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To address constrained optimization problems in mechanical design, this study proposes an enhanced
gray wolf optimization (GWO) algorithm. First, a novel individual memory optimization strategy is developed to
expand the population’s exploration scope and mitigate the risk of individuals pursuing misguided search trajec-
tories. Second, a position update strategy incorporating differential variation is proposed to balance the local and
global search capabilities of individual populations. Lastly, a discrete crossover strategy is proposed to promote
information diversity across individual dimensions within the population. By integrating these three improve-
ment strategies with the GWO, a novel improved gray wolf optimization (IGWO) algorithm is developed, which
not only preserves robust global and local search capabilities but also demonstrates accelerated convergence
performance. To validate the effectiveness, feasibility, and generalizability of the proposed algorithms, three rep-
resentative mechanical design optimization cases and the Z3 parallel mechanism scale parameter optimization
case were employed. Empirical findings reveal that the IGWO algorithm effectively resolves the targeted opti-
mization problem, demonstrating superior performance relative to other benchmark algorithms in comparative

analyses.

Advancements in intelligent algorithms have facilitated the
extensive application of diverse intelligent algorithms in ad-
dressing mechanical design optimization challenges. Me-
chanical design optimization problems are frequently formu-
lated as constrained optimization tasks, which inherently in-
volve both objective functions and constraints. These con-
straints, typically categorized into inequality constraints and
equality constraints, further restrict the exploration scope
of the feasible region. Consequently, constrained optimiza-
tion problems typically manifest hybrid characteristics, dis-
continuous traits, discrete attributes, and nonlinear proper-
ties, rendering them arduous to resolve (Chen et al., 2022,
Chakraborty et al., 2021). Two primary approaches for ad-
dressing constrained optimization problems are mathemati-
cal induction (Atta, 2024) and intelligent algorithms (Cheng
et al., 2025). The mathematical induction-based solving ap-

proach can be characterized as a sequential exploration
of the solution space, initiated from a predefined starting
point and guided by gradient-derived information, progress-
ing iteratively until either a local or global optimal state
is reached. This method is plagued by two primary limita-
tions: challenging gradient computation and a pronounced
tendency to converge to local optima; furthermore, the effi-
cacy of the solution process exhibits significant dependence
on the selection of initial points. In contrast, intelligent al-
gorithms exhibit resilience to initial point selection, with
each agent evolving autonomously — a feature that endows
them with advantages including structural simplicity, mini-
mal control requirements, and robust generalization capacity.
Consequently, population-based intelligent algorithms have
demonstrated extensive applicability across diverse domains,
such as optimal mechanism design (Ye et al., 2025), commu-
nication systems (Shuo et al., 2021), transportation planning



optimization (Tang et al., 2024), and computer science re-
search (Wen et al., 2025b).

Intelligent algorithms, a distinct category of computational
methodologies, derive inspiration from biological intelli-
gence, natural phenomena, or human cognitive processes.
Their primary objective lies in addressing intricate chal-
lenges by emulating, extrapolating, and enhancing human
cognitive capacities — including learning, reasoning, opti-
mization, and adaptation. Intelligent algorithms typically
manifest adaptability, self-learning capability, parallel pro-
cessing, and global search proficiency, empowering them to
pinpoint near-optimal solutions amid uncertain and dynamic
milieus. Therefore, intelligent algorithms are widely em-
ployed to address real-world constrained optimization prob-
lems in engineering. The primary ones include the genetic
algorithm (Wang et al., 2022), differential evolutionary al-
gorithm (Li et al., 2023), gray wolf optimization algorithm
(Zeng et al., 2025), gravitational search algorithm (Rashedi
et al., 2009), artificial bee colony (ABC) algorithm (Giir-
can et al., 2022), simulated annealing algorithm (Subrata
et al., 2017), and teaching-learning-based optimization algo-
rithm (Zhang et al., 2017), among others. Parsopoulos and
Vrahatis (2012) addressed four classical benchmark prob-
lems in constrained mechanical design optimization — specif-
ically, the spring optimization problem, pressure vessel opti-
mization problem, welded beam optimization problem, and
wheel train optimization problem — by employing standard
particle swarm optimization (PSO) algorithms. Chen et al.
(2024) proposed the accelerated teaching-learning-based op-
timization (ATLBO) algorithm to enhance the population up-
date speed of the original teaching-learning-based optimiza-
tion (TLBO) algorithm by integrating a differential evolution
(DE)-based variation strategy. They further validated the ef-
fectiveness and feasibility of this improved strategy through
typical benchmark test functions, mechanical optimization
case studies, and parallel mechanism optimization exam-
ples. Sobia et al. (2024) proposed a novel meta-heuristic al-
gorithm, termed the imitation-based cognitive learning op-
timizer (CLO), to address mechanical design optimization
problems. Additionally, three representative mechanical op-
timization cases and 100 benchmark test functions were se-
lected for experimental validation. The experimental results
demonstrate that the CLO algorithm outperforms 12 state-
of-the-art counterparts. Mridula and Tapan (2017) employed
neutrosophic optimization (NSO) to optimize welded beam
problem instances and experimentally demonstrated that the
NSO algorithm outperforms other iterative methods.

