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Cyclostationary analysis is one of the most promising and powerful methods for analyzing vibration
signals from rolling element bearings (REBs). Damage to the REB is one of the most common reasons for
failure in the electric motor (EM). Thus, the application of cyclostationary analysis to vibration signals from
EM is reasonable in order to detect faults. Unfortunately, it has been observed that analyzing vibration signals
measured on bearings in electric motors is much more challenging due to the presence of additional cyclic
components on the bi-frequency map that affect the analysis. These additional components may have various
mechanical sources (for example, the influence of shaft misalignment) or electrical/electromagnetic origins (such
as frequencies related to features of the power source, i.e., grid frequency, inverter keying, etc.). This paper is
an introduction to bearing diagnostics in electric motors based on cyclostationary analysis in the bi-frequency
domain. We present various cases to show the complexity of the map and conclude that there is a need to define
a method for automatic identification and interpretation of sources, i.e., understanding of the bi-frequency map.
As other cyclic sources are wideband and they have much stronger values on the map, simple band selection is
difficult. Thus, new methods for further map processing and novel indicators to assess the significance of features
that describe the fault based on cyclic spectral coherence (CSC) maps should be developed. However, it is stated
that it requires a deep understanding of the CSC map. We believe that this paper brings some new knowledge to
the context of using CSC for bearing diagnosis in electric motors.

Condition monitoring of electric motors is an important field
of study. There are many techniques to detect failures in elec-
tric motors. The classical one is vibration analysis; however,
it allows for the detection of mostly mechanical problems
in electric motors. Thus, other sources of information have
also been investigated (current, speed, torque, sound, tem-
perature, including infrared thermography, image; see more
in several review papers (Nandi et al., 2005; Bellini et al.,
2008; Vaniya and Chudasama, 2023; Halder et al., 2022)).

As rolling element bearing failures are the most common
mechanical reason for electric motor breakdown (Nandi et
al., 2005), accounting for nearly 40 % of all failure causes,
this paper focuses on vibration analysis for bearing fault de-
tection. The most popular method for bearing fault detec-
tion is envelope analysis (Randall and Antoni, 2011). How-
ever, it often requires some preprocessing, i.e., prefiltering,
to extract the signal with a monocomponent carrier before
demodulation. Another reason for pre-filtering is related to
signal-to-noise ratio improvement. There are many works re-
lated to the selection of informative frequency bands; one of



the most popular is spectral kurtosis (Antoni and Randall,
2006). Many possible statistics could be used for band selec-
tion (Obuchowski et al., 2014), a recent review of existing
methods can be found in Hebda-Sobkowicz et al. (2020a). It
is also recommended to study the work of Leite et al. (2015),
where the authors considered a method for localized bearing
fault detection based on the application of spectral kurtosis
and envelope analysis applied to the stator current.

Searching for impulsiveness in the time domain or periodic
structure in the envelope spectrum are two main directions
for bearing diagnostics. However, it has been found that sig-
nals from faulty bearings can be considered a special class
of nonstationary signals with some cyclic variation in signal
properties. Antoni et al. (2004) proposed a framework for cy-
clostationary modeling for vibration signals. Cyclostationary
methods are well-known in other fields, such as telecommu-
nications and oceanography, and can be successfully applied
to condition monitoring. It is recommended to read the re-
cent book on trends and applications in cyclostationary anal-
ysis of Napolitano (2016). Randall et al. (2001) showed that
integrated cyclic spectral correlation integrated over all car-
rier frequency bins is equal to the amplitude spectrum of the
squared envelope of the signal. Raad et al. (2008) proposed
indicators of cyclostationary behavior that could be used for
condition monitoring. Further work by Antoni (2009) high-
lighted the practical benefits of using a cyclostationary ap-
proach for bearing diagnostics.

It was observed in the literature that cyclostationary anal-
ysis is not so popular for bearing diagnostics in induction
motors, which is counterintuitive. There are just a few works
related to cyclostationarity and electric motors. Even review
articles focused on induction motor diagnostics do not con-
sider the cyclostationary properties of vibrations.

