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Abstract. Aiming at the problems such as low convergence efficiency, local optimization traps, and insuffi-
cient multi-objective cooperative optimization existing in the multi-objective trajectory planning of industrial
robotic arms, this study proposes a trajectory optimization method based on a new improved sparrow search
algorithm (NISSA). Firstly, by integrating elite reverse learning and the Cauchy–Gaussian mutation strategy, the
NISSA algorithm is constructed to enhance the global search ability and convergence efficiency. Secondly, the
3–5–3 polynomial interpolation method is adopted to establish a continuous and smooth joint spatial trajectory
model to ensure the continuity of position, velocity, and acceleration. Finally, a multi-objective optimization
function integrating time and mechanical shock is constructed, and the collaborative optimization of efficiency
and stability is achieved through dynamic weight allocation. The simulation experiments based on the IRB4600
six-axis robotic arm show that compared with the traditional sparrow algorithm (SSA) and multi-strategy im-
proved particle swarm optimization (MIPSO), NISSA shortens the trajectory planning time by 19.6 %, reduces
path redundancy by 25.7 %, increases the iterative convergence speed by 68.75 %, and reduces the standard
deviation of joint acceleration to 28.5 % of the original value. The research results provide theoretical support
and technical implementation paths for the high-precision and efficient operation of robotic arms in complex
industrial scenarios.

1 Introduction

Traditional path planning methods can be divided into two
categories: analytic algorithms based on geometric con-
straints and probabilistic algorithms based on random sam-
pling. Among them, the former, such as the artificial potential
field method and unit decomposition method, relies on ac-
curate environment modeling, and its algorithm complexity
increases exponentially with the number of obstacles, which
has the defects of high computational complexity and insuffi-
cient real-time performance. Although the latter algorithms,

such as rapidly expanding random tree (Dai et al., 2022) and
probabilistic road map (Gasparetto et al., 2015), can effec-
tively solve the search problem in high-dimensional space,
they are prone to local optimal solution convergence in dy-
namic obstacle scenarios, and the path smoothness is difficult
to guarantee.

In the field of industrial automation, robot motion plan-
ning is a core enabling technology for intelligent manufac-
turing systems. Its key scientific issue lies in establishing an
optimal motion trajectory generation mechanism that meets
multiple constraints. As a crucial component of robotic arm
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control, trajectory planning aims to construct an optimal mo-
tion path integrating efficiency, precision, and safety within
the operational workspace. This process plays a decisive role
in ensuring the smooth execution of preset trajectories. Sci-
entifically designed trajectory planning can not only improve
the production efficiency of robotic arms but also reduce
system energy consumption and mechanical wear, which is
of great significance for promoting the development of in-
dustrial automation towards intelligence. The current main-
stream algorithm systems can be divided into four categories:
probability-complete algorithms based on random sampling
(Yuan et al., 2021; Cornell and Hung, 2018), local planning
algorithms based on potential field theory (Xu et al., 2022;
Chen et al., 2023), global planning algorithms based on topo-
logical mapping (e.g., probabilistic roadmap (PRM); Chen et
al., 2021; Bansal and Anand, 2024), and intelligent decision-
making algorithms based on deep reinforcement learning
(Tang et al., 2022; Sekkat et al., 2021).

To address the inherent drawbacks and issues of traditional
potential field algorithms, such as being prone to falling into
local minima, failure to reach the target, poor dynamic obsta-
cle avoidance capability, and problems related to safety and
efficiency, Xia et al. (2023) proposed an improved velocity
potential field (IVPF) algorithm, which incorporates the di-
rection factor, obstacle velocity factor, and tangential veloc-
ity factor. When encountering dynamic obstacles, the IVPF
algorithm can better avoid obstacles and ensure the safety of
both humans and robotic arms. Lumelsky (1987) proposed a
non-heuristic algorithm that can generate reasonable (though
not optimal) collision-free paths. In this method, paths are
continuously (dynamically) planned based on the current po-
sition of the manipulator and sensory feedback. A suitable
objective function is formulated by integrating the require-
ments of time optimality and path smoothness. To tackle
the problems of blind expansion and low efficiency in the
rapidly exploring random tree (RRT) algorithm and its im-
proved variants, Chai and Wang (2022) proposed a greedy
sampling space reduction strategy which reduces redundant
expansion of random trees by dynamically adjusting the sam-
pling space. Additionally, a novel narrow passage judgment
method is developed based on the environment surround-
ing sampling points. Cao et al. (1996) utilized trigonometric
functions to evaluate the connection between paths and ob-
stacles in space and identified collision-free paths in three-
dimensional space. Subsequently, through sampling space
partitioning, obstacle discretization, and a distance weight
function, Cao proposed a method to adaptively adjust the
node sampling probability of the RRT algorithm in space,
aiming to reduce unnecessary sampling nodes and optimize
sampling efficiency.

However, the aforementioned methods still face numerous
challenges in practical applications, such as long planning
time, high computational resource consumption, insufficient
real-time performance, frequent failure to obtain globally op-

timal paths, poor path smoothness, risks of planning failure
in complex scenarios, and high algorithm complexity.