The gray wolf optimization (GWO) algorithm, belong-
ing to the category of intelligent algorithms, was proposed
by Mirjalili et al. (2014) and draws inspiration from the
population structure and hunting behavior of gray wolves.
Twenty-nine classical test functions and three classical me-
chanical design optimization examples were employed in
the experiments. The experimental results demonstrate that
the GWO algorithm outperforms classical algorithms such

as the PSO algorithm and the differential evolution algo-
rithm. Meidani et al. (2022) proposed an adaptive GWO al-
gorithm and verified its feasibility and validity through clas-
sical test functions. Wang et al. (2025) restructured the hier-
archical architecture of the GWO, which enables direct in-
formation transmission from the alpha wolf to all subordi-
nate wolves, thereby accelerating the population’s conver-
gence rate. Furthermore, they developed two novel learning
strategies that synergistically reduce feature dimensionality
while mitigating the risk of entrapment in local optima. Chen
et al. (2025) incorporated an exponentially decreasing con-
vergence factor, a per-generation elite reselection strategy,
and a Cauchy mutation operator into the GWO algorithm,
proposing the strengthened gray wolf optimization (SGWO).
Singh et al. (2025) integrated a teaching-learning-based op-
timization (TLBO) algorithm into the GWO, enhancing its
search capability, and proposed the hybrid GWO-TLBO al-
gorithm.

The position update strategy of the traditional GWO algo-
rithm is prone to falling into local optima and exhibits weak
global search capability, whereas the search space accessible
to individuals within the population remains relatively lim-
ited. This paper proposes an improved gray wolf optimiza-
tion (IGWO) algorithm based on these analyses, which aims
to address the aforementioned issues and is further applied
to mechanical design optimization cases. The main contribu-
tions of this study are as follows:

1. The optimal individual memory strategy, the position
update strategy incorporating differential variance, and
the discrete crossover operation are integrated into the
GWO algorithm to develop an improved variant, which
simultaneously enhances local search capability, global
search capability, and convergence speed.

2. Three classical mechanical optimization cases (welded
beam optimization, spring optimization, and pressure
vessel optimization), along with the optimization of
scale parameters for the Z3 parallel mechanism, are em-
ployed as test functions. Experimental results demon-
strate that the IGWO algorithm outperforms the other
three comparator algorithms.

The remaining chapters of this paper are structured as fol-
lows: Sect. 2 presents the methodology for transforming con-
strained optimization problems into unconstrained optimiza-
tion problems, along with the fundamental framework of the
gray wolf optimization (GWO) algorithm; Sect. 3 details the
improved GWO (IGWO) algorithm and its operational pro-
cedure; and Sect. 4 evaluates the performance of the IGWO
algorithm through three classical mechanical design opti-
mization cases and the dimensional parameter optimization
problem of the Z3 parallel mechanism. Finally, Sect. 5 con-
cludes the study and outlines future research directions.



In this section, constrained optimization problems are intro-
duced, along with methods for converting them into uncon-
strained formulations. The GWO algorithm for solving such
problems is also presented.