In their review, Tandon et al. (2007) discussed vibration
velocity and its spectrum, acoustic emission, shock pulse
method, and current monitoring. Mauricio et al. (2018) found
that bearings diagnostics of electric drives might be hard
when motors are controlled by variable-frequency drives.
Due to electromagnetic interference (EMI), classic methods
may provide rather poor diagnostic performance. They claim
that the mentioned disturbances may provide a pattern sim-
ilar to that of a faulty bearing, making it difficult to detect
the true signature of the damage. To overcome the prob-
lem, they used two novel diagnostic methodologies based on
cyclic spectral coherence (CSC). These methodologies allow
for the automatic selection and integration of optimal bands
in the CSC. The integration of CSC, over the full spectral fre-
quency axis or a specific spectral frequency band, results in
the enhanced or improved envelope spectrum, respectively.
The issue of variable-frequency drives has also been raised
by Seshadrinath et al. (2014). They conducted an investiga-
tion of vibration signatures for multiple fault diagnosis in

Celma INDUKTA Sh90L-4 motor rated parameters.

Power  Speed Current  Voltage Frequency  Shaft
diameter
1.5kW  1410rpm  3.5A 400V 50Hz 24 mm

variable-frequency drives using complex wavelets. Islam and
Kim (2018) proposed a procedure for motor bearing fault di-
agnosis that is based on deep convolutional neural networks
with 2D analysis of the vibration signal. Frosini and Bassi
(2010) proposed using the stator current and the efficiency of
the induction motors as indicators of rolling bearing faults.
Minervini et al. (2020) proposed a method based on multi-
sensor measurements to detect cyclic faults in induction mo-
tors. However, features have been extracted from the spectral
domain at a low-frequency range that requires strong energy
components related to the fault. Importantly, Minervini also
raised the problem of electromagnetic disturbances.

One of the greatest examples of cyclostationarity in bear-
ing diagnosis is a paper provided by Teng et al. (2017). The
authors considered a wind turbine generator. They demon-
strated that an intrinsic electromagnetic vibration, originating
from an alternating magnetic field acting on a low-stiffness
stator, modulates the vibration signals of the generator. Con-
sequently, true fault features related to damaged bearings are
masked by other cyclic sources. Recently, Wang et al. (2023)
proposed a method based on an enhanced cyclostationary
approach and its application to the incipient fault diagno-
sis of induction motors. However, the proposed method is
multistage and covers advanced wavelet-based preprocess-
ing and Teager—Kaiser demodulation. Wang et al. (2022) im-
proved the TKEO-based cyclostationary analysis method and
its application to the diagnosis of induction motor faults. An-
other interesting application of cyclostationarity is provided
by Wang et al. (2019) in the context of identifying broken ro-
tor bar faults. He et al. (2023) proposed an improved cyclo-
stationary analysis algorithm and its implementation into an
edge computing system to diagnose a motor fault in real time.
The main focus of that paper was real-time detection. Wang
et al. (2020) proposed a combination of decomposition and
cyclostationary analysis. It contains genetic mutation particle
swarm optimization (GMPSO) with cyclic information en-
tropy (CIE) to optimize the variational mode decomposition
parameters; then, a multidomain extreme learning machine
has been applied for state recognition. In almost all the men-
tioned techniques, the authors did not present a bi-frequency
map as input data that were used for feature extraction and
simple decision-making, or the presented maps, were easy to
interpret (no detailed interpretation was provided).
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Figure 4. Outer race faults. Bearings with a damaged outer race: large fault — case 1 (left panel) and small fault — case 2 (right panel).

Figure 5. Bearing with damaged inner race.

1.3 Problem definition: bi-frequency map understanding

The main idea discussed here is related to the application
of cyclostationary analysis to the vibration of bearings used
in electric motors. We will consider both healthy and faulty
bearings (encompassing various types and sizes of faults) as
well as two methods of powering the motor: directly from the
network and through an inverter. According to classical cases
in condition monitoring, a cyclic and impulsive signal (with
some background noise) subjected to cyclostationary analy-
sis should result in a bi-frequency map with a clear signature
of its periodicity (see Fig. 1, right). In the case of a lack of
damage (and other cyclic sources in the measured signal), the
map should not contain anything (see Fig. 1 left). In the ideal

Mech. Sci., 16, 597-614, 2025

case of no-fault conditions, all values on the map should be
equal to zero. In practice, there is always background noise.
It may be important for detection in the early stages of dam-
age. In the case of small modulation and resulting compo-
nents with small amplitude, it might be difficult to detect the
signature of damage.