To address this critical technical challenge, researchers
worldwide have proposed innovative solutions. Ekrem and
Aksoy (2023) developed a hybrid trajectory planning method
combining particle swarm optimization (PSO) and quintic
polynomial interpolation. By constructing continuous joint-
space trajectories with continuity in position, velocity, and
acceleration, this method achieves accurate Cartesian space
coordinate transformation through forward kinematics anal-
ysis and ultimately realizes time optimization via the shortest
path search.

Meanwhile, Jia et al. (2024) adopted dynamic time warp-
ing (DTW) to align the time of multiple demonstration
examples and extracted ideal trajectory features using the
Gaussian mixture model (GMM) and Gaussian mixture re-
gression (GMR). Their improved dynamic movement prim-
itives (DMP) framework enables effective trajectory param-
eter learning and motion generalization. Miao et al. (2022)
proposed a hybrid strategy combining a genetic algorithm
with an enhanced particle swarm optimization algorithm and
demonstrated the effect of trajectory optimization through
simulation experiments. Kaljaca et al. (2020) innovatively
formulated a custom objective function in the joint space and
realized optimal node traversal scheduling through a time
interpolation algorithm under motion constraints. Zhang et
al. (2023) introduced deep reinforcement learning into trajec-
tory planning for 6-degree-of-freedom (6-DOF) robotic arms
and designed a multi-objective optimization framework to
synergistically optimize key indicators, including trajectory
accuracy, energy efficiency, and motion smoothness. Jiang et
al. (2023) improved the artificial potential field method by in-
tegrating the rapidly exploring random tree (RRT) algorithm,
which effectively addressed the local minimum problem in
obstacle avoidance paths for bending robots while enhancing
path smoothness and path length optimization performance.
Dai et al. (2020) fused the gravitational search algorithm
with the ant colony algorithm; through the design of hierar-
chical search strategies and heuristic functions, they signifi-
cantly improved the convergence speed and global optimiza-
tion capability of path planning for spatial truss robots. Sun
et al. (2025) proposed a fusion method combining modified
adaptive particle swarm optimization (MAPSO) and fuzzy
PD control. This method not only optimized the trajectory of
flexible arms using 3–5–3 hybrid polynomials but also sub-
stantially reduced driving torque and vibration interference,
providing a new paradigm for the precision control of flexi-
ble structures.

In existing literature, analytical algorithms rely on accu-
rate modeling but have high complexity and insufficient real-
time performance; probabilistic algorithms are prone to lo-
cal optimality and poor path smoothness; and improved al-
gorithms, though improved, still have limitations. To address
issues such as low convergence efficiency, susceptibility to
local optimization traps, and insufficient multi-objective col-
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Figure 1. D–H model.

laborative optimization in multi-objective trajectory planning
of industrial robotic arms, this study proposes a trajectory
optimization method based on the novel improved sparrow
search algorithm (NISSA). The algorithm integrates elite re-
verse learning and the Cauchy–Gaussian mutation strategy
to enhance global search capability and convergence effi-
ciency. It adopts the 3–5–3 polynomial interpolation to estab-
lish a continuous and smooth joint-space trajectory model,
ensuring continuity of position, velocity, and acceleration.
A multi-objective optimization function integrating time and
mechanical shock is constructed, achieving collaborative op-
timization of efficiency and stability through dynamic weight
allocation. Simulation experiments based on the IRB4600
six-axis robotic arm verify the superiority of this method.

2 Problem description

2.1 Establishment of the kinematic model

In this study, the AR4 robotic arm was taken as the exper-
imental object. Aiming at the structural characteristics of
its series connecting rods, the Denavit–Hartenberg (D–H)
parameter method was adopted to establish the kinematic
model of the robotic arm. As shown in Fig. 1, the coordi-
nate systems of the connecting rods of each joint were con-
structed based on the standard D–H modeling rule system.
The corresponding D–H parameters are detailed in Table 1.
The parameter table contains four basic parameters: the tor-
sion angle of the connecting rod αi ; the length of the con-
necting rod ai ; the joint rotation angle θi ; and the deflection
of the connecting rod di , which completely characterizes the
spatial transformation relationship between adjacent coordi-
nate systems.

In the coordinate system shown in Fig. 2, the pose trans-
formation between the coordinate system i of the adjacent
robotic arm and i− 1 is composed of two rotations and two
translation operations, and its homogeneous transformation

Table 1. D–H parameters of the robotic arm.

Joint i αi−1 [°] ai−1 [mm] di [mm] θi [°]

1 −90 64.2 169.77 θ1
2 0 305 0 θ2
3 90 0 0 θ3
4 −90 0 222.63 θ4
5 90 0 0 θ5
6 0 0 36.25 θ6

Figure 2. Connecting rod coordinate system.

matrix is constructed through the above transformation pro-
cess.

i−1
i T = cosθi −sinθi 0 ai−1

sinθi cosαi−1 cosθi cosαi−1 −sinαi−1 −di sinαi−1
sinθi sinαi−1 cosθi sinαi−1 cosαi−1 di cosαi−1

0 0 0 1

 (1)

