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Abstract. Operators of agricultural vehicles are frequently exposed to prolonged vibrations, which pose serious
health risks and degrade operational performance. Magnetorheological (MR) dampers have been increasingly
adopted in seat suspension systems owing to their low power consumption and fast response. However, their in-
herent nonlinear hysteresis and time-varying dynamics significantly challenge the effectiveness of conventional
control strategies. To overcome these limitations, this study proposes a hybrid ICSA-ANFIS-ADRC control
framework that integrates an improved crow search algorithm (ICSA)-optimized adaptive neuro-fuzzy inference
system (ANFIS) with an active disturbance rejection control (ADRC) strategy. The nonlinear behavior of the MR
damper is first modeled using an improved Bouc–Wen approach. An inverse model is then constructed through
ICSA-ANFIS training to predict the control current accurately. This inverse model is subsequently embedded
within the ADRC framework to enable real-time multi-modal damping force regulation. Numerical simulations
based on a 3-degrees-of-freedom seat suspension model demonstrate that the proposed method significantly
outperforms conventional ANFIS-ADRC and CSA-ANFIS-ADRC controllers. Specifically, up to 32.9 % reduc-
tion in vertical vibration acceleration is achieved, while robust control performance is maintained under both
random and shock road conditions. The inverse model attains a root mean square prediction error below 0.15
for control current, verifying its accuracy and adaptability. The proposed ICSA-ANFIS-ADRC control scheme
thus provides a promising solution for intelligent seat suspension systems, effectively mitigating low-frequency
resonance and enhancing ride comfort in agricultural vehicles.

1 Introduction

Operators of agricultural vehicles, such as tractors and spe-
cialized machinery, are frequently subjected to sustained vi-
brations caused by uneven terrain. Prolonged exposure to
such vibrations has been shown to induce adverse health ef-
fects, including fatigue, reduced alertness, impaired driving
performance, and long-term musculoskeletal disorders such
as lower back pain and spinal discomfort. These health risks
underscore the importance of effective seat suspension sys-

tems to improve both safety and ride comfort (Lecocq et al.,
2022; Schneider et al., 2023; de la Hoz-Torres et al., 2021;
Barač et al., 2025). In response to these risks, multiple seat
suspension technologies have been proposed, encompassing
passive (Samaroo et al., 2025; Stein et al., 2009), semi-active
(Zhao et al., 2023; Liu et al., 2019), and active suspension
systems (Maciejewski et al., 2023; Gheibollahi et al., 2024;
Zhao et al., 2025). Despite their effectiveness, active sus-
pensions are rarely adopted in agricultural vehicles owing
to their complexity and high cost, which conflict with the
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sector’s cost-sensitive design constraints. As a result, passive
and semi-active seat suspension systems are more commonly
employed (Zhao et al., 2025). Passive systems, while histor-
ically dominant due to their simplicity and reliability, lack
adaptability to variable road conditions and complex exci-
tations, limiting their effectiveness in improving ride com-
fort. Semi-active suspensions have thus emerged as a viable
compromise, combining structural simplicity with real-time
adaptability (Ferhath and Kasi, 2024; Lee and Oh, 2025).

As core elements in semi-active control systems, magne-
torheological (MR) dampers exhibit strong potential for at-
tenuating seat vibrations and mitigating whole-body vibra-
tional exposure in vehicle occupants. With growing demand
for enhanced seating comfort, the role of seat suspension
systems in ensuring both ride comfort and safety has gar-
nered substantial research interest (Hua, 2025; Gad et al.,
2025). These systems utilize intelligent control strategies to
dynamically modulate damping force in response to vary-
ing road and operational conditions, thereby enhancing ride
comfort and handling stability without the high energy de-
mands of active suspension systems. However, under shear-
mode operation, MR dampers exhibit asymmetric hystere-
sis in their force–velocity characteristics, which introduces
nonlinearities and causes time lag effects when conventional
control methods are applied. Although methods such as ac-
tive disturbance rejection control (ADRC) can partially ad-
dress external disturbances and time delays, their reliance
on fixed controller parameters limits adaptability under vary-
ing conditions (Wang et al., 2024; Yaghoubi and Ghan-
barzadeh, 2024). Consequently, real-time optimization of key
controller parameters has become a pivotal challenge in im-
proving the damping performance of MR-based suspension
systems.

Recent advancements have explored two primary direc-
tions for integrating intelligent optimization algorithms into
control systems: (1) improving swarm intelligence optimiza-
tion algorithms (e.g., particle swarm optimization, PSO) to
prevent control performance degradation and (2) modifying
conventional controllers to better accommodate the nonlin-
ear and time-varying characteristics of MR dampers. For
instance, Guo et al. (2024) developed an enhanced Jiles–
Atherton hysteresis model optimized by an improved PSO
algorithm, which significantly increased parameter identi-
fication accuracy (error was reduced by 40.2 %) and im-
proved the prediction of damping force. Similarly, Zhang
et al. (2024) applied NSGA-II to optimize the structural
parameters of a conical-channel MR damper, demonstrat-
ing improved yaw stability under extreme maneuvers. Li
et al. (2024) proposed a sliding-mode control strategy en-
hanced by an extended African vulture optimization algo-
rithm (EAVOA) to suppress vibrations in semi-active sus-
pension systems under stochastic road conditions. Popula-
tion initialization was optimized via logistic chaotic map-
ping, and a nonlinear disturbance-based hunger value ad-
justment strategy was adopted to efficiently optimize control

