by optimizing the thresh-
old value of the neural network and the initial weight value.
The BP neural network is further improved by optimizing
the threshold and initial weights of the neural network. Jia
et al. (2023) proposed an alternating evolution discontinu-
ous Galerkin (AEDG) method, which provides a new means
to solve the difficulties encountered in the traditional data-
driven defect identification method when the actual operat-
ing conditions of the rotor mechanical system are variable
through practical defect identification experiments and spe-
cific analysis and application. Chen et al. (2023) solved the
problem of it being difficult to effectively identify the dif-
ferent touch-wear defects generated in the early and middle

stages of using a turbine rotor through the vibration-signal-
based defect detection and identification method by improv-
ing the reasonable method of obtaining the feature data set
and proposed a new touch-wear defect identification method
based on ensemble empirical mode decomposition with long
short-term memory (EEMD-LSTM) in order for the turbine
rotor to be researched and analyzed. Wu et al. (2023) pro-
posed a marine eddy detection model, YOLOX-EDDY, based
on YOLOX high-performance target detection, which is ca-
pable of automatically extracting feature parameters such as
eddy center position, edge position, and scale type and can
realize automated and intelligent processing for automatic
eddy detection and feature information extraction.

In general, there are many kinds of mechanical equipment
defect identification methods, which can be divided into
two main categories: signal-processing-based defect iden-
tification methods and defect identification methods based
on existing knowledge. Defect identification methods based
on signal processing mainly include vibration identification,
non-destructive testing, oil sample analysis, and tempera-
ture monitoring. Defect identification methods based on ex-
isting knowledge employ a combination of artificial intel-
ligence; deep learning; and other computer technologies,
mainly convolutional neural networks, expert systems, deci-
sion trees, support vector machines, and graphical neural net-
works. Compared with the traditional machinery and equip-
ment defect identification methods, using the methods out-
lined above, rapidity, accuracy, stability, and robustness have
been greatly improved.

Neural network technology is a nonlinear dynamic simu-
lation study of biological neural network patterns. With deep
learning and machine learning techniques gradually becom-
ing the mainstream research direction in the field of artifi-
cial intelligence research, neural networks, especially convo-
lutional neural networks, have been fully developed.

Zhang et al. (2020) provided a comprehensive review of
graph-structure-based machine learning techniques by ap-
proaching them from the perspective of semi-supervised and
unsupervised learning. Qiu et al. (2023) proposed a two-
channel collaborative clustering analysis algorithm for het-
erogeneous information networks by designing a simple and
effective two-channel encoder to efficiently aggregate the
neighborhood information and use the collaborative cluster-
ing mechanism to cluster different types of nodes at the same
time, which results in better performance than the widely
used neural network encoder. Neural network technology,
with its diverse research methods and advanced knowledge
in many fields, provides new ideas and methods for bearing
defect identification. Su et al. (2024) proposed a knowledge-
informed deep network (KIDN) for robust rolling-bearing
fault diagnosis, using prior knowledge-based features and
data-driven learning. They developed a generalizability-
based adaptive design strategy using a constrained Gaus-
sian process (CGP) surrogate model to efficiently identify
optimal KIDN architectures. Tang et al. (2024) provided



a scaled-minimum unscented-Kalman-filter-aided deep be-
lief network (DBN) (SUKF-DBN) for low-speed fault di-
agnosis in offshore wind turbines. This approach transforms
multi-sensor time series into temporally preserved 2-D maps
and augments DBN feature representation using a scaled-
minimum UKEF, dynamically adapting to noise conditions.
To overcome the infeasibility of data-intensive deep learn-
ing for fault-rare mechanical systems, Ding et al. (2024) de-
veloped a metric-learning Siamese network (CASN) with
channel attention. By mapping feature disparities between
sample pairs via a shared encoder, CASN enables diagnosis
from extremely limited samples while maintaining robust-
ness in relation to noise and transmission distortion. Wen
et al. (2024) proposed a Siamese neural network (SNN)
framework with multi-source feature fusion for small-sample
motor bearing diagnosis. A multi-stage training strategy
prevents stagnation while extracting discriminative features
from limited data. Fusion of multi-sensor features enhances
robustness. You et al. (2025) addressed interpretability and
reliability gaps in DL-based bearing diagnosis by propos-
ing a sound vibration physical-information fusion-constraint-
guided (PFCG) framework. This method fuses multi-physics
data via a 15-degrees-of-freedom (DOF) nonlinear dynam-
ics model and guides DL training through weighted physical
consistency, uncertainty, and cross-entropy losses to enhance
interpretability.

