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Abstract. As some of the high-frequency faults in rotating machinery, the early detection and accurate identi-
fication of rub-impact faults have attracted much attention. Due to the low vibration property and strong envi-
ronment noise, it is still a challenge problem to deal with the early diagnosis of rub-impact faults. In this paper,
a new rub-impact fault diagnosis method is proposed which consists four phases: the decomposition phase, the
dynamic feature extraction phase, the diagnosis model construction phase, and the verification phase. In the first
phase, the original vibration signals are decomposed based on empirical mode decomposition (EMD), and the
most correlated components are selected using the Pearson correlation coefficient (PCC). Then, in the second
phase, the fault dynamics of the selected components are identified based on dynamic learning, which means they
are more sensitive to the small faults in the initial stage. In the last phase, a new fault feature deep fusion module
is constructed based on the identified dynamics information and integrate into the convolution neural networks
to derive the diagnosis model (dynamic CNN). Finally, the misjudgment self-correction mechanism is imple-
mented based on the comparison of fault dynamics in the verification phase. Compared with traditional methods,
the experiment results illustrate that the proposed method can detect the rub-impact faults more effectively.

1 Introduction

Rotor systems, as the most important component of rotat-
ing machinery, have been widely used in the areas of key
equipment, such as coal mining units, power systems, and
aerospace. However, due to long-term exposure to complex
working conditions such as high speed and heavy load, rotat-
ing machinery is prone to various faults (Miao and Yu, 2024;
Shi et al., 2025). Additionally, the manufacturing errors, as-
semble errors, unbalance forces, improper lubrication, etc.,
will also exacerbate the occurrence of rotor system failures
(Xu et al., 2025; Li et al., 2025). Among those rotor unac-
ceptable faults, rotor rub impact is one of the most common
and harmful types of faults (Yang et al., 2024). Rub-impact
faults can lead to increased mechanical vibration, temper-
ature rise, and even equipment damage accidents in severe
cases (Li et al., 2024a). Therefore, conducting accurate diag-
nosis research on the rub-impact faults of rotating machinery

has important theoretical significance and engineering appli-
cation value (Wang et al., 2023).

Traditional fault diagnosis methods mainly rely on signal
processing and feature extraction techniques, such as Fourier
transform and wavelet transform. However, these methods
have limitations in processing non-stationary and nonlinear
rub-impact fault vibration signals, making it difficult to ef-
fectively extract fault features. With the development of the
signal processing technique, empirical mode decomposition
(EMD) (Prosvirin et al., 2018), variational mode decomposi-
tion (VMD) (Xia et al., 2025), and adaptive chirp mode de-
composition (ACMD) (Ding and Wang, 2022) have been pro-
posed for the non-stationary and nonlinear signals. Among
them, EMD, as an adaptive signal processing method, can
decompose complex signals into a series of intrinsic mode
functions (IMFs) to better reveal the local fault features of
the vibration signals (Hou et al., 2024; Lei et al., 2013). In
additional, the EMD method requires the least amount of
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computing power compared to other time–frequency analysis
methods. Therefore, EMD has been widely used in the field
of rotating machinery fault diagnosis and has achieved sig-
nificant results in recent years. Arifin et al. (2025) proposed
an enhanced EMD technique to detect the broken rotor bar
faults. Liu et al. (2019) used a modified EMD to extract the
fault IMFs of a rotor laboratory bench. However, how to use
the extracted fault IMFs effectively is still an essential and
challenging issue of the diagnosis of rub-impact faults (Li
et al., 2024b; Liu et al., 2024).

With the development of sensor technology, the massive
amounts of rotor vibration data are easy to be obtained.
Due to the efficient processing, automatic feature extraction,
and end-to-end diagnostic capabilities, deep-learning-based
methods are increasingly being applied in rotating machinery
fault diagnosis (Saini et al., 2022; Hou et al., 2024). The con-
volutional neural network (CNN), as a powerful deep learn-
ing model, has made breakthrough progress in the field of
image recognition and shown great potential in the field of
rotor fault diagnosis (Zhu et al., 2023; Yu and Xie, 2024).
Additionally, based on the basic mechanism of CNNs, many
other modified CNN algorithms have been proposed, such as
multi-mode CNN (Yuan et al., 2018) and residual network
(Chen et al., 2024). Yuan et al. (2018) proposed a multi-
mode CNN for feature learning and rotor fault diagnosis
based on the raw signals and infrared images. Chen et al.
(2024) proposed a residual network to address rotor imbal-
ance and misalignment in oil transfer pumps. Regarding the
diagnosis of rotor rub-impact faults, Prosvirin et al. (2020)
uses deep learning to automatically extract features and iden-
tify rubbing faults from observed rotor rubbing vibration sig-
nals. Based on the work of Prosvirin et al. (2020), Prosvirin
et al. (2022) further proposed a more effective multivariate
convolutional neural network model for diagnosing rubbing
faults. However, the accuracy and effectiveness of the diag-
nostic model constructed based on CNNs and other modified
CNNs depend on whether the useful fault information can be
learned. It is directly related to whether the model has high-
quality data input.