Without loss of generality, the constrained optimization
problem can be formulated as

min f(x)
st.gp(x)<0,p=1,2,...,m
he(x)=0,g=1,2,...,n
xES()

, ey

where f(x) denotes the objective function; (x) denotes
the decision variable; g,(x) represents an inequality con-
straint; p denotes the number of inequality constraints, where
p=1,2,...,m; hy(x) represents an equational constraint;
q denotes the number of equational constraints, where ¢ =
1,2,...,n; Sp denotes the search space of decision variables,
where So = {x € Ry|Xmin.;i <X < Xmax,i}; { denotes the de-
cision variable in the ith dimension, where i =1,2,..., D;
Xmin,; denotes the minimum value of the decision variable in
the ith dimension; and xmax,; denotes the maximum value of
the decision variable in the ith dimension. The feasible do-
main, defined as the set of all points in the search space S for
the decision variable that satisfy the constraints, is denoted
as S (i.e., S ={x € Sp, gp(x) <0, hy(x) = 0}). Points within
this feasible domain are termed “feasible solutions”. For the
inequality constraint g,(x) < 0, if there exists a point x sat-
isfying g,(x) = 0, then the point x is termed an “active con-
straint” of g,(x). Similarly, a point x is said to be posi-
tively bounded by h,(x) if there exists a point $y$ satisfy-
ing g,(x) = 0. Suppose that for some x* € Sp, there exists a
constant ¢ > 0 such that Vx € Sy N {x]| ||x —x*|| < &}. Then,
x* is defined as a locally optimal solution of f(x) if it sat-
isfies f(x) > f(x*) for all x in a neighborhood of x*. If the
equality f(x) > f(x*) holds for all x € Sp, then x* is said to
be a globally optimal solution of f(x).

It is inevitable that practical engineering optimization prob-
lems are inherently subject to constraints due to limitations
such as those related to the environment, space, and other fac-
tors. Several types of constraint handling methods are com-
monly used, including the e-constraint technique, the Deb
criterion, and the penalty function method (also referred to
as the feasibility rule). Among them, the e-constrained pro-
cessing technique is a process that introduces the parameter &

to control the weights of each objective function, aiming to
find the technique’s myopic optimal solution while ensuring
constraint satisfaction. The penalty function method incor-
porates a corresponding penalty factor into individuals that
violate the constraints, thereby reducing the probability of se-
lecting infeasible individuals. Nevertheless, the relevance be-
tween the penalty factor and the optimization problem must
be carefully considered during the design process. The feasi-
bility rule, proposed by Deb (Wen et al., 2025a), which states
that feasible solutions always outperform infeasible ones and
thus results in the evolutionary population never accessing
infeasible solutions, is one of the most classical constraint
handling methods.

In summary, the Deb criterion is selected in this paper to
address the inequality constraints. Therefore, the degree to
which the candidate solution x violates the inequality con-
straint can be defined as follows:

fielr) =D max{0,g,(x)} p=1.2.....m, )
i=1

where g,(x) < 0 indicates that the pth inequality constraint
has not been violated; the opposite is indeed violated.
fic(x) denotes the extent to which all inequality constraints
are violated, with larger values indicating more severe viola-
tions.

In summary, Eq. (1) can be transformed into an uncon-
strained optimization problem by integrating the method pro-
posed in Wen et al. (2025a) with the Deb criterion:

minF (x) = — [1 — sign( fic(x))] f (x) + sign( fic(x))
X [@ + fic(x)], 3)

where sign (-) is the sign function and ® is a sufficiently large
constant; in this paper, we take ® = 10°.

Mirjalili et al. (2014) proposed a gray wolf optimization
(GWO) algorithm inspired by the population structure and
hunting behavior of gray wolves, characterized by its simple
architecture and minimal control parameters. The GWO al-
gorithm primarily comprises three core components: social
structure, prey herding, and prey capturing. Its main opera-
tional steps are detailed as follows:

1. Social structure: the population was hierarchically
structured into «-wolves, B-wolves, and y-wolves
based on individual fitness values. During the evolution-
ary process, candidate wolves updated their positions by
following the guidance of a-wolves, S-wolves, and y -
wolves.