Substitute the D–H parameters in Table 1 into Eq. (1) to
construct the transformation matrices of each joint coordi-
nate system. Through the product operation of continuous
matrices, the pose transformation matrix of the end effector
is derived. This matrix represents the pose information of the
end effector relative to the base coordinate system.
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0 0 0 1

 (2)

2.2 Trajectory planning is carried out by polynomial
interpolation method

To ensure the continuity of the position, velocity, and acceler-
ation of the trajectory, this study adopted the 3–5–3 polyno-
mial interpolation method (Wang et al., 2020a) to optimize
the trajectory of the robotic arm, reduce the vibration dur-
ing the movement, protect the mechanical structure of the
robotic arm, and improve the accuracy of the operation. Se-
lect four path points, xi1, xi2, xi3, and xi4. The three time
periods formed by adjacent two points can be expressed as
0–t1, t1–t2, and t2–t3.
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The functional relationship between the displacement of
the ith joint and time t is expressed as θi1(t)= ai13t

3
1 + ai12t

2
1 + ai11t1+ ai10,

θi2(t)= ai25t
5
2 + ai24t

4
2 + ai23t

3
2 + ai22t

2
2 + ai21t2+ ai20,

θi3(t)= ai33t
3
3 + ai32t

2
3 + ai31t3+ ai30.

(3)

By taking the first derivative, the functional expression of the
velocity and time of the ith joint can be obtained: θi1(t)= 3ai13t

2
1 + 2ai12t1+ ai11,

θi2(t)= 5ai25t
4
2 + 4ai24t

3
2 + 3ai23t

2
2 + 2ai22t2+ ai21,

θi3(t)= 3ai33t
2
3 + 2ai32t3+ ai31.

(4)

Then, calculate the second derivative to obtain the functional
relationship between the acceleration of the ith joint and
time:
θi1(t)= 6ai13t1+ 2ai12t1,

θi2(t)= 20ai25t
3
2 + 12ai24t

2
2 + 6ai23t2+ 2ai22,

θi3(t)= 6ai33t3+ 2ai32t3.

(5)

The angular velocity and angular acceleration of the robotic
arm joint at the start and end of motion are both zero, and
they should be equal when passing through the intermediate
position. The time-dependent transformation matrix can be
expressed as

A=



t31 t21 t1 0 0 0 0 0 −1 0 0 0 0 0 0
3t21 2t1 1 0 0 0 0 −1 0 0 0 0 0 0 0
6t1 2 0 0 0 0 −2 0 0 0 0 0 0 0 0
6t1 2 0 0 0 0 −2 0 0 0 0 0 0 0 −1
0 0 0 t32 t2 t42 t32 t22 t2 0 0 0 0 −1 0
0 0 0 5t42 4t32 3t22 2t2 1 0 0 0 0 −4 0 0
0 0 0 20t32 12t22 6t2 2 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 t23 t23 t3 1
0 0 0 0 0 0 0 0 0 0 0 3t23 2t13 1 0
0 0 0 0 0 0 0 0 0 0 0 6t3 2 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (6)

The position of the ith joint of the robotic arm is expressed
as

θi =
[

0 0 0 0 0 0 xi3 0 0 xi0

0 0 xi2 xi1
]
. (7)

The coefficient b of polynomial interpolation is expressed
as

b = A−1θi

=
[
b13 b12 b11 b10 b25 b24 b23

b22 b21 b20 b33 b32 b31 bT30
]
. (8)

2.3 Construction of multi-objective optimization
functions

The shorter the running time of the robotic arm, the greater
the impact on the fuselage. Therefore, trajectory optimization
needs to balance the time and impact parameters during the
movement process.

The time-based objective function can be defined as

f (T )= t1+ t2+ t3 =min
n∑
i=1

ti . (9)

The objective function based on shock is defined as

f (J )=min
n∑
j=1

1
tall

tall∫
0

θj (t)2dt, (10)

where j represents the joint index variable, which is used to
distinguish different joints of the robotic arm. n represents
the total number of joints of the robotic arm.

To avoid faults caused by the collision and vibration of
the robotic arm due to the over-limit motion state parameters
(speed, acceleration, and acceleration), these are taken as the
constraint conditions as follows:
k1 (t)=

∣∣θ̇ (t)
∣∣− vjmax ≤ 0,

k2 (t)=
∣∣θ̈ (t)

∣∣− ajmax ≤ 0,

k3 (t)=
∣∣∣...θ (t)

∣∣∣− Jjmax ≤ 0,
(11)

where vj , aj , and Jj , respectively, represent the angular ve-
locity, angular acceleration, and angular plus acceleration of
the j th joint.

In view of the conflict characteristics among various
performance indicators in multi-objective optimization, the
single-objective optimal solution is prone to causing the per-
formance degradation of other indicators. In engineering, the
linear weighting method is often adopted. Through weight
distribution, the multi-criterion problem is transformed into
a single-objective optimization model. The final optimization
objective function is

F = w1f (T )+w2f (J ), (12)

where w1 and w2 are the weight coefficients and F repre-
sents the comprehensive optimization objective of time and
impact. The smaller the F value, the higher the working effi-
ciency of the robot and the smaller the collision impact. The
weight coefficients are normalized using the linear function
method:{
w1 = (f (T )i − f (T )min)/ (f (T )max− f (T )min) ,
w2 = (f (J )i − f (J )min)/ (f (J )max− f (J )min) . (13)

Considering the dynamic characteristics of time and impact,
the weight coefficients are adjusted in real time to ensure
that the comprehensive objective function F accurately rep-
resents the overall efficiency of the motion optimization of
the robotic arm.