Due to the small amplitude of the vibration response in
the early stage of rub-impact faults and the relatively small
harmonic components related to rub-impact faults, the ex-
tracted characteristics of rub-impact faults are easily weak-
ened or overwhelmed by background noise in the vibration
signal (Yang et al., 2024). Therefore, the effectiveness of ex-
tracting and detecting early weak features of rotor rubbing
faults based solely on the time–frequency characteristics or
nonlinear indicators is not sufficient. In some serious cases,
false alarms or missed alarms of rubbing faults may occur
(Kou et al., 2022; Jin et al., 2023). In addition, these methods
are also confronted with the “black box” problem in the diag-
nostic process, lacking transparency or interpretability (Zhu
et al., 2023). It leads to the weak generalization ability for
different working conditions, and it is also difficult to pro-

Figure 1. The schematic diagram of the rotor rub impact.

vide specific reasons when misdiagnosis occurs, resulting in
inexplicable self-correction of misjudgments.

In order to identify the more sensitive system fault dynam-
ics information, dynamic learning has been applied to learn
the unbalance fault and rub-impact fault of the rotor system
(Wang and Chen, 2011). Furthermore, the dynamics informa-
tion has been shown priority in the rotor unbalance fault di-
agnosis (Lan et al., 2023). Combining the vibration dynamics
characteristics of rotor systems, these model-based methods
can provide an effective solution for early diagnosis and trend
prediction of gradual faults in nonlinear dynamic systems. It
should be noted that the effectiveness depends on the abil-
ity to accurately identify the intrinsic dynamics of gradual
faults, which is a key step in diagnosing and predicting small
gradual faults (Wang et al., 2022; Wang and Wang, 2018).

Inspired by the above methods, a new rub-impact fault di-
agnosis method based on EMD and dynamic CNN is pro-
posed. Firstly, the original vibration signals are decomposed
using EMD to obtain fault-related IMF components. Then,
the most correlated IMF components are selected via the
Pearson correlation coefficient (PCC) and are input into the
dynamic CNN model for feature learning and fault classifi-
cation. The fault dynamics of the selected components are
identified based on dynamic learning, which means they are
more sensitive to the small faults in the initial stage. The di-
agnostic model is constructed based on the identified fault
dynamics information. By combining the adaptive signal de-
composition capability of EMD and the deep feature extrac-
tion capability of dynamic CNN, this method can effectively
improve the diagnostic accuracy and robustness of rotor rub-
impact faults. Furthermore, the misjudgment self-correction
mechanism is implemented by embedding the comparison of
fault dynamics. Compared with the traditional methods, the
experiments results illustrate that the proposed method can
detect the rub-impact faults more effectively.

The main contributions of this paper are as follows:

1. Differently to the signal processing diagnosis methods
in Xia et al. (2025) and Ding and Wang (2022), the most
sensitive IMF components of the rub-impact faults are
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Figure 2. Time-domain waveform of the normal state and incipient rotor rub-impact fault.

extracted based on EMD and PCC, and the running time
of the algorithm is greatly reduced.

2. Differently to our previous work in Wang et al. (2022),
the identified fault dynamics are employed for the CNN
classification process. The dynamic CNN diagnosis
model is first proposed for the early detection of rub-
impact faults, in which the spatial–temporal features in
dynamic information of different fault IMFs can be ex-
plored effectively.

3. The experiments indicate that not only can the proposed
method be applied to different working conditions, but
the misjudgment self-correction mechanism is also im-
plemented based on the clear physical changes in fault
dynamics. Furthermore, the problem of unexplained re-
sults in traditional CNN-based diagnostic models is
solved by employing the misjudgment self-correction
mechanism.

This paper is organized as follows. In Sect. 2, the problem
formulation is presented. The proposed diagnosis algorithm
is illustrated in Sect. 3, and the experiments are shown in
Sect. 4. Section 5 gives the conclusions and future studies.

2 Problem formulation

The rub-impact fault diagram is shown in Fig. 1 (Wang et al.,
2022). γ is the radial displacement of the rotor, and δ is
the clearance between rotor and stator. When the rub-impact
fault occurs, the vibration is similar to the normal signals

in the initial stage. Due to the environment and other noise,
early detection of rub-impact faults becomes more and more
difficult. Therefore, how to identify and detect the small rub-
impact faults accurately is the key to maintain the safety of
rotor systems.

The time-domain waveform of the normal state and incip-
ient rub-impact faults are shown in Fig. 2, associated with
horizontal vibration signals (X direction) and vertical vibra-
tion signals (Y direction). The vibration signals are collected
based on the rotor fault test rig as shown in Fig. 4, and the
rotating speed is set to 1200 rpm. In the incipient rub-impact
fault stage, it can be seen that it is very difficult to distin-
guish the incipient faults just based on the time-domain fea-
tures, especially for the vertical vibration signals. This phe-
nomenon is highly correlated with the simulation results in
Fig. 2 of Wang et al. (2022). The early fault detection in this
paper is related to diagnosing or monitoring the small rub-
impact fault as soon as possible, especially in the incipient
fault stage.