2. Rounding up prey: during the hunting process, the Eu-
clidean distance between the nth gray wolf and the o-
wolf, B-wolf, and y-wolf needs to be calculated, which



is formulated as follows:

Dy =Cy-xo —xp
Dg=Cg-xg—xn > 4
D, =Cy-x,—xp

where Dy, Dg, and D,, are the Euclidean distances be-
tween candidate gray wolves and a-wolves, S-wolves,
and y-wolves, respectively, and Cy, Cg, and C,, are the
swing factors corresponding to the «-wolf, B-wolf, and
y-wolf, respectively, where each parameter represents
a random value uniformly sampled from the interval
[0, 2]. x,, denotes the position of the nth iteration in the
GWO.

3. Prey hunting: gray wolves converge toward their prey,
with a mathematical model describing this process for-
mulated as follows:

Yo =Xq — Ao - Dy
yg=xg—Ag-Dg , 4)
Yy =%y —Ay-Dy

where y,, yg, and y, denote the temporary positions
generated by wolves x,, xg, and x,, respectively, and
Ay, Ag, and A, are the convergence factors for the o-
wolf, B-wolf, and y-wolf, respectively.

The new position of the current gray wolf is determined by
averaging the three temporary gray wolf positions generated
by Eq. (5), which is calculated as follows:

i Ya T YB Ty

n 3 (6)

In this section, the novel individual memory optimization
strategy, position update strategy incorporating differential
variation, and discrete crossover strategy are integrated into
the GWO framework, with the IGWO algorithm flowchart
illustrated subsequently.

As described in the previous section, GWO algorithms uti-
lize the positions of the a-wolf, B-wolf, and y-wolf to guide
the swarm in pursuing the optimal solution, and such algo-
rithms can be classified as elite optimization algorithms. Ac-
cording to Zhang et al. (2025), the search strategy of the elite
optimization algorithm enhances the exploitation of its pop-
ulation while diminishing the exploration of the population.
The GWO algorithm, on the other hand, relies solely on the
current position information of the «-wolf, g-wolf, and y-
wolf during its position update process, without leveraging
the historical optimal positions of individuals within the pop-
ulation. This limitation may consequently reduce the search

range available to individuals in the swarm. To summarize,
the historical optimal position during evolution is introduced
not only to expand the population’s search range but also to
prevent individuals within the population from exploring in
the wrong direction. Therefore, when the GWO algorithm
evolves to generation 7, the historical optimal position expe-
rienced by the $n$th gray wolf is denoted as pg:st’n, and the
first three fitness function values within this historical opti-
mal position are denoted as wy, wg, and w), . Meanwhile, a
guide wolf wy is introduced during a location update, which
is closely associated with the historical optimal value of each
updated individual. The guide wolf of the nth individual can
be denoted as

! t
t _ 2pbest,n + pbest,r 7
Ky = LR )
where pl(){c)st’ . 1s the historical optimum of a random individ-

ual.

During the evolutionary process of the GWO, individuals
in the population require stronger global search capability
in the early stages, whereas in the later stages, they de-
mand enhanced local search ability and accelerated conver-
gence speed. According to Zhang et al. (2025), the posi-
tion update strategy presented in Eq. (6) exhibits favorable
local search capability and rapid convergence speed; how-
ever, it tends to fall into local optima and demonstrates poor
global search capability. According to Wen et al. (2022), the
DErl mutation strategy is reported to exhibit strong global
search capabilities while demonstrating relatively weak lo-
cal exploitation capabilities. Based on this analysis, a three-
stage velocity update formulation is proposed to fully exploit
the complementary advantages of the GWO position update
strategy and the DErl mutation strategy. In the early stage
of the algorithm, individuals within the population exhibit
strong global search capabilities; during the mid-stage, the
algorithm demonstrates effective balancing between global
search and local search capabilities. By the late stage, it fur-
ther develops robust local search capability accompanied by
accelerated convergence speed. In summary, the new location
update strategy is presented below:

t
wg.n 0<p <k
t t t it
iy = xwg,n +F (pbest,r1 pbest,rz) K1 =p <k2
t t t
pbest,rl +F pbest,r2 - pbest,r3 k2 = p <k3

®)

where z/, denotes the position of the nth gray wolf subse-
quent to the mutation operation; ry, r2, and r3 denote three
distinct random integers sampled from the interval [1, NP];



Algorithm 1: Improved Gray Wolf Optimizer

Input:
Output:
Begin

1. Population initialization, and set Pgm = x! (=1,2, ... NP);

for =1: T'do
for n=1: NP do

G

End

Lo N

best

10. End

Ranked in ascending order, the calculated function fitness values determine the positions of wa, wg, wy, and wg.