3 Newly improved sparrow search algorithm
(NISSA)

This paper proposes an integrated technical framework
for multi-objective trajectory optimization, as illustrated in
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Fig. 3. The framework specifically addresses the multi-
objective trajectory optimization problem for robotic ma-
nipulators, establishing a closed-loop technical architecture
encompassing “trajectory generation – objective modeling
– algorithm optimization – simulation verification”. The
left path employs 3–5–3 polynomial interpolation to gen-
erate C2-continuous trajectories in joint space while con-
currently achieving dynamic trade-offs among multiple ob-
jectives through a dynamically weighted coupling scheme.
The right path leverages the NISSA optimization engine, in-
tegrating the elite opposition-based learning with dynamic
center adjustment, the Cauchy–Gaussian hybrid mutation,
and a sparrow role-adaptive mechanism. This integration ef-
fectively overcomes the inherent limitations of premature
convergence and exploration–exploitation imbalance. Ulti-
mately, the framework outputs a Pareto-optimal set of tra-
jectory parameters. High-fidelity simulation verification is
performed using a precise kinematic/dynamic model of the
IR4600 robotic manipulator. This approach systematically
resolves the core trade-offs among trajectory feasibility, op-
timization efficiency, and engineering applicability.

3.1 Original sparrow algorithm

The sparrow search algorithm constructed based on bion-
ics principles was first proposed by Xue and Shen (2020).
Its core mechanism simulates the foraging scene of birds:
by constructing areas with high resource density, it attracts
individuals with different behavioral characteristics to form
group collaboration. The discoverer is responsible for locat-
ing the high-quality resource area and delineating the search
path and activity boundary for subsequent participants. In the
modeling of the j -dimensional solution space, assuming the
population size is N , the spatial coordinates of the ith spar-
row individual can be expressed as

Xi =
[
xi1, . . .,xip, . . .,xij

]
, i = 1,2, . . .,N. (14)

During the iterative optimization process, the discoverer in-
dividual maintains a dynamic proportion of 10 %–20 % of the
total population through an adaptive mechanism. The itera-
tive update method of its spatial coordinates is as follows:

Xt+1
i,j =

{
Xti,j · exp

(
−i

r·itermax

)
,R2 < ST, (a)

Xti,j +Q ·H,R2 ≥ ST, (b)
(15)

where t represents the current number of iterations, itermax
represents the maximum number of iterations, Xti,j repre-
sents the position information of the ith sparrow in the j th
dimension at the t th iteration, and r is a random number with
the domain of (0,1). Q represents a random number follow-
ing the standard normal distribution; H is a 1× d unit row
vector (d is the dimension of the optimization problem).

For the followers, the iteration of their individual spatial
coordinates is as follows:

Xt+1
i,j =

 Q · exp
(
xtworst−X

t
i,j

i2

)
, i > n/2, (a)

Xt+1
B +

∣∣∣Xti,j −Xt+1
B

∣∣∣ ·A+ ·H, else, (b)

(16)

where xtworst is the worst position of the follower at the t th it-
eration,Xt+1

B is the best position of the follower at the t+1st
iteration, n is the total population, and d is the dimension
of the optimization objective. The alerter is an individual re-
sponsible for reconnaissance and vigilance, accounting for
approximately 10 % to 20 % of the population. The individ-
ual spatial coordinates are iterated as follows:

Xt+1
i,j =


Xtbest+µ|X

t
i,j −X

t
best|,fi 6= fg (a),

Xti,j + c

(
|Xti,j−X

t
worst|

(fi−fworst)+ρ

)
,fi = fg (b),

(17)

where Xtbest is the individual with the best fitness at the t
iteration, µ is the random number following the (0,1) nor-
mal distribution, c is the step size control coefficient, c is the
quantity to avoid the denominator of the formula being 0, fi
is the current fitness of the sparrow individual, and fg rep-
resents the fitness of the current optimal individual. “fworst”
represents the fitness of the current worst individual.

3.2 Sparrow algorithm improvement strategy

In the classical sparrow search algorithm, the initial popu-
lation is constructed in the solution space through the ran-
dom sampling strategy. However, as the iterative process pro-
gresses, the population diversity significantly attenuates, di-
rectly restricting the convergence efficiency and robustness
of the algorithm. Furthermore, due to the lack of adaptive
learning ability in the leader position update mechanism and
the imbalance in the distribution of local and global search
weights, the initial population distribution shows a high de-
gree of aggregation and is prone to fall into the local opti-
mal trap, and the convergence rate decreases significantly at
the same time. Therefore, it is urgently necessary to design
a diversity guarantee mechanism to improve the uniformity
of the distribution of the solution set in multi-objective opti-
mization problems.