According to Wang et al. (2022) and Lan et al. (2023), the
vibration phenomenon of rotor systems can be modeled as in
the following equation, Eq. (1).

Ẋ = f (x,y)+ v(x,y)+ d(xy), (1)

where X = [x(t),y(t)]T represents the X-direction vibra-
tion signal and Y-direction vibration signal as shown in
Fig. 1, f (x,y) represents the system dynamics, v(x,y) is the
system uncertainties, and d(xy) is the system noise. In Fig. 2,
it is indicated that the changes in the system state caused by
the early rub-impact faults are very weak. Specifically, the
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Table 1. The parameters of the CNN convolutional layer.

Network layer Convolutional Slide Number of Activation Pooling
kernel channels function

Convolutional layer 1 5× 5 1 64 ReLU 2
Convolutional layer 2 5× 5 1 128 ReLU 2
Convolutional layer 3 5× 5 1 256 ReLU 2
Convolutional layer 4 5× 5 1 512 ReLU 2

Table 2. The parameters of the CNN full connection layer.

Network Layer Input Output Activation Objective
function

Classification layer 1 512 256 ReLU classification
Classification layer 2 256 5 softmax classification

noise d(xy) has always existed in real applications. It makes
the detection of rub-impact faults more difficult.

Inspired by the existing work, it can be concluded that
the dynamics changes are more sensitive to the system state
changes, which are influenced by the small faults. However,
there are two key steps in the fault diagnosis of rub impact.
The first one is how to reduce the influence of the noise d(xy)
and extract the most related fault information, and the second
one is how to identify the system dynamics f (x,y) which are
caused by the rub-impact faults under the condition of the
existing uncertainty v(x,y). Therefore, the main goal of this
paper is to deal with the problem of main feature extraction
and fault dynamics identification and classification.

Assumption 1: the collected data on vertical and horizontal
vibration are bounded by the occurrence of rub-impact faults.

Remark 1: the main idea of the proposed method is to di-
agnose the early rub-impact faults, in which the vibration is
within a controllable range and will not deviate too far from
the healthy state. Therefore, the collected data are considered
to be bounded by the occurrence of rub-impact faults.

Assumption 2: the system dynamics f (x,y) cannot be de-
coupled from the uncertainty v(x,y), and the uncertainties
are assumed to be stable in the certain or similar environ-
ment.

Remark 2: in most real applications, the sampled signals
are very complicated, and the uncertainty components are
unknown. In the Wang et al. (2022), it has been verified that
the system fault dynamics and the uncertainties can be iden-
tified together and that the high diagnosis performance can
be achieved. Additionally, the different working conditions
are considered, which are related to the generalization of the
proposed method.

3 Theoretical background and methods

3.1 EMD and PCC

The EMD method essentially smooths a signal, resulting in
the gradual decomposition of fluctuations or trends of differ-
ent scales in the signal, and producing a series of data se-
quences with different characteristic scales (Hou et al., 2024;
Lei et al., 2013). The series of extracted data sequences are
donated as the intrinsic mode functions (IMFs). Furthermore,
by performing the Hilbert transform on these IMFs, the time–
frequency spectrum of the signal can be obtained, which can
reflect the original frequency characteristics of the signal.
Therefore, the IMFs are the key information of the vibration
signals.

In this part, the vibration signal associated with the hor-
izontal direction x(t) is chosen as the input of the EMD
method, and the decomposition results contain n IMFs and
a residual mode, i.e., IMF1, IMF2, . . . , IMFn, and rn.

x(t)=
∑n

i=1
IMFi + rn(t), (2)

where rn(t) represents the residual component and the av-
erage trend of the signal. Each basic mode component con-
tains components of different time feature scales of the sig-
nal, with scales ranging from small to large. Therefore, each
decomposition result contains components of different fre-
quency ranges from high to low. The frequency components
contained in each frequency range are different and vary with
the signal itself. Based on the decomposition mechanism, the
noise can also be reduced by suppressing IMFs with high fre-
quency, and the most correlated rub-impact fault components
are preserved.

Additionally, the PCC is used to select the most correlated
modes. PCC is a statistical indicator that measures the de-
gree of linear correlation between two variables, with values
ranging from −1 to 1. The calculation formula is shown in
the following equation, Eq. (3):
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Figure 3. The diagnostic platform of the proposed method.

Table 3. The diagnostic algorithm of the proposed method.