Regarding bearing fault diagnosis, effective feature extrac-
tion from raw vibration signals is a critical component. Sec-
tion 2 commences this research by presenting rolling-bearing
defect feature extraction methods, along with an overview of
relevant bearing defect characteristics and theoretical foun-
dations. Section 3 demonstrates the practical application of
data augmentation techniques for robustness enhancement
and presents experimental verification of three distinct fea-
ture extraction categories: energy features, recursive features,
and dynamic network features. The final section summarizes
this research.

In Figs. 1 and 2, since the modulating signal has a certain
regularity and is a periodic signal, its recurrence plot also
has a certain regularity to follow; while the defect signal is a
non-periodic signal, its recurrence plot is chaotic (Eckmann
et al., 1987; Wang et al., 2024). The accurate recognition of
various features in the recurrence diagram requires certain
experience; in order to be able to analyze the signal under
study more accurately and scientifically, it is necessary to
quantify the various features obtained in the recurrence di-
agram drawn.

The nonlinear and non-smooth characteristics of rolling-
bearing defect signals make the traditional defect feature
extraction methods based on the smoothness of the signals
limited, while the recurrence quantification analysis (RQA)
method is an effective method that can quantify the recur-
rence phenomenon of the system shown in the recurrence di-
agrams on the basis of improving the recurrence diagrams
(Zbilut and Webber, 2006). Recurrence quantification anal-
ysis is an effective method to quantify the recurrence phe-
nomenon in recurrence diagrams. The recurrence diagram is
a qualitative means of analyzing the complexity of a signal,
while the RQA method is a quantitative method derived from
the recurrence diagram. The nonlinear characteristics of the
RQA method include the following: recurrence rate (RR),
recurrence entropy (ENTR), layered rate (LAM), determina-
tion rate (DET), recurrence number (TT), and average di-
agonal length (L). The recurrence rate, recurrence entropy,
and average diagonal length (L) of the recurrence diagram
are the most important characteristics of the recurrence dia-
gram. Further more, out of the above characteristics, recur-
sion rate, recursion entropy, and recursion trend are the more
commonly used measures.

Recurrence rate (RR) refers to the ratio of the number
of points appearing in the recurrence plot to the number of
points appearing in the complete distance matrix (Yu et al.,
2025). The RR counts only the black points in the recur-
rence map and is a measure used to evaluate the density of
recurrence points, representing the frequency of recurrence
of phase points and the degree of clustering of trajectories in
phase space.

RR ! )y R

= m i,j=I ij (1)
In the above, R;; denotes the recurrence matrix, and M is
the number of points on the horizontal or vertical axis in the
recurrence plot.

Recursive entropy (ENTR) refers to the distribution of the
length of diagonal structures in a recursive graph. It is a met-
ric that can be used to measure the strength of the periodicity
of a recursive graph.

ENTR = -2, p()In(pl) )

In the above, p(I) represents the number of line segments of
length [ that are parallel to the main diagonal.

Recurrence trend (TREND) refers to the degree of the
speed of change in the rate of recurrence as the main di-
agonal on the recurrence graph transitions to the other two
corners, essentially reflecting the degree of mixing and non-
stationarity of the signal.

S (= ¥) RR, - RR())

=1

TREND = 3)
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Figure 1. FM signal with its recurrence plot (left: FM signal; right: recurrence plot).

1.5

1

0.5

Amplitude

0 20 40 60 80 100 120
Time

. 100 1.5
E
E 200 .
Z
'§ 300
£ 0.5
400
100 200 300 400 500
Index Number
2
50 B
St
2100 L5
g
Z 150 1
g 200
= 250 0.5
300
0

100 200 300
Index Number

Figure 2. Defect signal with its recurrence plot (left: defect signal; right: recurrence plot).