Roundups and trapping are conducted using Egs. (4) and (5).
The position update is performed according to Egs. (8) and (9), yielding the new gray wolf position x**';

Compute the fitness value £(x'*') of function x**' and update parameters p{*! and f(p!" ) accordingly.

best,n best,n

Sort £( p”l ) 1n ascending order and update the positions of wa, wp, wy, and w.

F denotes the scale factor; and A is a random number uni-
formly distributed in the interval [0, 1]. k1 and k7 denote ran-
dom perturbation probabilities sampled uniformly from the
interval [0, 1]. In this study, we set k1 = 0.25 and « = 0.5.

According to Mirjalili et al. (2014), the GWO addresses
high-dimensional optimization problems by representing
each wolf’s position as a D-dimensional coordinate. As the
dimensionality increases, the wolves’ search efforts in in-
dividual dimensions gradually diminish, resulting in unbal-
anced exploration across different dimensions. Meanwhile,
the linear decreasing strategy of the traditional GWO al-
gorithm also struggles to adapt to high-dimensional search
spaces, further diminishing the wolf pack’s search efficiency.
According to Wen et al. (2025b), the discrete crossover strat-
egy can integrate the advantages of parent individuals, facil-
itate solution evolution, maintain population diversity, avoid
premature convergence, balance exploration and exploita-
tion, and enhance optimization efficiency. To summarize, a
discrete crossover operation is performed between the mu-
tated wolf position and the historical optimal position of the
current wolf to generate the next-generation wolf position.
The specific expression of this operation is provided below:

t

+1 _ ) Zna ¢ <CR

X, = 0 . ) ()]
Phest.n.d else if

where CR denotes the crossover probability; in this study,
we set CR = 0.9. ¢ denotes a uniformly distributed random
number within the closed interval [0, 1]. z;’ 4 denotes the
d-dimensional variable corresponding to the position of the
nth gray wolf. pitl .a 1s the d-dimensional variable of the

best,n
historically optimal position of the nth gray wolf.

The IGWO algorithm is developed by integrating three key
strategies — the optimal individual memory strategy, the po-
sition update strategy with differential variances, and the dis-
crete crossover operation — into the baseline GWO algorithm
presented in Sect. 2.3. The pseudocode of the IGWO algo-
rithm is presented in Algorithm 1.

In this section, the IGWO, GWO, ABC, and PSO algorithms
were employed to solve three classic mechanical optimiza-
tion problems and the Z3 parallel mechanism scale parameter
optimization problem.

Case I: welded beam optimization. The welded beam op-
timization problem aims to minimize the beam’s fabrica-
tion cost under constraints such as shear stress, bending
stress, buckling load on the rod, and end perturbations of the
beam. The welded beam structure is schematically shown in
Fig. 1, where the optimization variables are defined as x =
(xl,xz,xg,x4)T =(h,l,a, b)T. The mathematical model of
the problem can be expressed as follows:

min f(x) = 1.1()47x12x2+O.O4811x3x4(14+x2). (10)

The constraints are

g1(x) =7(X) = Tmax <0

g(x)=0(x)—0omax <0

g3(x)=x1—x4 <0

ga(x) = 0.10471)612 +0.4811x3x4(14.0+x2)—-5<0 , (11)
g5(x)=0.125—-x; <0

86(x) =06(x) —Omax <0

g1(x)=P — Pc(x) <0




Optimization of welded beams.

where

)=/ + 207" + (P, 7 = L

2x1x2°
" =MR M= P(L+%),R= ﬁH@){
J = Z{X\l/x} [Xz +(x1+x3) i|} 8( )_ 4PL O‘()C)— 6PXI§,

256
4.013E/ <& « [E
and Pc(x)=T 215V 3G
3 3

In the formula, each parameter is expressed in im-
perial units, with its value or the range of values
specified. F1 =2761.6kg, L3 =35.56cm, E =30 x 100 psi,
G=12x 10° psi, Tmax = 13600 psi, omax = 30000 psi, and
Smax = 0.635 cm.