(1) Mode selection phase
1. IMFs extracted of rub-impact fault signals in X direction are based on EMD: x(t)=

∑n
i=1IMFi + rn(t)

2. The most relevant modes are selected via PCC, and the threshold is set to γ ≥ 0.35

3. Vibration signals in X direction are reconstructed according to the PCC: xp(t)=
∑n
i=1IMFi

4. Based on the same method, vibration signals in Y direction are reconstructed according to the PCC as
yp(t)

(2) Fault dynamics identification phase
1. Normalization of reconstruction signals xp(t) and yp(t)

2. Radial basis function (RBF) NN identifier is constructed based on dynamic learning: ŴTS(Z;u)

3. Constant NN weights knowledge is stored: WT
S(Z;u) based on the convergence of the neural weights

4. Dynamics information is derived associated the stored knowledge: F (xp(t))−F (yp(t))

(3) Diagnostic model construction phase
1. Dynamic CNN model is constructed with four convolutional layers

2. Two classification layers are designed with ReLU and softmax functions

3. Parameters of NN architecture are set

(4) Verification phase

1. Dynamics comparison: WT
resultS(Z;u) vs. WT

kS(Z;u)

2. Misjudgment self-correction according to the smallest Euclidean distance
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Figure 4. Rotor rub-impact fault test rig.

Figure 5. Rotor rub-impact fault device. (a) Selection of counterweights. (b) Installation position of counterweights. (c) Fixed rub block.
(d) Eddy current sensors.

γ =
cov(IMFi,x)
σIMFiσx

=

1
n

∑n
j=1 (xi − x)

(
IMFij − IMFij

)√
1
n

∑n
j=1(xi − x)2

√
1
n

∑n
j=1

(
IMFij − IMFij

)2 , (3)

where i = 1, . . .,m; m is the number of the IMFs; j =
1, . . .,n, and n is the length of signal and IMFs. The threshold
is set to γ = 0.35 in the experiments, and the IMFs associ-
ated with γ ≥ 0.35 are selected for the signal reconstruction;
xp(t)=

∑n
i=1IMFi , where γ ≥ 0.35.

Regarding the vibration signal y(t) in the vertical direc-
tion, the reconstructed vibration signal yp(t) can be obtained
in the same way as xp(t). Based on the obtained signals xp(t)
and yp(t) associated with the most correlated fault informa-

tion, the following dynamic CNN model is built for the diag-
nosis of the small rub-impact faults.

3.2 Dynamic CNN

The dynamic CNN embeds dynamic learning in the tradi-
tional CNN model. Firstly, the dynamic trajectory is modeled
with the reconstruction signals xp(t) and yp(t).

The RBF neural network identifier is constructed as in the
following equation, Eq. (4):

˙̂
Z =−A(Ẑ−Z)+ ŴTS(Z;u), (4)

where Z = [xp(t),yp(t)]T, Ẑ is the estimation of Z, A is the
gain of the identifier,W is the neural network weights, S(∗) is
the radial basis function, the Gaussian RBF is employed
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Figure 6. Time-domain waveform of the five kinds of rub-impact faults without noise: (a) normal pattern with 0 g counterweight, (b) slight
fault pattern with 0.9 g counterweight, (c) moderate fault pattern with 2.5 g counterweight, (d) severe fault pattern with 3.6 g counterweight,
and (e) failure pattern with 5.0 g counterweight.

Figure 7. Time-domain waveform of the five kinds of rub-impact faults with noise: (a) normal pattern with 0 g counterweight, (b) slight
fault pattern with 0.9 g counterweight, (c) moderate fault pattern with 2.5 g counterweight, (d) severe fault pattern with 3.6 g counterweight,
and (e) failure pattern with 5.0 g counterweight.
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Figure 8. IMF decomposition of five different fault patterns: (a) normal pattern, (b) slight rub-impact fault pattern, (c) moderate rub-impact
fault pattern, (d) severe rub-impact fault pattern, and (e) failure rub-impact pattern.
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(S(||Z− ε||)= exp[−(Z−ε)T(Z−ε)
η2 ]), ε = [ε1,ε2, . . .,εq ]

T is
the center of the receptive field, and η is the width of the
receptive field. u is the control input vector.

The weight update law is set as in Eq. (5).

˙̂
W =−0S(Z;u)Z̃− σ0Ŵ, (5)

where 0 = 0T > 0 and σ is a small value.
Then, based on the identification theory of Wang and Chen

(2011) and Lan et al. (2023), the fault dynamics can be ob-
tained based on the RBF neural network identifier (Eq. 6).

F (Z)= ŴTS(Z;u)+ ξ, (6)

where ξ is the practical approximation error and F (Z)=
f (x,y)+ v(xy).

After the convergence of the neural weight, the constant
system fault dynamics trajectories are obtained based on the
constant weights as in the following equation, Eq. (7).

