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Abstract. In the luffing mechanism of a crane, the bearing is one of the parts that bear the important load.
If the bearing fails, the luffing mechanism of the crane will lose its steady state of operation and may even
cause an accident. To identify the early characteristics of bearing failure in the crane luffing mechanism and
prevent losses resulting from severe bearing damage, this paper proposes a bearing fault diagnosis method for
the crane luffing mechanism based on improved particle swarm optimization–variational mode decomposition
(PSO–VMD) multidimensional indicators. Firstly, the Metropolis algorithm was introduced into the PSO, and
an improved PSO (IPSO) was proposed to solve the problems of poor global search ability and easy falling
into local extreme values. The parameters of VMD are adapted through IPSO to decompose model components.
Then, the three components with the largest kurtosis are selected for signal reconstruction, and the peak factor,
margin factor, pulse factor, sample entropy, energy entropy, and power spectrum entropy of the reconstructed
signal are used to form a multidimensional composite feature vector, and then the principal component analysis
(PCA) method is used to extract its core components. Finally, the core components are used as input samples of
the support vector machine (SVM) for training and testing, which can effectively detect the bearing fault of the
crane luffing mechanism. Experimental data demonstrate that the proposed method not only reduces the training
time of the classification model but also enhances the classification accuracy.

1 Introduction

The luffing mechanism of a crane is an important part of the
crane and is used to control the position and direction of the
hook. In the luffing mechanism of the crane, the bearing is
one of the parts that bear the important load. If the bearing
fails, it will cause the luffing mechanism of the crane to lose
its stable running state and even cause an accident. There-
fore, the bearing fault diagnosis of the luffing mechanism
of the crane plays an important role in the maintenance of
the crane (Qin et al., 2020; Wang et al., 2021, 2022a, b; Qin

et al., 2023; Wang et al., 2023). Through the inspection and
analysis of the bearing, the cause of the bearing failure can be
found in time and corresponding maintenance and replace-
ment measures can be taken to ensure the safe operation of
the crane. At the same time, the maintenance of the bearing
is also very important and can prolong its service life, reduce
the possibility of failure, and improve the working efficiency
and safety of the crane (Gao et al., 2015; Tao et al., 2023;
Sun et al., 2023a; Wu et al., 2024; Zhao et al., 2023).

For the fault condition of the bearing of the luffing mech-
anism of the crane, the vibration signal on the surface of
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the bearing of the luffing mechanism of the crane can be
collected. Vibration signals contain periodic shock signals,
and the frequencies of shock signals generated by different
health conditions are different, so the vibration signals are
extracted and identified (Rodríguez Ramos et al., 2019; Chen
et al., 2023). Dragomiretskiy and Zosso (2014) proposed a
variational mode decomposition (VMD) method, which can
effectively reduce problems such as mode aliasing compared
with empirical mode decomposition (EMD). Jin et al. (2022)
and Li et al. (2020, 2022) improved the VMD algorithm to
improve the performance of the algorithm and solved the its
local optimal problem. Recognizing the advantages of vibra-
tion signal anti-interference, Sun et al. (2024b) proposed a
diagnostic method that combines VMD and multiscale wave
dispersion entropy. Compared to methods such as empirical
mode decomposition, this approach serves as a core effective
feature selection tool. Dibaj et al. (2021) proposed a new end-
to-end fault diagnosis method based on fine-tuning VMD and
convolutional neural networks (CNNs). The optimization al-
gorithm proposed by Dibaj et al. (2021) can optimize the
VMD parameters so that the decomposition mode has the
minimum bandwidth and noise interference.

This paper mainly studies difficult existing problems in
the current fault diagnosis of rolling bearings, such as using
singular value decomposition (SVD) to determine the delay
step size k, create a Hankel matrix, and select effective sin-
gular values. By analyzing the principle of the SVD method,
Qiao et al. (2021) proposed an adaptive singular value de-
composition method based on correlation coefficients for sin-
gular value decomposition feature extraction of rolling bear-
ing fault diagnosis. In order to select effective singular val-
ues more accurately, Cui et al. (2022) proposed a new singu-
lar value decomposition method based on energy graphs. For
complex fault diagnosis of rolling bearings in complex indus-
trial environments, Zhang et al. (2022) proposed an improved
double-dictionary k singular value decomposition algorithm.
Zhu et al. (2023) proposed an improved singular value de-
composition grouping algorithm, which improves the ability
of feature extraction by changing the structure of the Hankel
matrix.