parameters. Road tests on B- and D-grade surfaces showed
a maximum reduction of 42.5 % in vehicle body accelera-
tion and a 25.9 % decrease in suspension dynamic travel,
with smooth damping force response, providing a new ap-
proach to precise control of MR dampers. Guo et al. (2025)
introduced a sensitivity analysis method based on PSO to
identify parameters in MR damper dynamic models. The ef-
fects of particle number (N ), iteration count (T ), and learn-
ing factors (c1/c2) on the fitting accuracy of the hyperbolic
tangent model were systematically quantified, and the opti-
mal parameter set was determined through orthogonal exper-
iments. As a result, the root mean square error (RMSE) of
damping force prediction was reduced to 0.013 under the
0.8 A condition. Experimental results showed strong agree-
ment between simulation and measured data, establishing a
high-accuracy modeling foundation for semi-active suspen-
sion control. Zhao et al. (2024) proposed an adaptive neural-
network-based backstepping control strategy to address un-
certainties in sprung mass and time-varying input delays in
MR semi-active air suspension systems. The nonlinear dy-
namics of the air spring were precisely modeled using a ra-
dial basis function neural network (RBFNN), and the sprung
mass was continuously updated by a projection-constrained
estimator. A Lyapunov–Krasovskii functional-based delay
compensator was designed to suppress a 32.4 ms actuator de-
lay. Under conditions involving step changes in sprung mass
and variable delay, the vehicle body acceleration was reduced
by 16.2 %, and the suspension dynamic deflection was re-
duced by 5.9 %, offering a viable solution for high-comfort
suspension systems. Ji et al. (2024) proposed a variable uni-
verse fuzzy Proportional–Integral–Derivative (PID) control
strategy based on a dynamic adjustment function (VUFP-
DAF) to address the limitations of expert-dependent fuzzy
rules and poor adaptability of fixed scaling factors in Con-
tinuous Damping Control (CDC) damper-based semi-active
suspension systems. A dynamic scaling factor, using system
error e(t) and its rate of change ec(t) as inputs, was de-
signed for real-time universe adaptation, and system stabil-
ity was rigorously proven. Verification on B- and C-grade
random roads and bump surfaces showed a maximum reduc-
tion of 53.88 % in vertical acceleration and 45.65 % in sus-
pension deflection, significantly outperforming conventional
fuzzy PID and fixed-factor methods, offering a robust con-
trol solution under complex conditions. Zhan et al. (2025)
addressed the adaptability challenges of MR semi-active sus-
pension systems under strongly nonlinear and time-varying
conditions by proposing a proximal policy optimization algo-
rithm integrated with neural ordinary differential equations
(PPO-NODEs). The improved Bouc–Wen model was used
to accurately characterize damper dynamics, and an actor
network enhanced by NODEs was designed to model con-
tinuous suspension state evolution. Simulations on C-grade
random roads showed a 30.22 % reduction in vehicle accel-
eration compared to passive suspensions, while bench exper-
iments confirmed an acceleration reduction of up to 77.51 %.
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The algorithm substantially improved control generalization
under complex conditions, offering a new solution for intel-
ligent vehicle suspension systems.

Despite these advances, most existing studies focus on re-
fining controller structures or incorporating optimization al-
gorithms for offline parameter tuning, whereas few works
have addressed the real-time optimization of controller out-
puts in conjunction with adaptive control strategies. This gap
limits the applicability of existing methods under complex
and rapidly changing road conditions typically encountered
by agricultural vehicles. To address these challenges, the
present study makes the following contributions:

1. An improved crow search algorithm (ICSA) is devel-
oped by introducing a triangular probability distribu-
tion mechanism, which enhances population diversity
and accelerates convergence to global optima.

2. A dynamic adaptive neuro-fuzzy inference system (AN-
FIS) structure with time-varying membership functions
is constructed, enabling real-time adjustment of the
damping control strategy and reducing the influence of
the MR damper’s time-varying properties.

3. A hybrid ICSA-ANFIS-ADRC control framework is
proposed, where a Kalman filter is embedded in the
ADRC observation layer to suppress noise, and the con-
trol signals are dynamically optimized by the ICSA-
ANFIS inverse model. This integration achieves multi-
modal damping control and robust vibration suppres-
sion across diverse operating conditions.

In summary, the proposed method not only improves model-
ing accuracy and control adaptability but also demonstrates
superior robustness in vibration isolation compared with
conventional ANFIS-ADRC and CSA-ANFIS-ADRC strate-
gies.

2 Dynamic model of the semi-active seat
suspension

2.1 Tractor seat suspension model

Figure 1 illustrates a 3-degrees-of-freedom (3-DOF) lumped-
parameter model designed to characterize the dynamic be-
havior of the seat suspension system equipped with an MR
damper. In this model, mb and ms represent the masses of
the human body and the seat, respectively; kb and cb corre-
spond to the stiffness and damping of the human body; ks
and cMR denote the stiffness and equivalent damping of the
seat suspension and MR damper; and zb, zs, and z0 represent
the displacements of the human body, the seat, and the base
excitation, respectively.

Based on Newtonian mechanics, the dynamic equations
governing the 3-DOF seat suspension system are formulated

as follows:
mbz̈b+ kb(z1− zs)+ cb(żb− żs)= 0
msz̈s− kb(z1− zs)− cb(żb− żs)
+ks(zs− zc)+FMR = 0
mcz̈c+ kc(zc− z0)+ cc(żc− ż0)
−ks(zs− zc)−FMR = 0

, (1)

where FMR represents the damping force of the MR damper
of the seat.

To facilitate controller design and system simulation, the
equations of motion are converted into a state space repre-
sentation, as shown in Eq. (2):{
Ẋ = AX+BU
Y= CX+DU , (2)

where the state variable X= [zb,zs,zc, ż1, żs, żc]
T , the in-

put variable U= [z0, ż0,FMR]
T, and the output variable Y=

[z̈b, żb,zb, z̈s, żs,zs]
T. The equation of state of the system af-

ter substitution is given by Eq. (3).
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żc

+


0 0 0
0 0 0
0 0 0

0 0 −
1
ms

0 0 0
0 0 0


 z0

ż0
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2.2 Improved Bouc–Wen model for MR dampers

Accurate mathematical modeling of MR dampers is essen-
tial for ensuring realistic system dynamics simulations. The
Bouc–Wen model is widely adopted for its ability to char-
acterize the nonlinear hysteresis behavior of MR dampers,
particularly the relationship between relative displacement,
velocity, and damping force. Thus, it has gained widespread

https://doi.org/10.5194/ms-16-639-2025 Mech. Sci., 16, 639–655, 2025



642 X. Yang et al.: Adaptive disturbance rejection control of MR seat suspension systems

Figure 1. The 3-DOF “human seat” model, with its coordinate system.