Here, (RR;) denotes the size of the mean of the time series,
and RR; denotes the rate of recurrence of the different parts
of the time series after averaging over N. If the time mea-
sure changes in the sliding window, the size of the recurrence
trend depends mainly on the size of the window, and so, for
different sizes of the window, the resulting recurrence trend
may be very different.

2.3 Data dynamic network

The correlation coefficient is an important indicator of the
size of statistical relationships and the strength of relation-
ships between different data. Data dynamic network charac-
teristics refer to the artificially established network of con-
nections among data, which can effectively strengthen the
defect characteristics of the data set. By studying the instan-
taneous linear relationship between adjacent signals, based
on the Pearson correlation coefficient in conjunction with the
sliding time window, we can arrange the defect data into a
time-dependent network, completing the analysis of the two
metrics of correlation and phase synchronization and thus en-
dowing the data with useful dynamic attributes (Vinck et al.,
2011).

The overall correlation coefficient between two variables
X and Y is defined as follows:

_cov(X,Y)  E[X—px)(Y —puy)]
= — O'XO'Y >

“

PX,Y
0x0y
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where ox and oy denote the corresponding standard devia-
tions.
The Pearson correlation coefficient r is expressed as fol-
lows:
n —
S (% -X) (1, - )
r=—= . (5)
& =2 [< —\2
> (Xi=X)" [X (Vi -Y)

i=1 i=1

For network connectivity, in the analysis of specific signals,
phase synchronization is an important indication of the inter-
action between different nodes (Onias and Viol, 2013).

If two signal sequences are phase synchronized then the
correlation between the nodes represented by these two sig-
nals is stronger. As shown in the Fig. 3, data dynamic net-
work characteristics refer to the dynamic functional network
matrix composed of different nodes and connected edges be-
tween nodes, with the connected edges reflecting the correla-
tion and consistency between the nodes, thus enabling us to
show the dynamic changes in the defects in specific parts of
the rolling bearing.

2.4 Data sets

The data set used in this paper is the publicly available
rolling-bearing failure data set from Case Western Reserve
University (CWRU) (21). The entire experimental platform
consists of a 1.5 kW motor, torque transducer, power meter,

https://doi.org/10.5194/ms-16-685-2025
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etc., as shown in Fig. 4. The data used in this paper are the
drive end bearing data; the bearing is sealed on both sides
and is manufactured by SKF, with deep groove ball bear-
ings (model 6205). The experimental sampling frequency is
12kHz, and the specific parameters are shown in Table 1.
There are three types of defects detected in the experimental
bearings, namely, inner-ring defects, outer-ring defects, and
rolling-element defects. Together with the normal data, there
are four final experimental data types selected. In this paper,
for the inner-ring failure, outer-ring failure, and rolling-body
failure, we selected eight relevant data files, with four data
files being selected for normal data for subsequent defect ex-
traction and training tests; the specific types are shown in
Table 2.

This paper is based on the programming for each selected
data file, applying the written algorithm for the sliding-time-
window slicing process to enhance the data set; the repetition
rate is 0.6 for a total of 100 slides to complete the initial
processing of the data, as shown in Fig. 5.

The data obtained from the power spectral density analysis
of the filtered processed data in this section can be used as
part of the feature quantity for subsequent machine learning,
with the power spectral density being shown in Figs. 6 to 9.

The power spectral density visualization is shown in
Figs. 10 to 12. After visualization, the power spectral den-
sity analysis of different defect areas can intuitively show the
magnitude of and difference in energy in different frequency
ranges, which can be used as the input features of the subse-
quent convolutional neural network with good results.

Using the recurrence map and the RQA method for quanti-
tative analysis, each file of the obtained features is 8 rows
x 11 columns, in which the first 10 columns represent the
power spectral densities in different frequency ranges, and
these features can comprehensively reflect the dynamic char-
acteristics and complexity of the data series. The new 11th
column is the recurrence rate, which provides important in-
formation about the phase space reconstruction in the data
and provides strong support for the subsequent data interpre-
tation and model construction. The inner-circle-defect sam-
ple (no. 1) with the new recurrence rate is shown in Table 3.