Here, the design variables have to be in the following
ranges:

0.1 <x1<2.0;01<x<10;0.1 <x3<10;0.1 <x4<20.

To verify the effectiveness and feasibility of the IGWO
algorithm, the GWO, PSO, and ABC (Mridula and Tapan,
2017) algorithms are employed as comparative benchmarks.

The control parameters of each algorithm are aligned with
those reported in the original literature. To ensure the fair-
ness of experimental outcomes, the population size NP and
number of iterations 7 for all algorithms are set as follows:
NP =100 and T =400. Equations (10) and (11) are first
transformed into unconstrained optimization problems based
on Eq. (3) and then solved separately using five algorithms.
The four algorithms were run independently and randomly
50 times, and the average evolution curve of the objective
function values was obtained, as shown in Fig. 4. The sta-
tistical results from 50 independent random runs of the five
algorithms for solving the welded beam optimization prob-
lem are presented in Table 1. Here, fi, fav, fb, and fgq de-
note the worst-case, mean, optimal, and standard deviation of

$D

Schematic diagram of spring structure.

the optimal objective function values across 50 independent
algorithm runs, respectively.

As shown in Table 1, the IGWO algorithm yields the op-
timal values for fw, fav, fb, and fsq, followed by the PSO,
GWO, and ABC algorithms. Based on Fig. 4, it can be ob-
served that during the pre-evolutionary algorithm period, the
GWO and PSO algorithms converge faster than the IGWO
algorithm. As the algorithm progresses to its later stages, the
IGWO algorithm exhibits a superior convergence rate com-
pared to other comparative algorithms. Moreover, the conver-
gence accuracy of the IGWO algorithm is significantly better
than that of several other comparative algorithms.

Case 2: spring optimization.

The spring optimization problem can be formulated as
minimizing the spring weight subject to the constraints of
minimum deflection, shear stress, surge frequency, and out-
side diameter limits. The optimization variables include the
wire diameter d, average coil diameter D, and effective num-
ber of active coils N. The design variables can be math-
ematically represented as x = (x1, x2, )=, D,N)T. A
schematic diagram of the spring structure is illustrated in
Fig. 1. The mathematical model of the problem can be ex-
pressed as follows:

minf(x) = (x3 4 2)x2x7 . (12)

The constraints are

3
_1_ %"
g1 =1 71785xF =
_ 4x§—x1x2 1 _
g20x) = 12566(x2 —x7) | 5108x2 1=0 (13)
_ | 18045 _
83(x) “In
ga(x) =2 —1<0

where the design variables have to be in the following ranges:
0.05<x1<2;025<x<1.3;2<x3<15.

Based on Eq. (3), Egs. (12) and (13) were transformed into
unconstrained optimization models and solved separately us-
ing four algorithms. The control parameters of the four algo-
rithms were consistent with those in Case 1. Each algorithm
was run 50 independent times, with the average evolution-
ary curve of the objective function presented in Fig. 4 and
the performance metrics of the four algorithms shown in Ta-
ble 1. Table 1 shows that the IGWO algorithm achieves op-
timal values in terms of fy, fav, fo, and fyq, followed by



Statistical performance metrics of the four algorithms.