F (Z)=W
T
S(Z;u)+ ξ0, (7)

where ξ0 =O(ξ (t)) is the identification error and W
T
=

meant∈[t1,t2]Ŵ
T(t), 0< t1 < t2, is the time segment of the

weight convergence process. The obtained dynamics trajec-
tories of rub-impact faults are stored with the identified re-
sults and denoted as the dynamics information. The fault dy-
namics information can provide more sensitive and distinct
fault characteristics to the further diagnostic model. The dy-
namics trajectory image combined with the X direction and Y
direction is denoted as F (xp(t))−F (yp(t)). The correspond-
ing pixel size of those trajectories is 128× 128.

Due to the obtained highly discriminate dynamic image,
the traditional CNN is selected as the training model. The
CNN performs operations such as four multiple convolutions
and pooling operations on the input signal to extract features
from the original signal and form shared features, and then
it uses two fully connected layers for specific fault detection
tasks. The four multiple convolutional layers perform deep
feature extraction on signals. The fully connected layer is re-
sponsible for mapping the features extracted by convolution
to specific classification tasks. With the results of the exper-
iments, the traditional CNN can be achieved very high diag-
nosis performance due to the priority property of the identi-
fied fault dynamics. Therefore, the traditional CNN architec-
ture is used using less computing power and achieves good
results.

The specific parameter settings for the convolutional layer
and the fully connected layer are shown in Tables 1 and 2.
Convolutional layers use convolutional kernels to convolve
local regions of input data, with each kernel using the same
weights to extract local features of input information and
share weights. The ReLU is used as the activation function
of the convolutional layer, and the softmax is employed in
the Classification layer 2 of the full connection layer.

3.3 The proposed diagnostic algorithm

The diagnostic platform of the proposed method is shown
in Fig. 3, and the detailed diagnostic algorithm is shown in
Table 3. It includes four phases: the mode selection phase,
the fault dynamics identification phase, the diagnostic model
construction phase, and the verification phase.

In the mode selection phase, the sampled vibration sig-
nals in X and Y directions are analyzed based on EMD, and
the different IMFs are derived. In order to obtain the more
accurate diagnostic results, the most correlated IMF modes
are selected according to the PCC. According to the new
added experiment results, the threshold of the PCC process is
set to γ ≥ 0.35 in the process of rub-impact fault diagnosis.
The vibration signals in X and Y directions are reconstructed
as xp(t) and yp(t).

In the fault dynamics identification phase, the reconstruc-
tion signals xp(t) and yp(t) are normalized, and the dynamic
identifier is constructed using a RBF neural network. The
selected IMF modes satisfy the condition of persistent ex-
citation. Therefore, the local accurate identification can be
obtained based on the dynamic learning mechanism. Most
importantly, the learned dynamic knowledge can be stored
in constant NN weights W

T
S(Z;u) based on the conver-

gence of the neural weights, and the dynamics trajectories
are obtained in the form of images: F (xp(t))−F (yp(t)). In
the diagnostic model construction phase, the learned dynam-
ics trajectories images are fed into the CNN input layer. The
dynamic CNN diagnosis model is constructed with four con-
volutional layers, and two classification layers are designed
using ReLU and softmax functions.

In the last verification phase, the misjudgment self-
correction is implemented by embedding the fault dynamics
information, which increases the interpretation between the
dynamic CNN diagnostic model significantly. Specifically,
the misjudgment classification can be self-corrected based on
the comparison of the fault dynamics, and the difference be-
tween the diagnosis result W

T
resultS(Z;u) and the identified

results W
T
kS(Z;u) are measured by the Euclidean distance.

According to the smallest Euclidean distance, the difference
between the misjudgment result and the correct result can be
reflected via the fault dynamics changes.

Diffk = Euda
(
W

T
resultS(Z;u)W

T
kS(Z;u)

)
,

where k = 1, . . .,N and N is the total number of training
dataset. The corresponding smallest Euclidean distance Diffk
can be achieved by comparing all the Diff values.

Additionally, in real-life applications, it should be pointed
out that the threshold of the mode selection process and the
parameters of the fault diagnosis model can be set based on
the experiments associated with the baseline database. Be-
sides, the mode selection and fault dynamics identification
phase require less computing power and can be easily imple-
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Figure 9. The comparison of reconstructed signals based on PCC: (a) normal pattern with 0 g counterweight, (b) slight fault pattern with
0.9 g counterweight, (c) moderate fault pattern with 2.5 g counterweight, (d) severe fault pattern with 3.6 g counterweight, and (e) failure
pattern with 5.0 g counterweight.

Figure 10. (a) RBF architecture and (b) the convergence of the NN weights.

mented, which makes the proposed diagnostic model very
suitable for edge computing.