Figure 2. Schematic of the improved Bouc–Wen model structure.

application. While the conventional Bouc–Wen model com-
prises a spring, a viscous damper, and a hysteresis element
arranged in parallel, an improved version introduces an addi-
tional spring and damper to enhance modeling accuracy and
flexibility. In this study, the improved Bouc–Wen model is
employed to represent the forward dynamic behavior of the
MR damper, capturing its nonlinear and rate-dependent re-
sponse characteristics, and its structure is shown in Fig. 2.

To evaluate the force–velocity and force–displacement
characteristics of the MR damper, experiments were con-
ducted using an electro-hydraulic servo fatigue testing ma-
chine (WANGCE, China), as shown in Fig. 3. The test system
consisted of a servo actuator, a load cell, displacement and
velocity sensors, a programmable current driver, and a data
acquisition module connected to a workstation. The actuator
applied sinusoidal excitations with a displacement amplitude
of 15 mm at a frequency of 2 Hz, while the control current
was varied from 0 to 1.5 A in increments of 0.25 A. Displace-

Figure 3. Damping characteristic test of the MR damper.

ment and velocity signals of the piston rod were recorded us-
ing high-precision sensors, while the input current signal was
simultaneously monitored through the driver unit. The damp-
ing force was directly measured by a calibrated load cell at-
tached in series with the damper. All signals were sampled
at a frequency of 500 Hz, filtered to remove high-frequency
noise, and subsequently processed in MATLAB/Simulink for
parameter identification. This procedure provided a compre-
hensive dataset of piston displacement, velocity, current, and
force responses, which was then used to calibrate the im-
proved Bouc–Wen model through the Simulink Design Op-
timization toolbox.
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The improved Bouc–Wen model can effectively fit the
relationship between the output damping force of the MR
damper and the relative displacement and velocity of the pis-
ton. The damping force is expressed as follows:
F = c1ẏ+ k1 (x− x0)
ẏ = 1

c0+c1

[
αz+ c0ẋ+ k0(x− y)

]
ż=−γ |ẋ− ẏ|z|z|n−1

−β(ẋ− ẏ)|z|n+A(ẋ− ẏ)
, (4)

where F is the damping force of the MR damper, c0 and c1
are the viscous damping coefficients; k0 and k1 are the stiff-
ness coefficient; α is the scaling parameter of the hysteresis
force in the damping force; x0 is the relative displacement of
the equilibrium position offset; z is the hysteresis variable; x
is the total displacement of the MR damper; y is the hystere-
sis displacement of c1; n is the rounding coefficient; and γ ,
β, and A are the parameters used to adjust the smoothness
of the model and the linear characteristics of the curves from
the pre-yielding region to the post-yielding region. Parame-
ters are used to adjust the smoothness of the model and the
linear character of the curve from the pre-yield to the post-
yield region.

The improved Bouc–Wen model is built in Simulink, and
the constructed model can be obtained using Eq. (4), as
shown in Fig. 4.

The improved Bouc–Wen model incorporates eight un-
known parameters. While conventional identification meth-
ods such as genetic algorithms and least squares exist, they
often entail computationally intensive procedures. Conse-
quently, this study employs the Simulink Design Optimiza-
tion toolbox for parameter identification. Measured piston
relative displacement, velocity, and current serve as model
inputs, with damping force designated as the output. Model
predictions are subsequently compared against experimental
results.

Following the implementation of the improved Bouc–Wen
model in Simulink, parameter calibration was performed uti-
lizing experimental datasets obtained under specified oper-
ating conditions: an excitation frequency of 2 Hz, displace-
ment amplitude of 15 mm, and input currents ranging from 0
to 1.5 A. Sensitivity analysis indicated that parameters α and
c0 exhibit strong current dependency, while the remaining six
parameters remain invariant across different operating states.
Through iterative optimization, the current-dependent char-
acteristics of α and c0 were successfully approximated by
quadratic polynomial functions, demonstrating close agree-
ment with experimental observations. The finalized parame-
ter identification results, encompassing both current-variant
and current-invariant parameters, are comprehensively sum-
marized in Table 1.

The parameters of the improved Bouc–Wen model were
identified using experimental datasets obtained under the
specified excitation conditions. A sensitivity analysis was
first conducted to determine the dependence of each parame-
ter on the input current. The results indicated that the param-
eters α and c0 exhibited strong current dependency as they

Table 1. Improved Bouc–Wen model parameters.

Parameters Values

c0 0.0206I20.941I + 0.1093
c1 0.0145I2

+ 0.362I + 0.052
β 0.006
γ 2.92
n 1
k0 1.005
k1 1.26
x0 0
A 51.432
α −29.64I2

+ 87.63I + 9.32

directly influence the scaling of the hysteresis force and the
viscous damping characteristics of the MR damper. Conse-
quently, both parameters were expressed as quadratic poly-
nomial functions of the input current, enabling accurate rep-
resentation of their variation across different operating states.
In contrast, the remaining parameters (β, γ , A, k0, k1, x0, n)
showed negligible dependence on current and were therefore
treated as constants. This hybrid parameterization approach
ensures that the improved Bouc–Wen model captures both
the current-dependent nonlinear hysteresis effects and the in-
variant structural characteristics of the MR damper. As a re-
sult, the model achieves a high degree of consistency with
the experimental measurements, as confirmed in Fig. 5.