In order to solve problems such as large amounts of
data and inaccurate and untimely fault diagnosis, Wen et
al. (2021) proposed a hybrid fault diagnosis method based on
relief, principal component analysis (PCA), and deep neural
networks (DNNs), which can effectively solve the fault di-
agnosis problem of PCA. Zhu et al. (2020) regarded bearing
fault diagnosis as a class of pattern classification problem and
proposed an intelligent fault diagnosis method based on PCA
and deep belief networks (DBNs). Addressing the limitations
of traditional PCA linear dimensionality reduction, Sun et
al. (2024a) introduced kernel functions to map features into
high-dimensional space, thereby achieving nonlinear feature
fusion and retaining fault-sensitive information while reduc-
ing feature dimensions. Guo et al. (2020) proposed a Gaus-
sian mixture model (GMM)-based fault diagnosis strategy

for variable refrigerant flow air conditioning systems. Cao
et al. (2022) proposed a data-based method to improve the
accuracy and speed of the fault diagnosis. Ye et al. (2021)
proposed a method to improve the accuracy of rolling bear-
ing fault detection. The method is based on VMD, multiscale
permutation entropy (MPE), and PSO–SVMs (support vec-
tor machines) (Liu et al., 2023). Sun et al. (2023b) employed
PSO to concurrently optimize the weights of multiscale frac-
tional permutation entropy and hyperparameters of support
vector machines, thereby proposing a synchronous optimiza-
tion strategy.

The Metropolis algorithm was proposed in 1953 (Bhanot,
1988). The core idea of the Metropolis algorithm is to gradu-
ally approach the target probability distribution by randomly
walking in the state space and deciding whether to accept the
new state according to certain acceptance criteria. In tradi-
tional PSO, the update of particles mainly depends on their
own speeds, historical optimal positions, and global optimal
positions (Shenoy et al., 2020). After the introduction of the
Metropolis algorithm, the factor of random disturbance is
added. This randomness allows particles to escape the trap
of local optimal solutions during the search process and have
the opportunity to explore a wider solution space (Zhang et
al., 2022).

On the basis of the above literature research, this paper
solves the problems of adaptive selection of VMD param-
eters and the fact that the modal component of VMD is a
series of disordered time series. It proposes a bearing fault
diagnosis method based on an improved PSO–VMD multi-
dimensional index and its application in a crane amplitude-
changing mechanism. The Metropolis algorithm is intro-
duced into PSO, and IPSO is proposed to solve the problems
of poor global search ability and easy falling into local ex-
treme values. IPSO is used to adapt the number of decompo-
sition layers k and penalty factors α of VMD to decompose
K modal components. The three components with the largest
kurtosis are selected for signal reconstruction, and the peak
factor, margin factor, pulse factor, sample entropy, energy en-
tropy, and power spectrum entropy of the reconstructed sig-
nal are used to form a multidimensional composite feature
vector, and then PCA is used to extract its core components.
The core features are input into SVMs for training. In order
to demonstrate the application effect of the proposed method,
the method is used to perform diagnostic tests on the bearing
fault data collected in the experiment. The main contributions
and innovations of this paper are summarized as follows:

1. A crane luffing mechanism bearing fault diagnosis
method utilizing improved PSO–VMD multidimen-
sional indicators is proposed, with its application in
crane luffing mechanisms.

2. The Metropolis algorithm is incorporated into PSO to
enhance its global search capability, and a parameter
adaptation method for IPSO–VMD is introduced.
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3. The peak factor, margin factor, pulse factor, sample
entropy, energy entropy, and power spectrum entropy
within the VMD modal component are integrated to
form a multidimensional composite feature vector.