4 Experiments

4.1 Datasets

The rub-impact experiment is implemented based on the ro-
tor rubbing fault test rig as shown in Fig. 4. The test rig con-

sists of a rotor motor, coupling, preamplifier, signal condi-
tioner, eddy current sensor, unbalance device, collision and
friction transposition, support frame, rotor shaft, and bear-
ings. The motor is excited by a speed controller and drives the
rotor shaft using a flexible coupling. The rotor shaft length in
this test rig is 500 mm, and the diameter is 10 mm. The two
eddy current sensors in the test rig are installed in the hori-
zontal and vertical directions, respectively, to monitor the ro-
tor shaft displacement caused by collision and friction faults
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Figure 11. Dynamics trajectories of the five kinds of rub-impact faults: (a) normal pattern, (b) slight rub-impact fault pattern, (c) moderate
rub-impact fault pattern, (d) severe rub-impact fault pattern, and (e) failure rub-impact pattern.

in both directions. The sampling frequency in the experiment
is set to 5.12 kHz, and the sampling time is 2 s. The fault ex-
periments are implemented with three variable working con-
ditions, and the corresponding motor speed is set to 1200,
1600, and 1800 rpm.

The detailed rub-impact device is shown in Fig. 5. The rub-
impact fault experiment is divided into five classes, and each
class is obtained by embedding different counterweights,
as shown in Fig. 5a and b. The counterweights associated
with 0, 0.9, 2.5, 3.6, and 5.0 g are selected to be installed on

the disk. The 0 g counterweight represent the healthy state
(i.e., normal pattern), and the 0.9, 2.5, 3.6 and 5.0 g represent
the slight degree, moderate degree, severe degree, and fail-
ure degree of the rub-impact faults. The rub block is fixed,
and the rub-impact faults can be induced based on the un-
balance force (Fig. 5c). As the weight of the counterweight
increases, the unbalanced force will become greater, leading
to an increasing degree of rub-impact fault. The two eddy
current sensors in the test rig are installed in the horizontal
and vertical directions (Fig. 5d), respectively, to monitor the
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Table 4. Diagnosis results of rotor rub-impact faults based on Experiment 1. The values in bold denote the experiment results of the proposed
method.

Classifier TP TN FP FN TC FC Accuracy of Accuracy of
Detection (%) Classification (%)

Classifier 1 462 106 14 18 555 45 94.67 92.50
Classifier 2 462 106 14 18 557 43 94.67 92.83
Classifier 3 476 116 4 4 591 9 98.67 98.5
Classifier 4 476 115 5 4 587 13 98.50 97.83
Classifier 11 459 101 19 21 531 69 93.33 88.50
Classifier 12 463 101 16 17 554 46 94.00 92.33
Classifier 13 474 115 5 6 588 12 98.17 98.00
Classifier 14 471 113 7 9 578 22 97.33 96.33

TP: the number associated with the accurate detection of rub-impact faults. TN: the number associated with the accurate
detection of the healthy state. FP: total number of normal patterns – TN. FN: total number of rub-impact faults – TP.
TC: the number associated with the accurate classification of rub-impact faults and normal patterns. FC: total number of
all patterns – TC. Accuracy of detection= (TP+TN)/(TP+TN+FP+FN), and accuracy of
classification=TC/(TC+FC).

Figure 12. Diagnosis results of Experiment 1 without noise (a) based on Classifier 1, (b) based on Classifier 2, (c) based on Classifier 3, and
(d) based on Classifier 4.

rotor shaft displacement caused by rub-impact faults in X and
Y directions. Each class of rub-impact fault is collected 100
samples with 10 240 data points, and the total number of the
fault samples is 1500, associated with three different rotate
speeds of 1200, 1600, and 1800 rpm. The training and test-
ing datasets are set to be 6 : 4.

The time-domain waveform of five different kinds of rub-
impact faults with and without noise are shown in Figs. 6
and 7 under the condition of 1800 rpm in the X direction. The

raw vibration signals are relatively clean, and the Gaussian
white noise is added to simulate real environmental condi-
tions. x11, x21, x31, x41, and x51 represent the vibration nor-
mal pattern with 0 g counterweight, slight fault pattern with
0.9 g counterweight, moderate fault pattern with 2.5 g coun-
terweight, severe fault pattern with 3.6 g counterweight, and
failure pattern with 5.0 g counterweight, respectively. x12,
x22, x32, x42, and x52 correspond to the presence of noise,
as shown in Fig. 7.
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Figure 13. Diagnosis results of Experiment 1 with noise (a) based on Classifier 11, (b) based on Classifier 12, (c) based on Classifier 13,
and (d) based on Classifier 14.

Figure 14. (a) Misjudgment and (b) self-correction of slight rub-impact faults.

According to the time-domain waveform under different
weighting conditions, it can be seen that the time-domain
waveform of the 0 g counterweight and 0.9 g counterweight
are very similar. The most distinguishing features cannot be
illustrated based on the time-domain features of original sig-
nals.

4.2 Rub-impact fault diagnosis results

4.2.1 Experiment no. 1: small sample of rotor
rub-impact fault experiment

First, based on the EMD method, the most correlated fault
components are selected in the fault dynamics identification
phase. The five different kinds of rub-impact fault are se-
lected to show the decomposition process of the EMD in the
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Table 5. Diagnosis results with different threshold of PCC. The values in bold denote the selection threshold of the paper.