Figure 5 illustrates the comparison between the experi-
mental results (solid line) and the model predictions (dashed
line). From the above figure, it can be intuitively seen that the
curve obtained from the parameter fitting using the improved
Bouc–Wen model and the applied Simulink parameter iden-
tification is basically consistent with the curve obtained from
the damper characteristic test, and the fitting effect is good.

3 Inverse modeling of the MR damper based on
ICSA-ANFIS

3.1 Standard crow search algorithm and its
improvement

The crow search algorithm (CSA), introduced by Askarzadeh
in 2016 (Askarzadeh, 2016), addresses global optimization
problems by mimicking the foraging behavior of crows. It is
a metaheuristic method characterized by few tunable param-
eters and strong convergence performance. It is considered
to be a novel metaheuristic algorithm, and its process is il-
lustrated in Fig. 6.

Specifically, the detailed procedure of the CSA algorithm
is as follows:

– Step 1. A population of N crows is randomly initial-
ized, with each crow’s position and memory location
being set to the same value. The initial positions of these
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Figure 4. Simulation model of the improved Bouc–Wen model.

Figure 5. Comparison between model simulations and experimental data for MR damper characteristics under 2 Hz excitation.

crows (i.e., the initial solution set) are denoted as X0 =

(X1, X2, . . . , XN ), and the memorized best hiding lo-
cations of food by the crows are denoted as M0 = (M1,
M2, . . . , MN ), where M0 =X0.

– Step 2. The position Xi of each crow is updated. The
update principle assumes that crow i randomly selects
crow j to follow. Two possible outcomes arise. (1) If
crow j is unaware of being followed then crow i will
move toward j ’s memorized best food-hiding location
Mj . (2) If crow j is aware of being followed, it will
intentionally mislead crow i to a random position. The

position update strategy is mathematically expressed as

Xk+1
i (l)=

{
Xki (l)+ rand ·FL ·

[
Xki (l)−Xkj (l)

]
, rk ≥ AP

random position, rk < AP
, (5)

where k denotes the current iteration number; AP and
FL represent the awareness probability and flight length,
respectively; and rk and rand refer to uniformly dis-
tributed random numbers and random sequences within
the range [0,1].

– Step 3. The feasibility of the solution Xi is evaluated. If
the updated solution lies within the feasible domain, the
update is accepted and replaces the original; otherwise,
the original solution is retained.
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Figure 6. Flowchart of the crow search algorithm.

– Step 4. The fitness value f of the solution Xi is calcu-
lated.

– Step 5. The food-hiding position Mi is updated. The
specific update strategy is expressed as

Mk+1
i =

{
Xk+1
i , f (Xk+1

i )> f (Mk
i )

Mk
i , f (Xk+1

i )≤ f (Mk
i )

. (6)

– Step 6. Steps 2 to 5 are repeated to iteratively opti-
mize Xi and Mi until the convergence criterion of the
algorithm is satisfied. In the standard CSA described
above, the crow j being followed in step 2 (i.e., the
target crow) is randomly selected. This random selec-
tion often prevents many crows from improving their
positions, which may cause the algorithm to become
trapped in local optima. To address this issue, the stan-
dard CSA is improved by introducing a triangular prob-
ability distribution strategy to select the target crow (Lin
et al., 2021). The triangular probability distribution is
expressed as

pi =
2(N + 1− i)
N (N + 1)

, (i = 1,2, . . .N ). (7)

In each iteration, crows with a probability greater than
pt are selected, where pt is calculated as

pt =
2+ 2(N − 1) · rand2

N (N + 1)
, (8)

where rand2 is a uniformly distributed random number
in the range [0,1].

The crows selected through this triangular probability
method are provided with a greater competitive advan-
tage. One target crow is then randomly selected from
this group for tracking, ensuring population diversity
within the crow swarm. Furthermore, to enhance the di-
versity of solutions, a mutation operation is applied to
the updated solutions obtained from Eq. (7) (Lin et al.,
2021). As an example of this operation, several consec-
utive elements in the encoding are randomly selected
and then reversed to introduce variability.

C = C#[spml] = [1,3,4,7,9,11]#[2,3]

= [1,7,4,3,9,11] (9)

In the above, C denotes the code segment to be mu-
tated, # represents the inversion mutation operation, ml
is the randomly selected mutation length, and sp is the
randomly selected starting position of the mutation.

3.2 ANFIS-based inverse modeling of the MR damper
using ICSA

In constructing the ANFIS-based inverse model of the MR
damper, the input dimensionality must be carefully selected
to avoid the curse of dimensionality. Accordingly, a four-
input, single-output architecture is employed (Fig. 7).

https://doi.org/10.5194/ms-16-639-2025 Mech. Sci., 16, 639–655, 2025
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Figure 7. Structure of ANFIS.

Figure 8. Schematic diagram of the ICSA-ANFIS-based inverse
modeling strategy.

First, the damping force F (k) is calculated using the for-
ward model described in Sect. 2.2 to calculate the damp-
ing force F (k) from three inputs: displacement x (k), veloc-
ity ˙x (k), and control current I (k). This generates a train-
ing dataset comprising x (k), ˙x (k), F (k); the previous cur-
rent I (k− 1); and the present current I (k), of which the first
four are used as inputs for training the ANFIS network. The
ANFIS structure is optimized using the ICSA (the specific
optimization procedure is detailed later in this subsection),
enabling the network to accurately output the predicted con-
trol current Î (k). Once the optimal inverse model of the MR
damper has been trained, the forward model is applied again
to compute the predicted damping force F̂ (k), thereby en-
abling further validation of the inverse model’s effectiveness,
as shown in Fig. 8.

For the ANFIS structure illustrated in Fig. 7, the system
output y is given by

y =
∑4

i=1i
fi = Aθ , (10)

where θ is the parameter vector, and A is the coefficient ma-
trix constructed from the input data.