The extracted features are visualized and processed as
shown in Fig. 13.

A new defect data set is obtained by applying data set en-
hancement techniques such as sliding-time-window slicing.
Within this data set, there are eight groups of data for each
different defect type; each group consists of 100 rows of data
after filtering and amplitude—frequency analysis using the
Pearson correlation coefficient analysis method mentioned in
the above section, with subsequent calculation of the corre-
lation coefficients of the data in two adjacent rows so as to
generate the strengthened feature matrix and conversion of
the data into an 8 x 10 network matrix with time window
processing so as to obtain the dynamic. The dynamic net-
work matrix is constructed based on the sliding-time-window
method as shown in Fig. 14.

The extracted features are visualized and processed as
shown in Fig. 15, from which it can be intuitively seen that
the dynamic network features are more effective in feature vi-
sualization than energy feature analysis due to their dynamic
properties. Through the comparison between different colors,
the difference between dynamic network features extracted
from different samples can be clearly seen.

The variation in the strength of the constructed network
nodes over time is shown in Fig. 16, from which it can be
concluded that there are some fluctuations in the strength of
the nodes of each defect type over time, with relatively large
fluctuations in the outer-ring defects.
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Table 1. Bearing models and parameters.

L. Hou et al.: Coupled data dynamic networks

Bearing model Z Inside Outside d, mm D, mm Thickness
diameter ~ diameter
6205-2RSJEM SKF 9  25mm 52 mm 794mm 39.04mm 15mm
Table 2. Data selected for this paper.

Damage Not Inner Outer Rolling Load, Motor approximate

location applicable  race race element throttle speed, rmin™ 1

Selected file 1 2 2 2 0 1797

count 1 2 2 2 1 1772
1 2 2 2 2 1750
1 2 2 2 3 1730

[T
0.6

Figure 5. Demonstration of sliding time window.

Table 3. Sample inner-circle failures with new recurrence rates. PSD: power spectral density.

PSD PSD 1 PSD 2 PSD 3 Difference 1 Difference 2  Difference 3  Difference 4  Recurrence

rates
Channel 1  0.46797891  0.43254647 0.57853334  0.03543243  0.14598686  0.04497558  0.11055443 1.57486283
Channel 2 0.37865839  0.44737680 0.57607983  0.06871841 0.12870303  0.04713894  0.19742144 1.21742684
Channel 3 0.41025924  0.46283475 0.57174661 0.05257551 0.10891185  0.04440133  0.16148736  1.31574360
Channel 4  0.43215609 0.43742075 0.60494556  0.00526466  0.16752481  0.05664550  0.17278947 1.33114426
Channel 5 0.49463017  0.49092525 0.56641170  0.00370492  0.07548644  0.13412974  0.07178152  1.45759602
Channel 6  0.34663556  0.43162422 0.53340069  0.08498866  0.10177648  0.14527113  0.18676514 0.98428212
Channel 7 0.39908428 0.45614893  0.52513471 0.05706465  0.06898578  0.09993014  0.12605043  1.62766061
Channel 8  0.33629645 0.41131140 0.54140532  0.07501495  0.13009392  0.09897234  0.20510887  1.04025206

3.5 Convolutional neural network architecture

Convolutional neural networks (CNNs) have become a key
data-processing tool in the defect identification research of
mechanical equipment (Zhu, 2024). The purpose of this sec-
tion is to analyze and study the practical application effect
of the convolutional neural network model based on energy
features, recursive features, and dynamic network features
in bearing defect identification. This chapter will introduce
the specific structure of the convolutional neural network and

Mech. Sci., 16, 685-699, 2025

the construction process in detail, including the convolutional
layer, nonlinear activation function, pooling operation, fully
connected layer, and other major parts, and will also clarify
their functions and interconnections and then introduce the
forward-propagation algorithm; the back-propagation algo-
rithm; and a series of evaluation indexes, including the ac-
curacy rate, the loss function, and the confusion matrix, in
order to conduct a further, reasonable evaluation for different
models. The experimental results show that, compared with

https://doi.org/10.5194/ms-16-685-2025
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the different models, the algorithms are more accurate and
more efficient.