Threshold TP TN FP FN TC FC Accuracy of Accuracy of
detection (%) classification (%)

0.2 465 108 12 15 569 31 95.5 94.83
0.25 465 109 11 15 570 30 95.67 95
0.3 470 115 5 10 578 22 97.5 96.33
0.35 474 115 5 6 588 12 98.17 98.00
0.4 471 113 7 9 581 19 97.33 96.83
0.45 468 109 11 12 575 25 96.17 95.83
0.5 467 108 13 12 568 32 95.83 94.67

Table 6. Diagnosis results with different time–frequency analysis methods.

Methods Accuracy of Accuracy of Effectiveness of handling Running
detection (%) classification (%) noise (%) time (s)

EMD 98.17 98 98.65 2.658
VMD 98.17 97.83 98.23 25.024
ACMD 98.5 98.17 98.81 52.841

X direction, especially in the noisy environment. IMFs of five
different fault patterns can be obtained as shown in Fig. 8.

The correlated IMFs are selected based on the PCC with
γ ≥ 0.35, and the reconstructed vibration signals are shown
in Fig. 9. It can be seen that the original signals are drowned
out by noise signals, and the reconstructed signals associ-
ated with the selected IMFs can perfectly match the original
signals of Fig. 9. Regarding the vibration signals in the Y
direction, the EMD and PCC are implemented in the same
way to obtain the reconstructed signals. x13, x23, x33, x43,
and x53 represent the reconstructed vibration signals of the
normal pattern, slight fault pattern, moderate fault pattern,
severe fault pattern, and failure pattern in the X direction, re-
spectively.

Based on the reconstructed signals, normalization is first
performed for the accuracy of subsequent diagnosis. The
neuron centers are evenly spaced within [−1,1]×[−1,1], the
width is set to 0.05, and the total number of neural nodes is
1681. Furthermore, the parameters of the RBF identifier and

update law are designed as A= [2,2]T, 0 =
[

4.5 0
0 4.5

]
,

and σ = 0.001. Then, the fault dynamics can be identified
based on dynamic learning, and the identified results indi-
cated that the system dynamics can reflect the inner change in
the rub-impact faults. To demonstrate the identification pro-
cess, the severe rub-impact fault is selected to illustrate the
RBF architecture and the convergence of NN weights. The
corresponding results are shown in Fig. 10. The dynamics
trajectories of five rub-impact faults can be obtain based on
the constant weights as shown in Fig. 11. y13, y23, y33, y43,
and y53 represent the reconstructed vibration signals of the
normal pattern, slight fault pattern, moderate fault pattern,

severe fault pattern, and failure pattern in the Y direction, re-
spectively.

In Fig. 10, the red dots represent neural neurons of RBF
network, and the vibration signals of the system are normal-
ized in the X and Y directions. it can be seen that the conver-
gence performance of neural network weights has reached
stability. Therefore, the dynamics trajectories can be stored
based on the convergence of the weights. In the classifica-
tion stage without noise, the proposed method is compared
with three other different methods according to the idea of
ablation experiment.

The four classifiers are denoted as follows: Classifier 1
is related to the time-domain signals+CNN, Classifier 2
is related to time-domain signals+EMD+CNN, Classi-
fier 3 is related to the proposed dynamic CNN method
(i.e., the time-domain signals+EMD+ dynamics trajec-
tories+CNN), and Classifier 4 is related to the time-
domain signals+EMD+ dynamics trajectories+ support
vector machine (SVM). Correspondingly, Classifier 11, Clas-
sifier 12, Classifier 13, and Classifier 14 are defined in the
noisy environment. The confusion matrix of diagnostic re-
sults with and without noise is shown in Figs. 12 and 13, and
the detailed diagnostic result statistics are shown in Table 4.

In the verification phase, the misjudgment (Fig. 14a) and
self-correction (Fig. 14b) of slight rub-impact faults as shown
in Fig. 14 in the mixing-matrix result with Classifier 13. Six
slight rub-impact faults are recognized as the normal pat-
tern. In order to analyze the misjudgment results, the self-
correction mechanism is illustrated based on the fault dy-
namics comparison. According to the smallest Euclidean dis-
tance, the self-correction is illustrated in Fig. 14b. It can be
seen that one of the misjudgment slight rub-impact faults has
been re-identified as the correct pattern. The dynamics com-
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Table 7. Diagnosis results of rotor rub-impact faults based on Experiment 2. The values in bold denote the experiment results of the proposed
method.

Classifier TP TN FP FN TC FC Accuracy of Accuracy of
detection (%) classification (%)

Classifier 1 1398 334 26 42 1703 97 96.22 94.61
Classifier 2 1399 331 29 41 1711 89 96.11 95.06
Classifier 3 1422 349 11 18 1768 32 98.39 98.22
Classifier 4 1419 345 15 21 1759 41 98 97.72
Classifier 11 1389 325 35 51 1681 119 95.22 93.39
Classifier 12 1404 321 39 46 1689 111 95.83 93.83
Classifier 13 1418 347 13 22 1754 46 98.06 97.44
Classifier 14 1409 342 18 31 1745 55 97.28 96.94

Table 8. Diagnosis results with different working conditions (without noise). The values in bold denote the experiment results of the proposed
method.