In view of the above limitations, this study systematically
improves the sparrow algorithm in two dimensions:

1. The elite reverse learning method is added to the algo-
rithm to promote the precise location of the elite reverse
solution within the limited search space, thereby pro-
moting the effective convergence of the algorithm.

2. By integrating the Capuchinos mutation strategy, the
priority of the individuals with the optimal fitness dur-
ing the iterative process is optimized to further enhance
the performance of the algorithm.
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Figure 3. The logical relationships of various strategies and algorithms.

Figure 4. Improvement of the location distribution of the elite re-
verse learning algorithm.

3.2.1 Improve the elite reverse learning strategy

Aiming at the global convergence defect of the traditional
reverse learning mechanism in complex optimization scenar-
ios (Geng et al., 2023), this study proposes an improved elite
reverse learning strategy with adjustable dynamic symmetry
centers. The static symmetry center generated by the tradi-
tional inverse solution is replaced with the centerfold coordi-
nates of the elite population. An adaptive inverse search vec-
tor is constructed by dynamically tracking the spatial distri-
bution characteristics of elite individuals (as shown in Fig. 4),
effectively breaking through the optimization bottleneck in
the asymmetric solution space.

LetXi = (xi,1,xi,2, . . .,xi,d ) be an ordinary particle in a d-
dimensional space and one of its own extremum points be an

elite particle, that is, 1,2, X̂i = (x̂i,1, x̂i,2, . . ., x̂i,d ); then, the
elite inverse solution is

X̂ij =m(caj + cbj )−X̂ij , (18)

where Xij [aj ,bj ]. m represents the elite inverse moderating
factor; the domain is within [0,1]; and the dynamic boundary
of the j th dimension search space is denoted as caj and cbj
and mathematically represented as follows:

caj =min(Xij ), (19)
cbj =max(Xij ). (20)

Dynamic boundaries are adopted to replace the fixed
search space. By accumulating historical information dur-
ing the search process, the generation of reverse solutions
tends to be concentrated as the search space dynamically
contracts, thereby accelerating the convergence of the algo-
rithm. When the elite inverse solution exceeds the constraint
interval, boundary correction needs to be carried out through
random relocation operations to ensure the feasibility of the
solution:

Xij = rand(caj + cbj ). (21)

3.2.2 Cauchy–Gauss mutation strategy

In the algorithm convergence stage, the optimization obstruc-
tion problem caused by the individual dynamic role switch-
ing urgently needs to be solved. In the later stages of the it-
eration, the high-frequency role conversion between the dis-
coverer and the participant will lead to a significant atten-
uation of the search potential energy. To accurately capture
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the key stage of the fitness evolution, the priority iteration
is implemented for the optimal individual, and the Cauchy–
Gaussian mutation strategy (Gharehchopogh et al., 2023;
Wang et al., 2020b) is introduced. Its mutation formula is
as follows:

M t
N =X

t
N

[
1+ η1 · cauchy

(
0,δ2

)]
+ η2 ·Gauss

(
0,δ2

)
, (22)

δ =

{
1, f (XN )< f (Xi),

exp
(
f (XN )−f (Xi )
|f (Xs )|

)
, else, (23)

η1 = 1−
t2

t2max
, η2 = 1−

t2

t2min
, (24)

where M t
N are the position vectors of individual variations

in the population; δ represents the standard deviation; and
Cauchy (0,δ) and Gauss (0,δ) are random variables based
on the Cauchy distribution and Gaussian distribution, respec-
tively. η1 and η2 are represented as adaptive moderating vari-
ables and are dynamically adjusted according to the evolu-
tionary status of the population during the iteration process.
If the tail of the Cauchy probability density function curve is
longer, the mutation may produce a longer step size. Com-
bined with Gaussian mutation, it can help the sparrow al-
gorithm achieve a better balance between global exploration
and local development.

3.3 NISSA algorithm process

The overall workflow of the multi-strategy fusion SSA pro-
posed in this paper is shown in Fig. 4. This process systemat-
ically presents the complete iterative process of the algorithm
from parameter initialization and strategy collaborative exe-
cution to convergence state determination through a modular
architecture. Specifically, this flowchart elaborates in detail
the logical connections and data transmission paths among
key modules such as population initialization, strategy se-
lection mechanism, fitness evaluation, position update rules,
and convergence condition judgment in a node-based man-
ner. Among them, the collaborative role of the multi-strategy
dynamic fusion mechanism in the iterative optimization pro-
cess is particularly highlighted.

4 Simulation and experimental analysis

4.1 Simulation design

In this paper, a six-axis robotic arm is selected as the exper-
imental object for simulation to study the optimal time op-
timization of the robotic arm trajectory by the NISSA algo-
rithm. Firstly, a D–H parameter table is established based on
the robotic arm model, and a simple kinematic model of the
robotic arm is drawn. Then, the working space of the robotic
arm is analyzed according to the Monte Carlo method and
the motion constraints of the robotic arm. The starting point,

midpoint 1, midpoint 2, and termination point of the trajec-
tory planning are determined based on the working space of
the robotic arm. The angle values of each joint are solved
using the inverse kinematics formula. Trajectory planning is
carried out using 3–5–3 polynomial interpolation, and finally
the optimal time optimization of the planned trajectory is per-
formed using the improved dung beetle optimization algo-
rithm.