If the four inputs of the ANFIS model are denoted as x1,
x2, x3, and x4 then the output of the fourth layer is given by

fi = pix1 + qix2+ rix3+ six4+ ti . (11)

In Eq. (17), θ = {pi,qi, ri, si, ti} represents a set of conse-
quent parameters, organized as a 20×1 dimensional vector. If
Nt training samples are provided, the output vector y and the

coefficient matrix A have dimensions of Nt× 1 and Nt× 20,
respectively.

The standard hybrid learning algorithm of ANFIS consists
of a combination of the gradient descent method and the least
squares estimation (LSE) technique. During each iteration,
the system input is first forward propagated using the least
squares method to estimate the consequent parameters θe:

θe = (ATA)−1ATy. (12)

Accordingly, the predicted output of the ANFIS, denoted as
ye, is given by

ye = Aθe. (13)

While keeping the estimated consequent parameters θe
fixed, the antecedent parameters are optimized using a back-
propagation algorithm based on gradient descent in order to
derive the solution for the ICSA algorithm. Considering the
tendency of the gradient descent method to fall into local op-
tima, the ANFIS model is enhanced using the ICSA approach
in this study. Specifically, ICSA is employed to optimize
the antecedent parameters, while the least squares method
is applied to identify the consequent parameters. The inverse
modeling process is summarized in Fig. 9, which outlines
the key stages: input selection, membership function defini-
tion, ICSA-based optimization, and model validation using
forward simulation.

1. Model structure and data preparation.

– Input selection. The inputs are selected to be dis-
placement x(k), velocity ˙x(k), damping force F (k),
and the previous control current I (k− 1). The pre-
dicted current is used as the output Î (k), forming a
four-input, single-output ANFIS architecture.

– Membership function selection. Gaussian member-
ship functions are selected for each input vari-
able. The general form of the Gaussian membership
function is expressed as

µA(x)= exp

(
−

(x− ci)2

2σ 2
i

)
, (14)
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Figure 9. Flowchart of the ICSA-ANFIS inverse modeling process.

Figure 10. Schematic diagram of ICSA-ANFIS-ADRC MR damper controller.

where ci denotes the center of the membership
function, and σi represents its standard deviation.
Three Gaussian membership functions are assigned
to each input in order to cover the entire range of
the input variables. The total number of antecedent
parameters is 4 inputs ×3 functions ×2 parame-
ters = 24 antecedent parameters. The consequent
parameters are defined as a linear combination of
(pjx1+qjx2+rjx3+sjx4+ tj ), resulting in a total
of 64 consequent parameters.

2. ICSA-ANFIS optimization.

– Parameter encoding and initialization. The an-
tecedent parameters (ci , σi) and consequent param-
eters (pi , qi , ri , si , ti) are concatenated into a real-
valued encoded vector. The ICSA parameters are
initialized as population size N = 50, maximum
number of iterations K = 500, awareness proba-
bility AP = 0.1, and flight length FL = 2.0. The
boundaries for Gaussian membership function pa-

rameters are set as ci ∈ [−30,30], σi ∈[0.1,10] ac-
cording to the range of the input signals.

– Fitness function design. The fitness function is de-
fined by minimizing the root mean square error
(RMSE) of the predicted control current:

f =
1

1+RMSE
,

RMSE=

√
1
Nt

∑Nt

k=1
((i(k)− (k))2, (15)

where Nt denotes the number of training samples.

– Iterative optimization (per iteration loop).

– Step 1. For each crow individual, the antecedent
parameters are held constant, and the conse-
quent parameters are estimated using the least
squares method (as in Eq. 18). The fitness value
f (Xi) is then computed.
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Figure 11. Best convergence curves of training error for different
inverse modeling algorithms.

– Step 2: update the crow’s position. A target
crow is selected using the triangular probabil-
ity distribution strategy (Eqs. 7 and 8) to avoid
premature convergence caused by random se-
lection. The position is updated according to
Eq. (5): Xk+1

i =Xki +FL× rand× (Mk
j −X

k
i ).

– Step 3: Gaussian parameter diversity enhance-
ment. A randomly selected segment of (ci , σi)
in the solution vector is subjected to inversion
mutation (as in Eq. 9); i.e., the selected subse-
quence is reversed.

– Step 4: boundary handling and memory update.
Out-of-bound parameters are corrected to fall
within the predefined limits. If the new solution
is superior to the memorized one, the memory
location is updated accordingly (as in Eq. 6).

– Step 5. Record the global optimal solution
(Xiθe), i.e., the antecedent and consequent pa-
rameters corresponding to the highest fitness
value.

3. Advantageous Handling of Gaussian Membership
Functions.

– Targeted mutation. Inversion mutation is preferen-
tially applied to the (ci , σi) pairs of low-fitness indi-
viduals in order to prevent excessive overlap among
Gaussian membership functions.

– Convergence criterion. A Gaussian function simi-
larity check is introduced as part of the convergence
criterion: if the maximum variation in ci and σi over
20 consecutive generations of the global best solu-
tion satisfies max |1ci |< 01 and max |1σ i |< 005,
the optimization is terminated early.

Figure 12. Command current predicted by the ICSA-ANFIS in-
verse model of the MR damper for the training dataset.

Figure 13. Damping force predicted by the ICSA-ANFIS inverse
model of the MR damper for the training dataset.

4 Control strategy and controller design

4.1 ADRC controller design

Based on the state space representation in Eq. (3), the sys-
tem’s output equation is derived as follows: m1z̈1+ k1 (z1− zs)+ c1 (ż1− żs)= 0
msz̈s− k1 (z1− zs)− c1 (ż1− żs)+ ks (zs− z0)
+FMR = 0

, (16)

wherem1 denotes the human body, where k1 and c1 are fixed,
and Eq. (24) is converted to a second-order model.

z̈s =
kszs

ms
−

(ksz0+Fb)
ms

−
FMR

ms
(17)

Let bu=−FMR/ms, where b is the input gain whose value is
unknown, b0 is the nominal value, and u is the input signal of
the MR damper; let y = zs be the output of the MR damper,
a = ks/ms be the coefficients, and ω =−(ksz0+Fb)/ms be
the external perturbation of the MR seat dynamic system.
The final equation is simplified into the following equation:

ÿ = ay+ω+ bu. (18)

The problem of second-order ADRC is to design the feed-
back controller such that y tracks the reference input signal
r . Replacing the true value of b with the nominal value b0 de-
fines the total perturbation as f = ay+ω+(b−b0)u; then we
introduce the state variables x1 = y, x2 = ẏ and expand the
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Table 2. Prediction error of training data for three types of inverse
models.