The bi-frequency map enables us to obtain two types of
information: the modulating frequency (related to the cycle
between impulses) and the carrier frequency associated with
the natural frequency excited and modulated by periodic im-
pulses. In the case shown in Fig. 1, modulating frequency is
20 Hz and the carrier frequency is 10 kHz. The bi-frequency
map can be visually inspected, integrated into the envelope
spectrum (Randall and Antoni, 2011; Mauricio et al., 2020),
or serve as a basis for a novel scalar indicator that can be fur-
ther monitored and used for prognosis, as shown in Fig. 2.
In practical situations, visual inspection is rather difficult,
subjective, time-consuming, and cannot be performed auto-
matically. The most popular approach involves integrating
the map into a one-dimensional vector, interpreted as an en-
velope spectrum. Unfortunately, such integration may lead
to the accumulation of noise or other cyclic components in
the case of a complex multicyclic signal. In the condition-
monitoring system, the envelope should be further integrated
to forecast the remaining useful life. Such a scalar indicator
could be extracted directly from the map; however, it requires
a precise understanding of all the components that exist in the
map.

https://doi.org/10.5194/ms-16-597-2025



Characteristic frequencies of rolling element bearings. Ny — shaft speed (rpm), fq — shaft frequency (Hz), Ny — number of rolling
elements balls or rollers), dy, — ball/roller diameter, Dy, — pitch diameter (center-to-center distance of rolling elements), o — contact angle.

Frequency name Equation Value
Shaft frequency fo % 24967 Hz
Ball pass frequency of outer race (BPFO)  fgppo = % - fo- (1 - g—‘;} cosa) 89.506 Hz
Ball pass frequency of inner race (BPFI) fBPFI = NT - fo- (1 + g—'; cosoz) 135.194 Hz
Ball spin frequency (BSF) fBSF = 57‘; - fo- [1 — (g—‘; cosa>2] 58.856 Hz
Fundamental train frequency (FTF) fFTF = %0 . (1 - g—‘; cos a) 9.945 Hz

Experiment ‘

Motor powering mode

Grid power

Inverter power

Fault

Healthy IR OR1

OR2 Healthy IR OR1 OR2

Plan of experimental work. IR — inner race fault, OR1 — large outer race fault, OR2 — small outer race fault.

As mentioned, cyclostationary methods are not as widely
used in the literature in the field of electric motor diagnosis.
Moreover, the presented examples are rather easy to inter-
pret. On the other hand, in this article, the authors present
cyclostationary maps contaminated with additional compo-
nents, allowing the reader to see that the identification and
extraction of the informative component may not be straight-
forward. The purpose of the paper is to present, describe,
and understand the structure of the spectral content of sig-
nals measured in the described scenarios. While in theory
all frequency components should be known and easily in-
terpretable, we present that it is not as obvious in practice,
and even a well-suited analytical approach (cyclostationary
analysis) does not paint a clear picture. It will be shown that
a map can contain various components, and its interpretation
and then automatic processing may be complicated. It will be
highlighted that understanding all components on the map is
critically important and omitting this step may lead to wrong
decisions.

The experiment was conducted in the laboratory of the De-
partment of Electrical Machines, Drives, and Measurements
at Wroclaw University of Science and Technology. The test
rig scheme is presented on the left panel of Fig. 3 and its
picture on the right panel. The purpose of the experiment
was to collect vibration signals from healthy and faulty bear-

ings (SKF 6205-Z) installed in the EM. The main part of
the unit is an electric motor (Celma INDUKTA Sh90L-4)
coupled to another motor acting as a programmable load
(PZB b44b DC). The vibration of the two bearings of the
drive motor is measured using two uniaxial accelerometers
(DeltaTron 4514-001) connected to a National Instruments
NI-DAQmzx data acquisition card: one on the counterdrive
side, and the other on the drive side. Measurements were
sampled at 51.2kHz and lasted 10s for a single signal. Pa-
rameters of this particular model of EM are presented in Ta-
ble 1.

The test rig enables control of operational parameters of
the EM (speed, load) as well as various faults that could be
introduced by bearing replacement.

Three cases have been considered: healthy bearing, faulty
bearing with an artificially introduced outer ring fault, and
faulty bearing with an artificially introduced inner ring fault.
Figures 4 and 5 present pictures of damaged bearings. Bear-
ing faults have been artificially introduced using a special
micro-drill device with the appropriate drill hardness. In Ta-
ble 2, basic parameters required for diagnostic procedures
are presented, where BPFO is the ball pass frequency of the
outer race, BPFI is the ball pass frequency of the inner race,
FTF is the fundamental train frequency, and BSF is the ball
spin frequency.