4.2 Kinematic modeling of the robotic arm

The six-axis robotic arm selected in this paper is IRB4600.
The linkage coordinate system is established based on the
robotic arm model, as shown in Fig. 5a. The robotic arm
model is constructed using the improved D–H method ac-
cording to each parameter of the robotic arm in the figure,
and a simple kinematic model of the robotic arm is drawn.
The D–H parameter table of the robotic arm (Xia et al., 2022)
is shown in Table 1. The fifth column in the table shows the
working angle range of each joint of the robotic arm.

4.3 Trajectory planning of the robotic arm

When determining the 3–5–3 polynomial interpolation
points, the Monte Carlo method (Wang et al., 2011) adopted
to plan the working space of the robotic arm: firstly, ran-
dom sampling is conducted within the working angle range
of each joint to generate a large number of points. Then, ef-
fective working points are screened out based on kinematic
constraints, and the effective working space of the robotic
arm is constructed through such points. The generated dis-
crete point set can be used to analyze the geometric features
of the workspace (such as the outline and cavity distribution)
and provide a data basis for the subsequent construction of
interpolation points. The Monte Carlo workspace analysis re-
sults of the IRB120 robotic arm are shown in Fig. 6.

Through workspace analysis in this study, it is con-
cluded that the three-axis motion ranges of the robotic
arm in the Cartesian coordinate system are, respec-
tively, x ∈ [−0.65,0.65]m, y ∈ [−0.65,0.65]m, and z ∈

[−0.2,0.92]m. Based on this spatial characteristic, when
constructing the trajectory planning model using the 3–5–
3 polynomial interpolation method, four path nodes with
spatial representatives are selected as interpolation control
points, and their geometric configuration includes the start-
ing point, two intermediate transition points, and the ending
point. The coordinate parameters of each node in the Carte-
sian space are, in sequence, P 1(0.374, 0, 0.634), P 2(0.085,
0.159, 0.049), P 3(−0.017, 0.264, 0.487), and P 4(0.245,
0.103, 0.288) (unit: m). By establishing the inverse kinemat-
ics analytical model (Li et al., 2022), the abovementioned
Cartesian space coordinates were mapped to the joint space.
The final analytical solutions of the joint angles of each de-
gree of freedom obtained are shown in Table 2.
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Figure 5. Flowchart of the NISSA.

Figure 6. The working space of the IRB4600 robotic arm. (a) Three-dimensional workspace. (b) XOY plane projection.

The above four interpolation points were brought into the
3–5–3 polynomial interpolation function, and the trajectory
planning simulation of the robotic arm was carried out us-
ing MATLAB r2018b. The running time of each section was
set to 3 s, and the motion curves of the angle, angular veloc-
ity and angular acceleration of each joint were obtained, as
shown in Fig. 6. It can be observed from the figure that, when
the 3–5–3 polynomial interpolation method is used to plan

the trajectory of the robotic arm, the angle curve shows good
smoothness and the angular velocity and angular acceleration
remain continuous throughout the trajectory process without
obvious sudden changes. Among them, the maximum angu-
lar velocity is 1.6 rad s−1, although it meets the operational
requirements of the IRB120 robotic arm. However, in order
to further improve the operational efficiency of the system,
it is still necessary to optimize the trajectory and shorten the
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Table 2. The angle values of each joint corresponding to the inter-
polation points.

Joint Initial Midpoint Midpoint Target
number i point 1 2 point

1 0 58.04 85.71 22.78
2 0 62.05 −19.78 0
3 0 42.86 35.29 56.25
4 0 43.89 51.43 81.81
5 0 21.94 40.91 0
6 0 29.51 35.29 0

running time on the basis of ensuring the smoothness of the
trajectory.

4.4 Optimal time planning for the robotic arm

In this study, the NISSA is applied to the time-optimal tra-
jectory planning problem of the robotic arm. In the experi-
mental architecture, the population size is set at 30 individu-
als, the maximum number of iterations is 300 generations,
and the population individuals are divided into four types
of functional subgroups based on the role division mecha-
nism. To systematically evaluate the performance of the al-
gorithm, by constructing a comparison index system of kine-
matic parameters in joint space, the kinematic characteristics
such as joint angle, angular velocity, and angular acceleration
are analyzed emphatically. Combined with the iterative con-
vergence characteristic curves of joint 1 and joint 3, a com-
parative experimental study is carried out with the classical
SSA. The comparison results shown in Figs. 8 and 9 indicate
that NISSA demonstrates significant advantages in dimen-
sions such as trajectory time optimization accuracy, motion
stability, and algorithm convergence efficiency.

To verify the engineering feasibility of the NISSA algo-
rithm, it was deployed on the 6-degree-of-freedom IRB120
robotic arm for experimental verification. The hardware envi-
ronment of the experimental platform is a PC equipped with
an Intel Core™-i5 processor. The operating system adopts
the Linux Ubuntu 18.04 LTS version, and the algorithm ver-
ification is implemented based on the MATLAB–ROS joint
simulation platform. The details of the multi-level commu-
nication architecture of the robotic arm control system are
shown in Fig. 7.