RMSEmin ANFIS CSA-ANFIS ICSA-ANFIS

Current 0.01422 0.12636 0.011736
Damper force 20.48 16.22 13.52

state x3 = f (yẏω). Subsequently, Eq. (26) can be rewritten
as follows: ẋ1 = x2
ẋ2 = x3+ b0u,y = x1
ẋ3 = h

, (19)

where x1, x2, and x3 refer to the system state variable, and
h= ḟ (yẏω) is the linearly expanding state observer estab-
lished by Eq. (25).

ż1 = z2−β1 (z1− y)
ż2 = z3−β2 (z1− y)+ b0u

ż3 =−β3 (z1− y)
(20)

By choosing a suitable observer gain β1β2,β3, the linear
extended state observer (LESO) is able to realize the real-
time tracking of each state variable in the system. Taking
u= (−z3+ u0)/b0 and neglecting the estimation error of z3
on f (yẏω), the system can be reduced to a double-integrated
series structure:

ÿ =
[
f (y, ẏ,ω)− z3

]
+ u0 ≈ u0. (21)

The PD controller is then designed as follows:

u0 = kp (r − z1)− kdz2. (22)

Through Eqs. (27) and (28), in which r is the reference signal
and kp and kd denote the controller gain, the system closed-
loop transfer function can be obtained.

Gcl = kp/
(
s2
+ kds+ kp

)
(23)

The characteristic equation of LESO is subsequently identi-
fied as follows:

λ (s)= s3
+β1s

2
+β2s+β3. (24)

The ideal characteristic equation can then be selected:

λ (s)= (s+ω0)3, (25)

whereω0 is the observer bandwidth. Then we have β1 = 3ω0,
β2 = 3ω2

0, and β3 = ω
3
0.

As stated in the literature (Jin et al., 2020; Zhong et
al., 2022), the selection of ADRC parameters, particularly
the observer bandwidth (ω0) and controller bandwidth (ωc),
plays a critical role in determining system performance. In

Figure 14. Command current predicted by the ICSA-ANFIS in-
verse model of the MR damper for the validation dataset.

Table 3. Main parameters of the human seat model for agricultural
tractors.

Parameters Values Parameters Values

m1 80 kg k1 102 000 N m−1

ms 10 kg ks 13 160 N m−1

c1 560 N s m−1 mc 205 kg
kc 20 135 N m−1 cc 1750 N s m−1

practice, ω0 is chosen to be sufficiently larger than ωc to en-
sure that the linear extended state observer (LESO) can accu-
rately estimate disturbances and unmodeled dynamics in real
time while avoiding excessive amplification of measurement
noise. Typically, ω0 is set to be 3–5 times greater than ωc,
which provides a balanced trade-off between estimation ac-
curacy and noise sensitivity. The controller bandwidth ωc is
selected according to the desired closed-loop dynamics and
can be tuned using the equivalent second-order model pa-
rameters (kp = ω2

c , kd = 2ξωc), where ξ denotes the damp-
ing ratio. A sensitivity analysis revealed that overly small ω0
values reduce disturbance rejection capability, while exces-
sively large values amplify sensor noise. Similarly, a higher
ωc improves tracking performance but may lead to control
signal saturation. Therefore, the final parameter set was de-
termined by balancing these effects, ensuring robust vibra-
tion suppression under both random and shock excitations.

4.2 Control system design

Given the inherent semi-active nature of MR dampers, this
study employs a hierarchical control architecture comprising
two cascaded modules:

– ADRC as the system controller, which computes the ref-
erence damping force Fd based on real-time suspension
dynamics (displacement zs, velocity żs, and accelera-
tion z̈s);

– ICSA-ANFIS inverse model as the damper controller,
which maps Fd and suspension states to the optimal
command current Icmd, addressing the nonlinear hys-
teresis of the MR damper.

https://doi.org/10.5194/ms-16-639-2025 Mech. Sci., 16, 639–655, 2025



650 X. Yang et al.: Adaptive disturbance rejection control of MR seat suspension systems

Table 4. Simulation comparison of seat suspension control performance.

Speed Simulation results ANFIS-ADRC CSA-ANFIS-ADRC ICSA-ANFIS-ADRC

1 m s−1 Driver’s vertical vibration acceleration (m s−2) 0.734 0.636 0.547
(D-class road profile)

Driver’s vertical vibration acceleration (m s−2) 0.792 0.644 0.567
(D-class road profile under shock conditions)

2 m s−1 Driver’s vertical vibration acceleration (m s−2) 0.877 0.722 0.589
(D-class road profile)

Driver’s vertical vibration acceleration (m s−2) 0.945 0.741 0.641
(D-class road profile under shock conditions)

Figure 15. Damping force predicted by the ICSA-ANFIS inverse
model of the MR damper for the validation dataset.

As illustrated in Fig. 10, the semi-active control framework
operates through the following sequence:

– The ADRC generates an active control force Fc via its
extended state observer (ESO), compensating for un-
modeled disturbances (e.g., road excitation z0).

Fc = kp (r − zs)+ kd (ṙ − żs)−
z3

b0
(26)

In the above, z3 estimates total disturbances, and kp
and kd are PD gains.

– A force limiter constrains Fc to the MR damper’s
achievable force range Fd ∈ [FminFmax], ensuring phys-
ical realizability.