Several experiments have been carried out. They can be di-
vided according to the presence of the fault (healthy, faulty),
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Figure 8. Signal and its spectrogram from bearings with an inner race fault.

the type of fault (inner, outer), the size of the fault (no fault,
small fault, large fault), and the power supply (direct grid,
inverter). These variants are summarized in Fig. 6.

2.3 Results of measurements

The results of each experiment are presented in the same way.
First, we present the time series of each measurement (10 s in
length). Second, the spectrogram of that signal is presented.
The purpose of that visualization is to understand the shape
of the signal in the time domain and its frequency structure,
including the possible excitation of natural frequencies (an
informative frequency band). All data presented in this sec-
tion have been collected from the electric motor powered di-
rectly by the electric grid and from the voltage inverter. All
spectrograms are presented on a logarithmic scale.

2.3.1 Grid-powered motor

In Fig. 7, the vibration signal and its spectrogram of bearings
in healthy conditions are presented. It is worth noting the am-
plitude of the time series (which will increase for faulty cases
because of the presence of impulses) and the rich and rather
uniform structure of the spectral content (no dominant reso-
nance).

In Fig. 8, the vibration signal and its spectrogram related
to a faulty bearing with an inner ring fault are presented. It is
evident that the introduced fault caused a significant increase

Mech. Sci., 16, 597-614, 2025

in the signal amplitudes (left panel) and a change in the spec-
tral structure. The resonance area is visible around 5 kHz.

In Fig. 9, the vibration signal and its spectrogram related
to a faulty bearing with a large outer ring fault are presented.
Again, one may note that the introduced fault caused an in-
crease in amplitudes of the signal (left panel), though smaller
than for the inner ring. A change in spectral structure is also
visible. Unfortunately, no significant pattern can be detected.

In Fig. 10, the vibration signal and its spectrogram related
to a faulty bearing with a small outer ring fault are presented.
An introduced fault caused a minor increase in the ampli-
tudes of the signal (left panel), which makes the detection
problem challenging (the amplitudes of informative and non-
informative components are similar). No significant pattern
on the time—frequency map can be detected.

2.3.2 Inverter-powered motor

The next set of examples presents cases where the electric
motor was not powered directly from the electrical grid but
using a voltage inverter. In Fig. 11, the vibration signal and
its spectrogram measured on healthy bearings are presented.
Please note that this is the same test rig with the same mo-
tor and healthy bearings as in the previous section. The dif-
ference is just related to the change of power source. The
use of the inverter significantly increased the amplitudes of
the raw time series and changed the spectral structure of the
signal. Two components with significantly higher amplitudes

https://doi.org/10.5194/ms-16-597-2025
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Figure 9. Signal and its spectrogram from bearings with an outer race fault — much damage.
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Figure 10. Signal and its spectrogram from bearings with an outer race fault — little damage.

are visible on the spectrogram (5 and 10kHz), and they are
related to the set frequency modulation of the inverter.

In Fig. 12, the vibration signal and its spectrogram are pre-
sented. These are related to a bearing that is faulty with a fault
of the inner ring. It is worth noting that the introduced fault
caused a significant increase in amplitudes of the signal (left
panel) and a change in the spectral structure (in comparison
to a healthy motor driven by an inverter, as well as a healthy
motor powered by an electric grid). The resonance area is
barely visible around 5 kHz.

In Fig. 13, the vibration signal and its spectrogram related
to a faulty bearing with a large outer ring fault are presented.
As in previous cases, an introduced fault caused an increase
in signal amplitudes (left panel), however, smaller than for
the inner ring. Any significant changes in the spectral struc-
ture or pattern can be detected.

In Fig. 14, the vibration signal and its spectrogram re-
lated to a faulty bearing with a small outer ring fault are pre-
sented. An introduced fault caused a minor increase in am-
plitudes of the signal (left panel), which makes the detection
problem challenging (the amplitudes of informative and non-
informative components are similar). Any significant pattern
on the time—frequency map can be detected.

2.3.3 Healthy vs. faulty bearings: comparison of signals

Introducing artificial damage to the bearings is not a natural
degradation process. Created damages cause a significant in-

https://doi.org/10.5194/ms-16-597-2025

crease in amplitudes, especially related to cyclic impulses. In
Fig. 15, a signal comparison is presented: each graph shows
a signal from the good-condition bearing used as a refer-
ence and a signal from the defective bearing. It is clear now
that the increase in amplitudes mentioned earlier is related to
high-amplitude impulses. The inner race fault brings about a
large impulsive component. The smaller outer ring fault pro-
vides smaller impulses in comparison to the large outer race
fault.