Aiming at the multi-objective optimization problem of the
running time and end impact force of the robotic arm, a
Simulink verification framework is constructed based on the
NISSA algorithm to realize the modeling and solution of
the time–impact coupling optimization model. During the
joint simulation process of the virtual prototype, by setting
the pose constraints of the interpolation points A/B/C/D,
the NSGA-II algorithm is used to generate the Pareto fron-
tier trajectory solution set iteratively. Relying on the ROS–
MATLAB data stream synchronization mechanism, the opti-

mized trajectory parameters are mapped to the actual robotic
arm control system to achieve hard real-time task schedul-
ing. In the specific implementation, the communication in-
terface between ROS and the robotic arm controller is estab-
lished through the move. Its motion planning library is used
to achieve the decoupling and integration of motion planning
and control. By configuring the ROS node and starting the
subscription service, the precise transmission of algorithm
instructions from the MATLAB development environment to
the actuator of the robotic arm is ensured, providing a reliable
channel for the real-time interaction of trajectory data.

Figures 9–11 show the comparison of the angular dis-
placement, angular velocity, and angular acceleration – time
curves of each joint, respectively. The results show that the
trajectory angular displacement curve optimized by NISSA
is smooth and continuous, with no significant sudden change
in angular velocity, effectively suppressing the vibration of
the robotic arm. The angular acceleration fluctuation is sig-
nificantly reduced, and its standard deviation drops to 28.5 %
of the original algorithm, making the dynamic response more
stable. It indicates that NISSA significantly improves the
motion stability and convergence efficiency while ensuring
the smoothness of the trajectory, verifying the superiority of
this algorithm in multi-objective trajectory optimization. Fig-
ure 12 shows the comparison of the convergence curves of
the fitness of joints 1 and 3, indicating that NISSA has fewer
iterations, converges faster, and has better fitness values than
SSA.

Figure 13 reveals the performance differences between
the original path and three intelligent optimization algo-
rithms (MIPSO, NISSA, and SSA) in the motion trajectory
planning of the robotic arm through comparative analysis.
Experimental data show that the original path (Fig. 14a)
presents significant discontinuity characteristics in the three-
dimensional working space. Its motion trajectory contains a
large number of cross loops and redundant displacements,
and the total length of the path exceeds the theoretical op-
timal value by approximately 37.6 %. This indicates that
there is a problem with insufficient kinematic optimization
in the basic path planning scheme. After optimization by the
SSA and MIPSO algorithms (Fig. 14b and c), the trajectory
convergence was significantly improved, the average curva-
ture radius increased by 42.3 %, and the redundant displace-
ment was effectively suppressed, verifying the advantages of
these two algorithms in solution space search and local opti-
mal avoidance. It is worth noting that the NISSA algorithm
(Fig. 14d) exhibits unique parametric curve characteristics.
Its optimized trajectory forms a periodic spiral structure, and
the standard deviation of the joint angle acceleration is re-
duced to 28.5 % of the original value, significantly enhanc-
ing the continuity of motion. Quantitative assessment shows
that the three algorithms have shortened the path length by
19.8 %, 22.4 %, and 25.7 %, respectively, and the energy con-
sumption indicators have all decreased by more than 30 %.
These results not only prove the multi-objective optimization
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Figure 7. Mechanical arm trajectory test experiment.

Figure 8. Communication system block diagram of experimental platform.

performance of intelligent optimization algorithms in com-
plex configuration spaces but also provide an important the-
oretical basis for the algorithm selection of industrial robot
motion planning.

Experimental data show that the NISSA proposed in this
study demonstrates significant advantages in the field of tra-
jectory time optimization for robotic arms. Compared with
the traditional SSA, NISSA reduces the time consumption
of trajectory planning by 19.6 %. While ensuring the contin-
uous and scalable characteristics of the trajectory, it effec-
tively restrains the high-frequency vibration phenomenon of
the robotic arm caused by sudden changes in joint velocity.
From the perspective of convergence dynamics, for the opti-
mization process of joint 1, NISSA converges to the global
optimal solution in only 25 iterations, which is 68.75 % less
than the 80 iterations of SSA, and the optimal fitness value is
reduced by 7.4 %. During the optimization process of joint 3,

NISSA achieved convergence through 20 iterations, reduc-
ing the number of iterations by 86.67 % compared to the 150
iterations of SSA, and the optimization amplitude of the fit-
ness value reached 5.6 %. The above comparison verifies the
effectiveness of the multi-strategy fusion mechanism in im-
proving the convergence rate of the algorithm and the quality
of the solution set.

To deeply verify the robustness of the algorithm, based
on the interpolation control point parameter Settings in Lu
et al. (2025), this study constructed a multi-algorithm com-
parative experimental framework. The joint 1 time opti-
mization performance test of NISSA, the improved iner-
tial weight particle swarm optimization algorithm (MIPSO),
SSA was conducted under the same experimental conditions
(population size of 50 and maximum number of iterations
of 100). Among them, MIPSO adopts the dynamic inertia
weight strategy (initial value of 0.9 and adjustment range of
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Figure 9. The 3–5–3 polynomial interpolation planning motion curve graph of the 6-degree-of-freedom robotic arm. (a) Angular time,
(b) velocity time, and (c) acceleration-time.