– The improved ANFIS inverse model resolves the non-
linear mapping Fd→ Icmd using a hybrid learning al-
gorithm, incorporating displacement zs, velocity żs, and
historical force data Fd(k− 1).

– The MR damper modulates its rheological properties
based on Icmd, generating the approximate damping
force FMR ≈ Fd.

This dual-loop structure synergizes ADRC’s robust distur-
bance rejection (bandwidth ωc = 50 rad s−1) with ICSA-
ANFIS’s nonlinear hysteresis compensation (rms current er-
ror < 0.015 A), achieving 92 % vibration attenuation in trac-

tor cab simulations under ISO 2631-1 vertical vibration cri-
teria (International Organization for Standardization, 2025).

5 Simulation and analysis

5.1 Simulation analysis of MR damper inverse modeling

The displacement and current signals used in the training
dataset (as shown in Fig. 5) were generated using band-
limited white-noise signals with amplitude ranges of −20
to 20 mm and 0 to 3 A and frequency ranges of 0–7 and 0–
6 Hz, respectively. The data were collected over a duration
of 20 s at a sampling frequency of 500 Hz. The odd-indexed
samples were used as the training dataset, while the even-
indexed samples were used for validation. To evaluate the
performance of the ICSA-ANFIS model, inverse models of
the MR damper were also developed using standard ANFIS
and CSA-ANFIS. Each of the three optimization algorithms
was independently executed 20 times. The best convergence
curves of the training errors for the three modeling algo-
rithms are illustrated in Fig. 11. It can be observed that the
ICSA-ANFIS algorithm effectively overcomes the tendency
of standard ANFIS to become trapped in local optima and ex-
hibits significantly superior convergence accuracy compared
to the other two optimization methods.

Table 2 summarizes the minimum prediction errors of
the control current and the corresponding damping force
obtained using different inverse modeling approaches. As
shown in Table 2, the ICSA-ANFIS model achieves the high-
est prediction accuracy for both current and damping force.

The ICSA-ANFIS model was validated using the test
dataset. Figure 12 shows that the predicted current accurately
tracks the target current, while Fig. 13 demonstrates that the
predicted damping force, obtained from the ICSA-ANFIS in-
verse model, closely matches the target damping force.

Subsequently, two sets of validation data were generated
using signals that were entirely different from those used for
training. As shown in Figs. 14 and 15, the predicted currents
generated by the ICSA-ANFIS inverse model remain highly
consistent with the actual currents in the validation datasets.
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Figure 16. Seat vertical acceleration response under ISO class-D road excitation at a vehicle speed of 1 m s−1.

Figure 17. Seat vertical acceleration response under ISO class-D road excitation at a vehicle speed of 2 m s−1.

Moreover, the damping force calculated based on the pre-
dicted current can accurately track the actual damping force.
These results indicate that the inverse model is capable of ac-
curately characterizing the inverse dynamic behavior of the
MR damper.

5.2 Simulation analysis of semi-active seat suspension
control

To evaluate the effectiveness of the MR damper in the seat
suspension system, the proposed ICSA-ANFIS combined
with the ADRC control strategy was compared with the
ANFIS-ADRC and CSA-ANFIS-ADRC control schemes.
The simulation conditions assumed that the agricultural ve-
hicle operated on an ISO class-D road at speeds of 1 and
2 m s−1 under both random road profiles and shock-type road
disturbances. Table 3 presents the parameters of the seat sus-
pension system, including the spring and damper character-
istics, along with the corresponding simulation results.

Figures 16 to 19 present the simulation results of verti-
cal vibration acceleration and dynamic suspension travel for
the agricultural vehicle’s seat suspension system. These fig-
ures indicate that the ICSA-ANFIS-ADRC control strategy
is more effective in improving the vibration isolation per-
formance of the seat suspension system compared to CSA-
ANFIS-ADRC and standard ANFIS-ADRC controllers. To

gain a more comprehensive understanding of the perfor-
mance advantages of the ICSA-ANFIS-ADRC in seat sus-
pension applications, Table 4 summarizes the rms values
of relevant suspension performance indicators. As shown
in Table 4, the rms values of vertical vibration acceleration
are reduced to varying degrees by the ICSA-ANFIS-ADRC
compared with the other two suspension strategies. Regard-
ing the dynamic travel of the seat suspension, the ICSA-
ANFIS-ADRC system exhibits a significantly reduced dy-
namic stroke at both 1 and 2 m s−1 in comparison to the
ANFIS-ADRC and CSA-ANFIS-ADRC systems. Moreover,
the control performance remains robust under both shock and
non-shock road conditions. The increase in external shock
disturbances did not result in a significant increase in seat
dynamic travel, further reflecting the robustness of the ICSA-
ANFIS-ADRC control strategy.

According to ISO 2631-1 guidelines for evaluating human
exposure to whole-body vibration, the level of ride com-
fort can be directly correlated with the rms value of ver-
tical acceleration (International Organization for Standard-
ization, 2025). Specifically, rms values above 0.8 m s−2 are
typically categorized as “uncomfortable,” whereas values in
the range of 0.5–0.8 m s−2 correspond to “fairly uncomfort-
able to fairly comfortable”, and values below 0.5 m s−2 in-
dicate “comfortable” vibration levels. In this study, the pro-
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Figure 18. Seat vertical acceleration response under ISO class-D road excitation with shock disturbance at 1 m s−1.

Figure 19. Seat vertical acceleration response under ISO class-D road excitation with shock disturbance at 2 m s−1.

posed ICSA-ANFIS-ADRC controller achieved rms reduc-
tions of up to 32.9 % compared with baseline controllers,
effectively lowering the seat acceleration from the “uncom-
fortable” range into the “fairly comfortable” zone under ISO
class-D road excitations. This improvement demonstrates not
only a numerical enhancement in control performance but
also a tangible reduction in driver discomfort, thereby con-
firming the practical significance of the proposed control
strategy in real-world agricultural vehicle applications.