In Fig. 16, a similar comparison of signals is presented;
however, this time we consider experiments carried out with
the motor driven by the inverter. Each plot displays a signal
from a bearing in good condition, used as a reference, and a
signal from a faulty bearing. As in this case, signals contain
much more background noise, and the increase mentioned
above is not critical. An impulsive component is masked by
background noise, and the presence of impulses is not so
clear as in a grid-powered case. One may conclude that even
if the fault size is large and is clearly visible in the time do-
main for EM powered by the grid, in the case of the inverter,
detection may not be as straightforward. For an early-stage
fault, it could be a real challenge.

Mech. Sci., 16, 597-614, 2025
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Figure 11. Signal and its spectrogram from healthy bearings (machine driven by inverter).
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Figure 12. Signal and its spectrogram from bearings with a faulty inner ring (machine driven by inverter).

3 Cyclostationarity modeling for vibration analysis

In this section, basic definitions of cyclic spectral coherence
is presented, while some indicators used for comparing ap-
proaches will be recalled in the Appendix B.

Cyclic spectral coherence (CSC) is a well-known bi-
frequency representation often used to investigate the cyclo-
stationary aspects of time series {X,}. It is defined as a dou-
ble Fourier transform calculated on the instantaneous auto-
covariance function, such as Antoni (2007):

SX(f7€)

x(fe= VSx(F+€/2,00Sx(f —€/2,0) M
where
1 Y& . ‘
Sx(f.e)= Nll_f)nooﬁ t;N T;oo Ry (1, T)e 127/t gmidmet
@)

where € is the cycle frequency and Ry (r,7) = EX; X;_; is
the autocovariance function of time series {X,}. In this appli-
cation, f can be understood as the carrier frequency and € as
the modulating frequency, both expressed in Hz. Sx(f,¢€) is
estimated using averaged cyclic periodogram (ACP) (Antoni,
2007).

It is important to remember that in practical implemen-
tation, the estimator of the CSC is calculated for time series
x = {x1,x2,...,xn} of length N. There are many approaches

Mech. Sci., 16, 597-614, 2025

for estimating CSC, but the most popular method (also used
in this article) is based on the averaged cyclic periodogram.
It results in the calculation of the bi-frequency map o) x(f,€),
where f € Fande € £.

If one can assume that the model of the investigated sig-
nal x displays cyclostationary properties, then one could ob-
serve the modulation fringes (individual vertical lines visi-
ble on the CSC map) located at specific modulating frequen-
cies €; = {€;,, €1, ..., €} representing the fundamental fre-
quency of modulation (called fault frequency) and its har-
monic multiples. Those fringes typically occupy a limited
carrier frequency band fy € F called the informative fre-
quency band (IFB).

4 Results of cyclostationary analysis and their
interpretation

In this section, the authors present the results of the cyclosta-
tionary analysis of the described signals. The bi-frequency
maps enable us to visualize the data more clearly and un-
derstand their character. They also allow us to describe the
differences between the signals.

Figure 17 presents CSC maps calculated based on signals
from a healthy bearing (panel a) and from a bearing with an
inner race fault (panel b). The signal from the healthy bearing
contains one major component visible on the map: a cycle
of 24.97 Hz and its multiples. This component describes the
rotational frequency of the motor shaft.

https://doi.org/10.5194/ms-16-597-2025
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Figure 13. Signal and its spectrogram from bearings with an outer race fault — much damage (machine driven by inverter).
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Figure 14. Signal and its spectrogram from bearings with a faulty outer ring — small fault (machine driven by inverter).

The signal from the bearing with the inner race fault
presents a more complicated structure. Similarly to the
healthy bearing, we can observe the component at 24.97 Hz
and its multiples; however, the predominant cycle has a fre-
quency of 135.2 Hz (and its multiples), which correctly cor-
responds to the inner race fault. In this signal, sidebands
also appear on the CSC map. For example, the component at
110 Hz is clearly visible on the map, and this component is
the first left-hand sideband of the central frequency of 135 Hz
(inner race fault) with a distance of 25 Hz (shaft cycle).

Figure 18 presents CSC maps calculated based on signals
from bearings with large (panel a) and small (panel b) outer
race faults. On both maps, the predominant component de-
scribes the 89.5Hz cycle (and its multiples) that correctly
describes the characteristic frequency of the outer race fault.
The main difference between those two faults is clearly vis-
ible on the maps. It manifests mainly as a difference in the
carrier frequency band occupied by the fringes describing the
fault component. The value of the fringes also differs and is
stronger for the larger fault.