The experimental results show that, compared with the
convolutional neural network (CNN) model using only en-
ergy features, the model with new data recursive features and
the model using data dynamic features have certain dynamic
attributes due to their association with time; additionally, the
convergence speed and diagnostic accuracy have been im-
proved, which indicates that the data recursive features and
the dynamic network features can effectively enhance the

model’s ability to recognize the defect signals, thus validat-
ing the robustness of this paper’s method. Thus, the advan-
tages of the method in this paper in terms of robustness and
generalizability are verified.

The pooling layer is a method to reduce the complexity of
the model (LeCun et al., 2015). By reducing the resolution
of the feature map, the parameters of the neural network can
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Figure 11. Visualization of power spectral density of outer-ring defects.

Figure 12. Visualization of power spectral density of rolling-body defects.

be effectively reduced, and, at the same time, the adaptabil-
ity to the input data in displacement and scale changes is en-
hanced. In practice, there are two common pooling methods:
maximum pooling and mean pooling, as shown in Fig. 17.

3.5.2 Full-connectivity layer

A fully connected layer is one of the components of a clas-
sifier, which is characterized by the fact that every neuron
in the current layer is connected to all neurons in the previ-
ous layer. While operations such as convolutional, pooling,
and activation layers map the original data to the hidden fea-

Mech. Sci., 16, 685-699, 2025

ture space, the fully connected layer serves to map the result-
ing “distributed feature representation” to the sample label-
ing space. The equation is as follows:

Xkl = Wixg + by, (6)

where x4 denotes the current neuron output result, Wy de-
notes the connection weight, and by represents the size of the
bias value.

https://doi.org/10.5194/ms-16-685-2025
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3.6 Forward-propagation algorithm and
back-propagation algorithm

The forward-propagation algorithm is the basis of convolu-
tional neural network prediction, which can be calculated
layer by layer until the final result is output according to the
hierarchical structure of the network. The back-propagation

https://doi.org/10.5194/ms-16-685-2025

algorithm is one of the key cores of the convolutional neural
network training; through the calculation of the gradient of
the loss function relative to the parameters of each layer, it
can realize the updating of the network parameters and, ulti-
mately, can achieve the purpose of minimizing the difference
between the prediction results and the real value.

Mech. Sci., 16, 685-699, 2025
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Figure 15. Visualization of dynamic network features of data (first row:
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Figure 16. Plot of average strength of network nodes over time.

3.6.1

Forward-propagation algorithm

The forward-propagation algorithm is one of the common
processes used to perform neural network operations. The
information is transmitted layer by layer by combining with
weights and biases to finally obtain the output, where the ac-

Mech. Sci., 16, 685-699, 2025
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Figure 17. Example of pooling operation.

tivity state of each layer is determined by the corresponding
activation function of that layer, as shown in Fig. 18. After
completing the output, the forward propagation will quanti-
tatively analyze the error size according to some evaluation
metrics. The specific calculations are as follows:

) /] 1-1 !
ai=o (Xk:a)jkak +bj> ) 7
The matrix is of the form

d=o (wlal—l +b’). (8)

https://doi.org/10.5194/ms-16-685-2025
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Here, bl/. denotes the bias value of the neuron j in the layer

l, aj. denotes the activation value of the neuron j in the layer
I, and w denotes the weights of two neurons in two adjacent
layers.

The back-propagation algorithm (Zhou, 2016), also known
as the BP algorithm, addresses the need for an error back-
propagation operation, as shown in Fig. 19.

For a training example (xk, yx), we use the following equa-
tion:

=B —0)). ©)

The input into the hidden-layer neuron # is calculated as fol-
lows:

d
oy = Zvihxi. (10)
i=1
The input into the output neuron j is calculated as follows:

q
Bi = wn;bn. (11)
h=1

The mean squared error is calculated as follows:

1< 2
Ee=5> (3 -»)" (12)

Given the error Ej, assuming a learning rate n, the weight
updates are computed as follows:

0E}
aa)hj.