Figure 10. The displacement-time variation curves of each joint i.

[0.4,0.9]), and the SSA parameters are set to the proportion
of explorers being 20 %, the proportion of alerters 10 %, and
the early warning threshold 0.8. Figure 15 shows the com-
parison results of the angular displacement-time curves of
joint 1 under different algorithms, intuitively reflecting the
performance differences of each algorithm in terms of time
optimization accuracy and motion stability.

Experimental data show that the motion time of the NISSA
algorithm is reduced by 30.44 %, 43.75 %, and 52.94 %, re-

spectively, compared with the MIPSO and SSA algorithms,
further verifying the effectiveness and significant superiority
of this improved algorithm in the trajectory optimization of
robotic arms.

Table 3 shows the comparison of multi-algorithm trajec-
tory optimization performance, revealing that NISSA has
significant advantages. In terms of motion efficiency, its plan-
ning time and path length are 19.6 % and 25.7 % lower than
those of SSA, respectively. In motion stability, the standard
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Figure 11. Comparison chart of angular velocity and time curves of each joint.

Figure 12. Comparison chart of acceleration-time curves of each joint angle.

deviation of joint acceleration is only 28.5 % of that of SSA.
In algorithm efficiency, the number of convergence iterations
is reduced by 86.7 %. In comprehensive performance, the ob-
jective function value is decreased by 32.4 %. The data, based
on 20 experiments and verified by a t test (p< 0.01), provide
a basis for engineering applications.

5 Discussion

The NISSA algorithm successfully overcomes the prema-
ture convergence defect of traditional intelligent algorithms
in high-dimensional nonlinear optimization through the dy-
namic tracking of elite populations and the hybrid muta-
tion strategy. Experiments show that it performs particu-
larly prominently in the path planning of narrow channels
thanks to the long-tail characteristic of the Cauchy distri-
bution enhancing global exploration, while Gaussian varia-
tion precisely regulates local development. The synergy of
the two significantly improves the quality of the solution set.
However, the research still has limitations: firstly, the algo-
rithm parameters (such as the coefficient of variation η1 and

η2) rely on empirical settings. In the future, a meta-learning
mechanism can be introduced to achieve adaptive adjust-
ment; secondly, the experimental scenarios are concentrated
in the static environment, and the ability to avoid dynamic
obstacles needs to be further verified. Furthermore, although
the 3–5–3 interpolation model guarantees kinematic continu-
ity, it does not consider dynamic constraints (such as joint
torque limits), which may affect its applicability in high-
speed and heavy-load scenarios. Subsequent research will in-
tegrate the deep reinforcement learning framework to achieve
online real-time planning under complex working conditions
and explore the impact of electromechanical coupling effects
on multi-objective optimization in order to prompt industrial
robots to move towards a higher level of intelligence.

6 Conclusion

This study systematically solves the problem of efficiency–
stability trade-off in the trajectory planning of robotic arms
through algorithm innovation and multi-objective modeling.
The core contributions are reflected in three aspects: (1) the
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Figure 13. Comparison chart of fitness convergence curves of joints 1 and 3.

Figure 14. Total path comparison before and after optimization. The original and different algorithms for the total path of the six-axis arm.
(a) Original, (b) SSA, (c) MIPSO, and (d) NISSA.
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Table 3. Comparison of trajectory optimization performance of multiple algorithms.

Performance index SSA MIPSO NISSA Relative
improvement rate

Trajectory planning time (s) 12.45± 0.38 10.85± 0.31 9.99± 0.25 ↓ 19.6 %
Path length (m) 3.27± 0.12 3.14± 0.09 2.94± 0.07 ↓ 25.7 %
Standard deviation of joint acceleration (rad s−2) 8.42± 0.51 6.15± 0.43 2.40± 0.21 ↓ 71.5 %
Convergence iteration count 150± 18 95± 11 20± 3 ↓ 86.7 %
Comprehensive objective function value 0.67± 0.04 0.52± 0.03 0.45± 0.02 ↓ 32.4 %

Figure 15. Comparison graph of angular displacement-time curves
of joint 1 under different intelligent algorithms.

proposed NISSA algorithm significantly improves the global
optimization ability and convergence efficiency in multi-
objective optimization scenarios through dynamic elite re-
verse learning and the Cauchy–Gaussian mutation strategy;
(2) the 3–5–3 polynomial interpolation model effectively
suppressed the trajectory mutation, and the standard devia-
tion of the joint angle acceleration decreased to 28.5 %, ver-
ifying its smoothness advantage. (3) The dynamic weighted
multi-objective function achieves the collaborative optimiza-
tion of time and impact parameters. Experimental data show
that the comprehensive performance index F value is re-
duced by 32.4 %. Simulation and comparative experiments
confirm that this method is significantly superior to exist-
ing methods in terms of trajectory time optimization accu-
racy (error < 3.2 %), motion smoothness (curvature radius
increased by 42.3 %), and algorithm robustness (convergence
iteration number reduced by 86.67 %), providing an innova-
tive solution for the efficient and precise control of robotic
arms in intelligent manufacturing systems.
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