Unfortunately, the structure of the bi-frequency map for
all experiments with an inverter-powered motor is signifi-
cantly different (see Figs. 19 and 20). A dominant compo-
nent on the map is related to SO0Hz and is harmonics (100,
150, etc.). These components are critical for the small outer
bearing fault case where the map is completely dominated by
50 Hz and the fault signature is barely visible (limited band,

https://doi.org/10.5194/ms-16-597-2025

smaller amplitudes). One may conclude that the same fault is
much more difficult to detect in the case of using an inverter.

Figures 21 and 22 present the enhanced envelope spectra
(EES) calculated based on CSC maps from Figs. 17, 18, 19,
and 20. This representation allows us to observe and inter-
pret the information more simply and directly. Furthermore,
those plots allow us to confirm and emphasize the informa-
tion presented on the CSC maps.

Figure 21 presents the EES plots for signals measured
using a grid-powered setup. Regarding the signal from a
healthy bearing, only the four shaft-related components can
be observed (the rest are masked by other components). The
EES related to the inner race fault exhibits clear peaks that
describe the fault. One can also identify peaks at the first
three harmonic frequencies related to the shaft cycle, as well
as sidebands around fault harmonics that are related to the
shaft cycle (i.e., 135 Hz &= 25 Hz). A similar situation can be
observed at EES plots regarding both outer race faults. Peaks
describing fault harmonics are clearly visible above all other
components. One can identify two or three shaft-related har-
monics, and shaft-related sidebands can also be observed.

Figure 22 presents the EES plots for signals measured
using an inverter-powered setup. Regarding signal from a
healthy bearing, the situation is similar to the grid-powered
setup (shaft-related frequencies are visible), but in this case,
components at multiples of 50 and 100 Hz are significantly
stronger than all other multiples of 25 Hz. For the inner race
fault, the structure of EES for grid power and inverter power

Mech. Sci., 16, 597-614, 2025
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Figure 15. Comparison of healthy and faulty signals for grid-powered setup.
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Figure 16. Comparison of healthy and faulty signals for the inverter-powered setup.

is very similar; however, for inverter power, the overall scale
of EES is visibly smaller. On the other hand, the EES plots
for both outer race faults are significantly different from
those for grid-powered scenarios. Besides the same fault-
related components that are visible in grid-powered case,
now one can observe a significant presence of frequencies
that are multiples of 100 and 50 Hz, with a structure similar
to the one observed at the EES of a healthy bearing (multiples
of 100 Hz are significantly stronger than multiples of 50 Hz).
However, fault-related components are still clearly visible.
Figures 23 and 24 present the same CSC maps as shown
before but with a three-dimensional viewing perspective.

Mech. Sci., 16, 597-614, 2025

Such a viewing mode allows us to visualize better the re-
lation between the values of noise floor fluctuations (non-
informative areas) and the values of the actual modulation-
related fringes at the expected modulation frequencies (in-
formative areas). Especially for cases of inner ring fault (for
both grid and inverter power) one can see that there are val-
ues of significant amplitudes scattered all over these maps.
It is an important observation since, for further investigation
of such cases, one might need to incorporate additional steps
in the processing procedure, such as denoising or filtration.
However, the remaining cases (healthy bearings or outer race
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faults) seem to produce much cleaner CSC maps with signif-
icantly less contaminated, non-informative areas.

In Fig. 25, a basic feature is presented that accumulates all
the information into one value. One can see that introducing
a fault in the bearing causes an increase in amplitudes on the
map, indicating that the value of the feature is higher than
in a healthy state. A small outer race fault provides a rela-
tively small increase in the value of the feature. It is worth
noting that even under good conditions, there are many com-
ponents with relatively small amplitudes (related to the shaft
and others), so their accumulation results in relatively high
background noise.

Another interesting observation can be made: although
inverter-powered scenarios seem to produce CSC maps and
EES spectra that contain significantly more components in
relation to the grid-powered scenarios, a comparison of the
four inverter-powered cases with respective grid-powered
cases shows that the overall sums of value aggregation are
lower.

Finally, one can make a third observation: for the grid-
powered case, a small fault of the outer race produces a sum
value that is minimally larger than for the healthy bearing.
However, in the case of the inverter-powered scenario, the
same low-level fault of the outer race produces a sum value
that is significantly lower than for the healthy bearing. In par-
ticular, for a grid-powered scenario, the difference in values
is equal to 3.58 x 10?, which constitutes a positive differ-
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ence of 1.85%. However, for an inverter-powered scenario,
the difference in values is equal to 2.34 x 10°, which repre-
sents a negative difference of 15.49 %.