Awpj = —n (13)

Using the chain rule, we can compute the partial derivatives:

OEx _ OE, 03} ap;

R R (14
Let

ok
gj=‘2§jf'%=9§<1—9§>@§—9f)- >
Then
Awyj = —naaj; = ng;bn. (16)
Similarly,
AB; =—ngj. a7

Performance metrics are a measure of how much gener-
alizability a model has. During convolutional neural net-
work training, evaluation metrics such as loss function, ac-
curacy, confusion matrix, and receiver operating characteris-
tic (ROC) curve are commonly used to evaluate the model
for the next step of testing and optimization (Zhou, 2016).
Through these evaluation metrics, we can quantitatively as-
sess the robustness and generalization capabilities of the
model, specifically its ability to maintain consistent perfor-
mance when confronted with new test data.

Loss refers to the difference between the predicted value and
the true value when applying machine learning. There are
two main types of loss functions commonly used in the task
of performing classification: the cross-entropy loss (CEL)
and the mean squared error (MSE).

The cross-entropy loss is calculated as follows:

L= %Z (—Zyilogp,), (18)
j=1

i=1

where n represents the training batch size, C represents the
number of classes, y represents the sample labeling distribu-
tion, and p represents the model prediction distribution.
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The mean square error loss is calculated as follows:

2
S (v -7)
MSE=_—__ "/ (19)
n

Precision reflects the accuracy of the model created for pre-
diction. Accuracy and error rate are opposite concepts of
each other: the higher the accuracy, the better the perfor-
mance of the designed model is proved. The specific accu-
racy and error rate are calculated as outlined below.

— Accuracy.
1 m
acc=Z;H(f(xi)=Yi)- (20)

In the above, y; denotes the true label corresponding
to the ith sample in the test set, and f(x;) denotes its
predicted label.

— Error rate.

m

1
E=;Z]‘[(f<xi>¢y,-)=l—acc. @1

i=1

The confusion matrix can visualize the quality of machine
learning model evaluation and thus determine how well the
model performs. An example of the confusion matrix is
shown in Table 4.
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Confusion matrix example.

Number Projected value
0 1 2 3
Real 0 42 0 0 0
value 1 1 31 0 0
2 0 37 0
3 0 0 0 33

Since the ReLU function is constant at 0 in the negative half-
axis of the coordinate axis, the derivative is also constant at O,
resulting in the disappearance of the gradient in this region,
a property known as unilateral suppression, which helps the
model to learn a more efficient feature representation. Since
the ReLU function has very good properties, this function
is used as the activation function in the construction of the
convolutional neural network in this chapter.

The structural parameters of the convolutional neural net-
work model based on energy analysis are shown in Table 5.

The structural parameters of the convolutional neural net-
work model based on the dynamic network characteristics
of the data are shown in Table 6.

In the input into the convolutional neural network, the loss,
accuracy, and confusion matrix obtained after 100 epochs of
testing are depicted in Figs. 20 and 21. In Fig. 20a, the blue
line represents the loss curve during training, and the orange
line represents the loss curve during testing.

As the iteration time increases, the loss value decreases
sharply. When the epochs reach 20, the loss value gets to
around 1 %, and the good match of the loss curves for train-
ing and testing validates the good accuracy of the proposed



Structure parameters of the convolutional neural network model based on data energy characteristics.

Layer Type Input size ~ Kernel Stride Padding Output  Output size  Activation
name size channels function
input  Input §x10x1 - - - - 8x10x1 -

convl  Convolutional 8§x10x1 3x3 1 1 6 6x8x10 ReLU
pooll  Pooling 6x8x10 2x2 2 0 - 3x4x6 -

conv2  Convolutional 3x4x6 3x3 1 1 12 3x2x12 ReLU
pool2  Pooling 3x2x12 2x2 2 0 - Ix1x12 -

conv3  Convolutional Ix1x12 3x3 1 1 24 1x1x24 ReLU
flatten  Flatten 1x1x24 - - - - 96 -

fcl Fully connected 96 - - - 4 4 Softmax

Structure parameters of the convolutional neural network model based on data dynamic network characterization.