As quantitatively summarized in Table 4, the ICSA-
ANFIS-ADRC suspension system achieved a significant re-
duction in the rms values of vertical vibration acceleration
compared to the ANFIS-ADRC and CSA-ANFIS-ADRC
suspension systems. Under non-shock conditions at 1 m s−1,
the reduction reached 13.35 % compared to CSA-ANFIS-
ADRC and 25.5 % compared to ANFIS-ADRC. At a speed
of 2 m s−1, this performance improvement was further am-
plified, with reductions of 18.5 % and 32.9 %, respectively,
demonstrating the system’s adaptability to speed variation.
Notably, under shock conditions, the control strategy main-
tained its effectiveness, achieving reductions of 12.0 % and
28.4 % at 1 m s−1 and 13.5 % and 32.2 % at 2 m s−1, rela-
tive to the baseline systems. Critically, the controller’s per-
formance did not deteriorate despite increased disturbance
intensity, thereby confirming the robustness of the ICSA-

ANFIS-ADRC architecture under varying operational con-
ditions.

The numerical and experimental results exhibit strong
agreement, yet several important insights can be drawn from
the observed differences and performance trends. First, the
superior convergence behavior of the ICSA-ANFIS model
compared with standard ANFIS and CSA-ANFIS can be at-
tributed to the triangular probability distribution and muta-
tion mechanism introduced in ICSA. These strategies effec-
tively prevent premature convergence to local optima, en-
suring global exploration of the solution space and yielding
higher current prediction accuracy. As a result, the inverse
model produces a damping force that closely matches the ex-
perimental measurements.

Second, the discrepancies between numerical simulations
and experimental data primarily arise from unmodeled non-
linearities in the MR damper, such as temperature effects on
the MR fluid viscosity and minor frictional losses in the me-
chanical joints of the test setup. Nevertheless, these discrep-
ancies remain within acceptable margins, confirming that the
improved Bouc–Wen model captures the dominant hysteresis
and rate-dependent characteristics of the damper.

Third, the enhanced vibration isolation performance of
the ICSA-ANFIS-ADRC control strategy under both ran-
dom and shock road conditions can be explained by its hy-
brid structure. The ADRC component effectively estimates
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and compensates for unknown disturbances and model un-
certainties in real time, while the ICSA-optimized ANFIS in-
verse model provides accurate current commands to the MR
damper, thereby mitigating its inherent nonlinear hysteresis.
This synergy enables the controller to maintain robust damp-
ing performance even under sudden excitations or speed vari-
ations, as demonstrated by the reduced rms acceleration val-
ues in Table 4.

Finally, the robustness of the proposed controller is fur-
ther highlighted by the fact that the vibration reduction ra-
tios remain nearly constant despite increasing external distur-
bances. This indicates that the ICSA-ANFIS-ADRC frame-
work achieves not only high precision in force tracking but
also strong adaptability across different operating conditions,
thereby providing a reliable solution for intelligent seat sus-
pension systems in agricultural vehicles.

6 Conclusions

In this study, an innovative semi-active control framework,
referred to as ICSA-ANFIS-ADRC, was proposed by inte-
grating the ICSA with an ANFIS and coupling it with the
ADRC strategy, specifically designed for real-time dynamic
optimization of MR seat suspension dampers. The proposed
approach first involves the development of a forward dy-
namic damper model based on an improved Bouc–Wen hys-
teresis model, which was empirically calibrated using ex-
perimental datasets. Subsequently, an inverse model of the
damper was developed based on the ICSA-ANFIS architec-
ture, with detailed descriptions of the neuro-fuzzy network
configuration and the dynamic optimization procedure driven
by ICSA. By coupling the ICSA-ANFIS inverse model with
an ADRC controller tailored for seat suspension systems,
a novel hybrid control strategy was proposed and imple-
mented. Extensive numerical simulations validated the ef-
fectiveness of the proposed controller, revealing three major
advancements: superior precision in damping force regula-
tion, continuously adjustable damping across the entire oper-
ational frequency range, and significantly enhanced vibration
isolation performance of the seat suspension system under
dynamic loading conditions.

Although the proposed ICSA-ANFIS-ADRC control
framework demonstrates promising results in vibration iso-
lation and ride comfort enhancement, several limitations
should be acknowledged. First, the study primarily relies on
simulation analysis; therefore, future work will focus on con-
ducting hardware-in-the-loop tests and full-scale experimen-
tal validation on agricultural vehicles to confirm real-world
applicability. Second, the present model did not explicitly
account for temperature effects, long-term damper wear, or
parameter drift of MR fluids, which may influence control
accuracy over time. Future research will address these fac-
tors by incorporating adaptive parameter identification and
robust controller reconfiguration. Finally, integration of hu-

man biodynamic models and ISO 2631 comfort assessment
will be pursued to provide a more comprehensive evaluation
of driver health and long-term exposure risks.

Appendix A: Nomenclature

Symbol Description
mb Mass of human body (kg)
ms Mass of seat (kg)
mc Mass of cab (kg)
kb Stiffness of human body (N m−1)
cb Damping coefficient of human body (N s m−1)
ks Stiffness of seat suspension (N m−1)
cMR Equivalent damping coefficient of MR

damper (N s m−1)
kc Stiffness of cab (N m−1)
cc Damping coefficient of cab (N s m−1)
zb Vertical displacement of human body (m)
zs Vertical displacement of seat (m)
zc Vertical displacement of cab (m)
z0 Base excitation displacement (m)
FMR Damping force of MR damper (N)
α Scaling parameter of hysteresis force
β,γ,A Parameters controlling smoothness and

transition of Bouc–Wen model
n Rounding coefficient of hysteresis model
c0,c1 Viscous damping coefficients of MR damper
k0,k1 Stiffness coefficients of MR damper
x Total displacement of MR damper piston (m)
y Hysteresis displacement (m)
x0 Equilibrium position offset (m)
I Control current of MR damper (A)
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