Figure 26 presents the values of the EENVSI indicator for
the eight cases presented. One can make two clear observa-
tions, as follows.

1. For both grid-powered and inverter-powered cases, sig-
nals measured on faulty bearings produce higher values
of EENVSI than signals measured on healthy bearings.

2. Signals describing inverter-powered cases produce
lower values of EENVSI than for grid-powered cases.
Since EENVSI (as well as ENVSI) is conceptually
equivalent to SNR but for envelope spectra instead of
signals, one can conclude that this is further evidence
that an inverter-powered scenario produces signals more
contaminated with spectral components not related to
the faults.

Similarly to the EENVSI, Fig. 27 shows that the entropy
of the CSC maps also takes lower values for configurations
with the inverter compared to the grid-power setup for all
four scenarios (Gonzalez et al., 2020). The same effect can
be observed for peak SNR in Fig. 28.
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Even an electric motor with good-condition bearings pro-
duces a cyclostationary signal with a complicated harmonic
structure. Introducing a fault to the bearing delivers cyclic
components related to the frequency of the fault (inner,
outer). The amount of damage influences the structure of the
map. One may summarize that for electric motors powered
by the electric grid, bearing fault detection is not so compli-
cated; however, it requires the smart integration of the kind
of envelope spectrum or even the extraction of scalar fea-
tures. Unfortunately, an electric motor driven by an inverter
seems to be much more challenging. The inverter produces a
significantly higher level of raw signal, which masks the in-
formative component related to the damaged bearing. More-
over, a bi-frequency map contains a family of components
with much higher amplitudes than the fault signature. The re-
lation between informative and noninformative components
is much worse in the case of a motor driven by an inverter.
One may observe that an inverter introduces numerous non-
informative components, which decrease the signal-to-noise
ratio. What is important is that the estimated amplitudes of
fault components are smaller in the case of a motor driven by
an inverter. This means that disturbances introduced by the
inverter increase background noise (noninformative compo-
nents) but also influence values of informative components
that may have critical importance for decision-making.
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Our observations open up new research directions related
to the development of smart integration into the envelope
spectrum and the statistical analysis of the map to detect in-
formative components.

Cyclostationary analysis is well-known in the condition-
monitoring community; however, its application in bearing
diagnostics for electric drives has not been as frequent un-
til now. Several journal papers proposed methods based on
the cyclostationary approach; however, none of them deeply
studied the structure of the CSC map before the stage of fea-
ture extraction and decision-making.

In this paper, the authors conducted a simple experiment in
the lab using a test rig driven by a grid and an inverter. Four
different bearing conditions have been investigated (healthy,
inner race fault, small outer race fault, and large outer race
fault). The purpose of this work was to study the structure
of the map and to investigate the feasibility of utilizing basic
features that can be extracted from it.

It was observed that the source of energy for the elec-
tric drive is critically important for cyclostationary analysis.
The inverter introduces non-informative components (from a
fault detection perspective) that make the map less readable.
Furthermore, the amplitudes of the components related to the
fault frequency are smaller than in the case powered by the
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grid. Additionally, some additional components related to the
shaft imbalance have been identified. These facts require a
redefinition of the feature-extraction procedure and a robust
fault detection method.

It has been confirmed that introducing damage to the tested
bearings generates components on a bi-frequency map at the
fault frequency and its harmonics. The structure of the spec-
tral signature of the fault follows the theoretical expectation.
An increase in the size of the fault leads to an increase in the
signature. In this paper, it has been shown that this is not ex-
actly the case for an electric motor powered by an inverter.
In general, the rule remains valid but cannot be applied di-
rectly to the grid and inverter cases. Moreover, a signature
integrated to the 1D scalar value showed that a small outer

fault provides a signature smaller than that of healthy con-
ditions. Even though the global cyclostationary indicator is
slightly smaller for the inverter case, the normalized feature
(EENVSI) showed significantly worse performance for the
inverter-driven motor. The normalized cyclostationary indi-
cator enables tracking fault development; however, its values
for the inverter are smaller than those for the grid case. This
means a smaller effectiveness of fault detection in this case.
It was believed that cyclostationary analysis is suitable for
detecting mechanical faults in rolling bearings, as it can eas-
ily identify a nonlinear interaction between the modulating
frequency (related to the fault) and the carrier frequency (re-
lated to the natural frequency). The amplitude of the compo-
nent on the bi-frequency map should be proportional to the
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size of the fault. It should not depend on the type of power
supplier.
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Cyclostationary analysis for vibration signals from rolling
element bearings in electric drives with inverters requires
deep investigation into the interpretation of the structure of

https://doi.org/10.5194/ms-16-597-2025



J. Wodecki et al.: Cyclostationary analysis of vibration signals from electric motor 611

5 0% Sums of CSC maps
T T T

Signals

Figure 25. Sums of values within the eight CSC maps.