Layer Type Input size ~ Kernel Stride Padding Output  Output size  Activation
name size channels function
input  Input Ex11x1 - - - - 8x11x1 -
convl  Convolutional §x11x1 3x3 1 1 6 6x9x10 ReLU
pooll  Pooling 6x9x10 2x2 2 0 - 3x5x6 -
conv2  Convolutional 3x5x%x6 3x3 1 1 12 3x3x12 ReLU
pool2  Pooling 3x3x12 2x2 2 0 - Ix2x12 -
conv3d  Convolutional Ix2x12 3x3 1 1 24 1x1x24 ReLU
flatten  Flatten Ix1x24 - - - - 9% -
fcl Fully connected 96 - - - 4 4 Softmax
Confusion Matrix The confusion matrix obtained from a new test set is de-
14 picted in Fig. 22. In the confusion matrixes shown in Figs. 21
e and 22, the horizontal axis represents the predicted value; the
12 vertical axis represents the true value; and labels 0O, 1, 2, and
o 3, respectively, represent four defect types: normal, inner-
- ring defect, outer-ring defect, and rolling-element defect. In
g 8 Fig. 22a, out of 180 test samples, 177 were accurately pre-
= dicted, achieving an accuracy of 98.333 %. In Fig. 22b, 119
~ e out of 120 test samples were correctly identified, resulting
_ 4 in an accuracy of 99.167 %. These high accuracy rates in-
dicate that the model performs exceptionally well and can
o -2 be reliably used in real-world bearing defect identification to

Predicted

Confusion matrix.

methods and procedures for bearing defect identification. In
Fig. 20b, the accuracy curve during iteration is provided. The
accuracy is 95 % an epoch of 30 and 98 % at an epoch of 40.
Around 100 % accuracy is obtained at epoch of 52. The sig-
nificance of the proposed methods and procedures for bear-
ing defect identification can be clearly proved and observed.
The obtained results serve as a good proof of concept for
the practical bearing defect identification and can be imple-
mented in actual mechanical engineering.

precisely identify various types of bearing defects.

A comparison of model performance between the two fea-
ture extraction methods is presented in Table 7. The convo-
lutional neural network model utilizing recurrence features
achieved an average accuracy of 97.748 %. In contrast, the
model employing dynamic network features attained a sig-
nificantly higher average accuracy of 98.591 %. These find-
ings indicate that the dynamic network, capturing the inher-
ent dynamics of the system, provides an optimal feature rep-
resentation. This offers a superior data preprocessing strategy
for practical bearing fault diagnosis applications.
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Confusion matrix generated for the new test set.

Comparison of two models.

Accuracy Recurrence  Data dynamic

rate model  network model
Group 1 96.667 % 98.333 %
Group 2 97.778 % 99.126 %
Group 3 97.500 % 98.333 %
Group 4 99.048 % 98.571 %
Average 97.748 % 98.591 %

In this study, we performed an effective bearing defect de-
tection using the proposed feature enhancements of data dy-
namic networks. The research is summarized as follows.

In this paper, we proposed a data dynamic network for
data enhancement for bearing defect identifications. Nodes
and edges of data are constructed for the establishment
of a data dynamic network. Together with the feature fu-
sion techniques, the energy, recurrence rates, and amplitude—
frequency spectrums are reconstructed in the time-delayed
phase space for preparation of bearing defect identification.
The accuracy of bearing defect identification reaches up to
98.5 %.

A convolutional neural network (CNN) model based on
data recursive features and dynamic network features is de-
signed. The effectiveness in bearing defect identification is
verified through experiments. The generalizability and ro-
bustness of the intelligent neural network are improved. A
more effective defect detection algorithm is explored.

The preliminary results of this paper contribute new ideas
to the field of bearing defect identification. We hope that the
paper can provide inspiration and promote the development
of intelligent defect identifications of bearing defects.
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