Experiments Working condition Classifier 1 Classifier 2 Classifier 3 Classifier 4
(rpm) (%) (%) (%) (%)

Experiment 1 1200 93.5 94 99 98.5
1600 92.5 92.5 98.5 98
1800 91.5 92 98 97

Experiment 2 1000 94.33 95 98.17 97.5
1200 95.33 95.5 98.83 98.33
1400 94.17 94.67 97.67 97.33

parison of the system rub-impact faults can greatly increase
the interpretability of the diagnostic process.

Furthermore, in order to evaluate the threshold, different
values of γ with a step of 0.05 are checked based on Exper-
iment 1. The values of γ are set to 0.2, 0.25, 0.3, 0.35, 0.4,
0.45, and 0.5. The corresponding results are illustrated in Ta-
ble 5. This experiment is implemented based on Classifier 13
under the condition of the noisy environment.

Based on Table 5, the best diagnosis results are obtained
when the threshold γ is set to 0.35. Therefore, γ ≥ 0.35 is
employed in the diagnosis algorithm as shown in Table 3.
Additionally, to compare the effectiveness of the employed
EMD method, the latest VMD (Xia et al., 2025) and ACMD
(Ding and Wang, 2022) are chosen to verify diagnosis per-
formance. For the sake of fairness in comparison, it is worth
noting that the threshold is set to the same value in the mode
selection phase. The fault dynamics identification phase and
the diagnostic model construction phase remain unchanged.
Based on the proposed diagnosis model (i.e., Classifier 13
in the noisy environment), the diagnosis results with the sig-
nal decomposition of EMD, VMD, and ACMD are presented
in Table 6. The effectiveness of handling noise presents the
correlation degree between the reconstructed signal and the
original.

In Table 6, even though the accuracy classification of the
diagnosis model with ACMD is slightly higher than those
with EMD, the running time of EMD has been significantly

reduced and requires the least amount of computing power
compared to other time–frequency analysis methods. There-
fore, taking into account edge computing in practical appli-
cations, the EMD is chosen as the fault component decom-
position and can handle the noise.

4.2.2 Experiment No. 2: large-scale sample of rotor
rub-impact fault experiment

To further validate the effectiveness of the proposed diag-
nostic model, a large-scale rotor rub-impact fault experiment
has been conducted and denoted as Experiment 2. Three new
working conditions (i.e., 1000, 1200, and 1400 rpm) are im-
plemented, and each class of rub-impact fault collects 500
samples with 10 240 data points. The total number of fault
samples is 7500, associated with three different rotate speeds
of 1000, 1200, and 1400 rpm. 300 samples are randomly se-
lected from each class to participate in training and testing,
and the training and testing datasets of a total of 4500 sam-
ples are set to 6:4. Based on the proposed method, the di-
agnostic results of Experiment 2 without and with noise are
shown in Table 7.

Additionally, in order to verify the effectiveness of the
proposed method more clearly in each working condition,
the classification diagnosis results of six working conditions
based on Experiment 1 and Experiment 2 are shown in Ta-
ble 8 (without noise) and Table 9 (with noise). Based on
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Table 9. Diagnosis results with different working conditions (noise). The values in bold denote the experiment results of the proposed
method.

Experiments Working condition Classifier 11 Classifier 12 Classifier 13 Classifier 14
(rpm) (%) (%) (%) (%)

Experiment 1 1200 88 91.5 98.5 97.5
1600 90.5 92.5 98 96.5
1800 88.5 92.5 97.5 95

Experiment 2 1000 93.33 93.67 97.33 96.83
1200 93.83 94.5 97.83 97.33
1400 93 93.33 97.17 96.67

Tables 7–9, it can be concluded that the proposed diagno-
sis model can achieve the best diagnostic performance under
different working conditions. This phenomenon proves that
dynamic CNN has better adaptability to different fault work-
ing conditions of rotor systems.

5 Conclusion

In this paper, a new rotor rub-impact fault diagnosis method
is proposed. The most correlated fault components are
extracted using EMD, and the dynamics information is
achieved based on dynamic learning. Then, the obtained dy-
namic trajectories can be embedded in system dynamics and
state information, and are taken as the input of the CNN
model. Experiment 1 shows that the proposed method can
obtain the more better diagnosis performance compared with
the traditional methods and that it has achieved the highest
diagnosis accuracy of 98.5 % without noise and 98 % with
noise. In addition, the generalization ability and adaptability
of the dynamic CNN model have been verified based on Ex-
periment 2. Future research can expand the proposed method
to other rotor fault diagnosis in multiple noisy environments.
The research results of this article can provide a new fault
diagnosis idea for rotating machinery, which has important
theoretical significance and engineering application value.
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