< e
. o ‘\a‘q o
Qe 5% oo\eﬁ

e
« S e e
u
i o

Signals
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the map and feature-extraction procedures. It is noteworthy
that it cannot be a simple aggregation that globally assesses
the map (such an approach could be interesting from the per-
spective of online condition-monitoring systems). Even clas-
sical integration procedures that transform a 3D map to a 2D
envelope spectrum may provide an accumulation of distur-
bances and decision-making with high uncertainty. In the
considered cases, it has been observed that the additional
components are wideband and significantly visible in the
maps, which makes a lot of standard approaches unsuitable
(i.e., IFB selection, considering the strongest cyclic compo-
nents, etc.). Additionally, it has been observed that even the
same configuration powered by the grid or by the inverter
presents very different characteristics, and even parameter-
ization with appropriate metrics shows that they cannot be
analyzed in the same way (i.e. different decision thresholds
are required, different class separation intervals can cause a
different classifier to be required, etc.). The contribution of
this paper lies in explaining the structure of CSC map in a
scenario of the diagnostics of bearings in the induction mo-
tors (operating with and without an inverter), and it can be
considered a very preliminary step for proposing automatic
diagnostic techniques.
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Appendix A: List of abbreviations

Abbreviation Full name

AIS amplitude of informative signal
BPFI ball pass frequency over inner race
BPFO ball pass frequency over outer race
BSF ball spin frequency

CSC cyclic spectral coherence

EENVSI enhanced envelope spectrum-based indicator
EES enhanced envelope spectrum

EM electric motor

EMI electromagnetic interference
ENVSI envelope spectrum-based indicator
ES envelope spectrum

FTF fundamental train frequency

IES improved envelope spectrum

IFB informative frequency band

IR inner ring

OR outer ring

REB rolling element bearing

SES squared envelope spectrum

SNR signal-to-noise ratio
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Since the CSC map is a correlational representation, one can
assume that non-informative areas will be occupied by low
correlation values (theoretically, they should tend to zero;
practically, there are some “noise” components below 0.2).
On the other hand, informative fringes that describe modula-
tion effects will be represented by higher correlation values
(typically above 0.6). From this assumption, it can be argued
that the total sum of all of the values on the map can be a
simple indicator of the number of modulation effects present
on the map, without requiring any prior knowledge about the
particular frequencies of interest.
The indicator M can be defined as

M=) Y"ICx(f.el. (BI)

feFee&

The enhanced envelope spectrum (EES) is a representation
equivalent to the envelope spectrum in terms of the informa-
tion provided (Randall et al., 2001) but calculated based on
the CSC map. It is obtained by aggregating the map along
the dimension of the carrier frequency domain, such as

EES(e)= Y ICx(f e, (B2)
feF
where € € £.

Envelope spectrum-based indicator (ENVSI) is a scalar indi-
cator calculated based on the envelope spectrum to describe
the energy content of harmonic fringes related to a particular
modulating component in relation to the energy of the enve-
lope spectrum in a given frequency range (Hebda-Sobkowicz
et al.,, 2020b). However, while in the original article, the
base representation for ENVSI is squared envelope spectrum
(SES), in this implementation (that we could call EENVSI
— enhanced envelope spectrum-based indicator), the base is
EES described in Sect. B2, such as

S ALS;

ENVSI= =—; ,
ZJ’=ISES€./

(B3)

where AIS stands for the amplitudes of the information sig-
nal described by the components of fault frequency, K is the
number of informative components, and N is the length of
the squared envelope spectrum (SES). Hence, for the calcu-
lation of ENVSI, the SES is trimmed such as AISg = SES.,, .
Consequently,

S K AISE;

EENVSI = =& .
>V |EES,

(B4)

It is important to note that in the numerators, AIS for EN-
VSI is selected from the squared envelope spectrum, and
AISE (AIS for EENVSI) is selected from EES.
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