Case Algorithm  fy fo fav fotd
Case 1| IGWO 2359361 2359361 2359361 7.9669 x 10~°
GWO 2.370631 2.360022 2.362294 22771 x 1073
ABC 3.385900 2.522356 2917150 0.2537
PSO 2362543 2.359365 2.360262 9.0966 x 10~4
Case2 IGWO 0.0127 0.0127 0.0127 1.5756 x 10~ !
GWO 0.0132 0.0127 0.0128 1.2581 x 10~4
ABC 0.0133 0.0127 0.0130 1.6406 x 10~%
PSO 0.0154 0.0127 0.0134 7.6588 x 104
Case3 IGWO 6.0597 x 103 6.0905 x 103 6.0622 x 10°  8.4439
GWO 6.4109 x 10> 6.0599 x 103 6.0957 x 103 47.0244
ABC 6.3900 x 103 5.9758 x 10>  6.1105 x 103 95.5921
PSO 6.8204 x 103 6.0597 x 103 6.1466 x 10°  157.8196

Pressure vessel structure sketch.

the GWO, ABC, and PSO algorithms. Meanwhile, Fig. 4 il-
lustrates that during the early evolutionary stage, the GWO
algorithm exhibits faster convergence speed than the IGWO
algorithm. However, in the late evolutionary stage, the IGWO
algorithm demonstrates significantly superior convergence
speed and convergence accuracy compared to several other
benchmark algorithms.

Case 3: pressure vessel optimization. The pressure ves-
sel constrained optimization problem is described as a prob-
lem of minimizing the cost of a pressure vessel, subject
to constraints on material cost, forming cost, welding cost,
and shell thickness. The design variables are the shell thick-
ness di, head thickness d», inner shell radius R, and cylin-
drical length /. These design variables can be mathemati-
cally represented as x = (x1, x2, %3, x4)Y = (dy, d», RDT. A
schematic diagram of the pressure vessel’s structural config-
uration is shown in Fig. 1. The mathematical model of the
problem can be expressed as follows:

min £ (x) = 0.6224x1x3x4 + 1.7811x2x7 +3.166x7 x4
+19.84x7x3. (14)

The constraints are

g1(x)=—x14+0.0193<0

g2(x) = —x24+0.00954 <0

g3(x) = —nx32x4 — %nx% + 129600 <0
84(x)=x4—240<0

; 15)

where the design variables have to be in the following ranges:
x1>0;x0 <99;x3 > 10; x4 <200.

Equations (14) and (15) were first transformed into un-
constrained optimization models based on Eq. (3) and then
solved individually using four distinct algorithms. The con-
trol parameters of the four algorithms were consistent with
those in Case 1. Each algorithm was independently run for
50 trials, with the average evolution curve of the objective
function shown in Fig. 4 and the performance indexes of the
four algorithms presented in Table 1. According to Table 1,
the IGWO algorithm achieves the optimal values for fy, fav,
Jfo, and fq, followed by the GWO, ABC, and PSO algo-
rithms. Additionally, Fig. 4 illustrates that during the early
stages of the algorithms, ABC and GWO exhibit faster con-
vergence than IGWO. Conversely, in the later stages, IGWO
demonstrates significantly superior convergence speed and
accuracy compared to the other evaluated algorithms.

An example of scale parameter optimization for a Z3 paral-
lel mechanism, reported in Wen et al. (2025a), is selected to
further validate the generality of the IGWO algorithm. The
structural diagram of the Z3 parallel mechanism is shown in
Fig. 5, which primarily consists of three PRS (P: prismatic,
R: revolute, S: spherical) pivot chains, along with movable
and fixed platforms featuring identical structures and sizes.
The P sub-axis intersects the fixed platform at point A;,
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73 parallel mechanism (Wen et al., 2025a).

which lies on a circle with radius R centered at O, where
the angles between A1 O, A> O, and A3 O are each 120°. The
length of the connecting rod B;C; is denoted by /. The cen-
ter of the S-vice intersects the moving platform at point C;,
which lies on a circle with an outer radius r centered at o.
Additionally, the angle among C{ P, C2 P, and C3 P is 120°.