4. The PCA dimensionality reduction algorithm is em-
ployed to extract the core components, which are then
used as input samples for SVM training and testing.

The rest of this paper is organized as follows. In Sect. 2, the
proposed method for crane luffing mechanism bearing fault
diagnosis based on improved PSO–VMD multidimensional
indicators is introduced. In Sects. 3 and 4, public datasets
and real cases are used for analysis to verify the feasibility
and advantages of the proposed method. Section 5 is the con-
clusion of this paper.

2 Research methods

2.1 Variational mode decomposition algorithm

In 2014, the VMD was proposed, which can perform cus-
tom decomposition on complex signals and decompose the
signal into K modal components in different frequency do-
mains (Dragomiretskiy and Zosso, 2014). This method can
effectively solve a series of problems such as modal alias-
ing and endpoint effects in the decomposition of other time–
frequency domain signals.

When obtaining the modal components, VMD introduces
the original signal into the variational modal model for solu-
tion, and the constrained variational model is established as
follows:

min{uk}{ωk}

{
K∑
k=1

∥∥∥∥∂t [(δ(t)+ j

πt

)
× uk(t)

]
e−jωk t

∥∥∥∥2

2

}

s.t.
K∑
k=1

uk(t)= f (t).
(1)

In the formula, δ(t) is the unit pulse, x(t) is the input signal,
and ωk is the center frequency of the modal component uk .

To solve the variational model established above, it is nec-
essary to introduce the penalty factor α and the Lagrangian
operator λ into the variational mode decomposition process.
The augmented Lagrangian expression is as follows:

L ({uk} , {wk} ,λ)

= α
∑
k
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]
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+

〈
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〉
.

(2)

Finally, the alternating direction method of multipliers
(ADMM) is employed to solve it.

2.2 IPSO-optimized VMD algorithm

Although the particle swarm algorithm has the advantages of
fast convergence speed and few parameters, its global search

ability is poor and it is easy to fall into local extreme values,
which makes the algorithm unable to find the global opti-
mum (Shenoy et al., 2020). The improved PSO generates a
series of solutions to the combinatorial optimization problem
through the Metropolis algorithm and then decides whether
to exit the local search space according to the transition prob-
ability Pt corresponding to the criterion (Bhanot, 1988). The
calculation method of Pt is as follows:

Pt =

{
1,E (xnew)<E (xold)

exp
(
−
E(xnew)−E(xold)

T

)
,E (xnew) > E (xold) , (3)

where E (xnew) and E (xold) represent the new and old en-
ergy values, respectively, and T is the maximum number of
iterations.

The numerical value of the kurtosis coefficient can repre-
sent the degree of dispersion of the sample data. It is very
sensitive to the impact signal and is especially suitable for
fault diagnosis research of rolling bearings. The mathemati-
cal expression of the kurtosis coefficient is

KI=
1
N

∑N−1
n=0 x

4(n)(
1
N

∑N−1
n=0 x

2(n)
)2 , (4)

where x is the signal sequence. N is the length of the signal
sequence and represents the kurtosis coefficient of the signal
sequence.

The kurtosis coefficient of a signal that obeys a normal
distribution generally fluctuates around a fixed value of 3,
and its kurtosis coefficient will become larger if the signal
contains an impact signal. The flowchart of IPSO–VMD is
shown in Fig. 1. In order to verify the effectiveness of this
method, this paper also adds envelope demodulation to the
process to extract the characteristics of the fault signal.

2.3 Fault feature extraction method

Time domain analysis of vibration signals usually refers to
analysis based on the change in the number of vibration sig-
nals over time. It can show the vibration change in equip-
ment more intuitively. In time domain analysis, there are
some evaluation indicators that can be used to assist anal-
ysis. Entropy features are generally used to characterize the
magnitudes of various energies contained in the signal. Sam-
ple entropy can reflect the complexity of the time series. The
higher the complexity of the sequence, the greater the value
of the sample entropy. Energy entropy will change with the
energy distribution of the vibration signal. Power spectrum
entropy can quantify the spectral complexity and irregularity
of the signal. Therefore, this paper uses the peak factor, mar-
gin factor, pulse factor, sample entropy, energy entropy, and
power spectrum entropy to extract multidimensional features
(Richman et al., 2004; Yu et al., 2006; Zhang et al., 2008).