In summary, the scale parameter optimization problem of
the Z3 parallel mechanism can be succinctly formulated as
follows: for a given scale parameter R, the optimal combina-
tion of the mechanism’s scale parameters / and » enables the
73 parallel mechanism to achieve an optimal effective trans-
mission workspace. Therefore, the optimization variables in
the scale parameter optimization problem for the Z3 parallel
mechanism can be defined as

x =[x, =", (16)

According to Wen et al. (2025a), the objective function is
defined as

max f (x) = max{xgrw(r, D}, 17

where kgTw denotes the mathematical expression used to

calculate the maximum radius of the internal tangent circle in

the Z3 parallel mechanism via motion/force transfer metrics;

specifically, kptw = min{@|nr11(0, 0) = 0.7, Vo € [0, 27 ]}.
The constraints can be expressed as follows:

=0.75—- <0
{gl(x) NGTI < , (18)

g2(x)=0.05-" <0

where ngtr denotes the average of the transfer metrics for all
attitudes (¢, 0) at a fixed altitude Z3, which is calculated as
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shown below:

27 KETW

o Jo  mri(e,0)sinfdedd

NGTI = 0.75—ngt1 <0. (19)

27 (1 — COSKETW)

Equal scaling of the mechanism’s scale parameters does
not affect its performance; therefore, the parameters of
the Z3 parallel mechanism are set as R=100cm and
Zp = 100 mm. Equations (16) and (17) are transformed into
the unconstrained optimization model presented in Eq. (3)
and subsequently solved using four comparative algorithms —
each employing identical parameter settings to those spec-
ified in Sect. 4.1. Each algorithm is run independently
50 times. The average evolution curve of the objective func-
tion is shown in Fig. 6. Meanwhile, based on the 50 opti-
mization results obtained from the IGWO algorithm, a set
of optimized mechanism scale parameters are selected as the
mechanism parameters. The performance of these optimized
scale parameters is then compared with that of the empirical
scale parameters, and the ETW cross-section of the mecha-
nism with fixed height is plotted, as shown in Fig. 6.

Figure 6 demonstrates that the optimized mechanism
achieves significantly better performance than the pre-
optimization state, aligning with the results reported by Wen
et al. (2025a). As shown in Table 1, the optimization re-
sults of the IGWO, PSO, and ABC algorithms are consis-
tent. However, Fig. 4 reveals that the IGWO algorithm ex-
hibits a significantly faster convergence speed compared to
the PSO and ABC algorithms. Meanwhile, the IGWO algo-
rithm achieves significantly better optimization results than
the GWO algorithm. However, as evidenced by Fig. 4, the
GWO algorithm demonstrates a markedly faster convergence
speed during the pre-evolutionary stage compared to IGWO.
In the later stages of optimization, the GWO algorithm’s po-
sition update mechanism tends to cause premature conver-
gence to local optima. Conversely, the incorporation of the
DE position update strategy effectively mitigates this issue,
enabling the algorithm to escape local optima and converge

more efficiently toward the global optimum. In summary,
the proposed novel individual memory optimization strategy,
differential-variation-based position update mechanism, and
discrete crossover operator integrated with the GWO algo-
rithm collectively enhance its global exploration capability,
local exploitation efficiency, and convergence performance.

To enhance the convergence speed, convergence accuracy,
and ability to solve high-dimensional constrained optimiza-
tion problems of the traditional GWO algorithm, an IGWO
algorithm is proposed. By integrating an optimal individual
memory strategy, a position update strategy with differen-
tial variance, and a discrete crossover factor into the tradi-
tional GWO algorithm, the IGWO effectively balances local
search capability, global search capability, and convergence
speed. To validate the performance of the IGWO algorithm,
three typical mechanical design optimization problems and
the scale parameter optimization problem of the Z3 paral-
lel mechanism were employed as test cases. The experimen-
tal results demonstrate that the IGWO algorithm outperforms
the PSO, GWO, and ABC algorithms.

In future research, investigations on the IGWO algorithm
can be extended to multi-objective optimization. To address
its core challenges — including conflicting objectives and the
need to balance convergence with solution set diversity — we
propose designing a composite adaptive evaluation mecha-
nism that integrates dominance relations, distribution indica-
tors, and convergence metrics. Additionally, optimizing the
rules for dynamic social hierarchy updating and group col-
laboration strategies is expected to mitigate the loss of solu-
tion set diversity caused by premature convergence. In addi-
tion, effective constraint processing techniques can be further
integrated with the IGWO algorithm to expand its applicabil-
ity to a broader range of practical engineering scenarios.
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