The higher the feature dimension of the feature sample,
the more complex the mathematical model of SVM and the
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Figure 1. Flowchart of IPSO–VMD.

longer the model training time will be. It will also affect the
classification accuracy of SVM. However, if the feature di-
mension of the feature sample is too small, some feature in-
formation will be lost, thus affecting the classification accu-
racy of SVM. Therefore, this paper introduces PCA, which
can reduce the dimension of data without losing data infor-
mation, and it uses the reduced feature matrix as the input of
SVM (Wen et al., 2021).

2.4 The basic principle of SVM

The SVM algorithm is a supervised machine learning method
that is widely used to solve complex multi-classification and
regression problems (Liu et al., 2023). It can solve nonlinear,
high-dimensional, and small sample machine learning prob-
lems and has good local and global search capabilities. The
contour region segmentation of mature daily images can be
regarded as a foreground and background classification prob-
lem. The foreground and background feature data are nonlin-
early distributed in the sample space. In order to improve the
robustness of the model, a relaxation variable is introduced to
enable nonlinear mapping of samples from low-dimensional
input space to high-dimensional space in order to make them
linearly separable, so that the optimal classification hyper-
plane y(x) can be found in the feature space, as shown in
Eq. (5):

y(x)= ωT x+ b , (5)

where ω represents the weight vector, x denotes the data
point, and b is the threshold. The slack variable ζi is in-
troduced to permit each sample to have a certain degree of
misjudgment error. The constraint condition is presented in
Eq. (6):

y
(
ωT xi + b

)
≥ 1− ζi , (6)

where i= 1,2, . . .n, ζi ≥ 0, and xi ∈R. When determining
the optimal segmentation hyperplane, the minimization of
the squared norm ‖ω‖ of ω is utilized as the optimization
objective function, as indicated in Eq. (7):

min
1
2
‖ω‖2+C

n∑
i=1

ζi , (7)

where C serves as the penalty coefficient; a larger C implies
a higher fault tolerance. By introducing the Lagrangian mul-
tiplier ai , the problem is transformed into solving the dual
problem, as demonstrated in Eqs. (8) and (9):

min
1
2

n∑
i=1

n∑
j=1

αiαjK (x,xi)−
n∑
i=1

αi , (8)
K = exp

(
−

1
2δ2 ‖x− xi‖

2
)
= exp

(
g‖x− xi‖

2)
s.t.

n∑
i=1
yiαi = 0,0≤ αi ≤ C, i = 1,2,3. . .,n

, (9)

where K (x,xi) is the inner product kernel function for ad-
dressing nonlinear problems, δ represents the bandwidth of
the Gaussian radial basis kernel function, and g is the param-
eter of the Gaussian radial basis kernel function. Assuming
that the optimal Lagrangian multiplier obtained by the so-
lution is α∗, the optimal hyperplanes ω∗ and b∗ can be in-
versely derived, and Eq. (10) represents the final classifica-
tion decision function.

f (x)= sgn

(
n∑
i=1

α∗yiK (x,xi)+ b∗
)

(10)

Selecting parameters C and g in support vector machines is
crucial. Parameter C influences the model’s generalization
ability, which relates to the predictability of unknown data.
The value of the Gaussian radial basis kernel function pa-
rameter g affects the dispersion of the sample data. After
conducting numerous experiments, this paper selects C as
6 and g as 1, employing 10-fold cross-validation.

2.5 Improved PSO–VMD multidimensional index fault
diagnosis method

The proposed method flowchart is shown in Fig. 2. The spe-
cific steps are as follows:

1. Load the vibration signal.
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Figure 2. Flowchart of the proposed method.

2. Introduce the Metropolis criterion into PSO, optimize
the K and α of VMD, and decompose the vectors.

3. The kurtosis of each component is calculated, and the
three components with the highest kurtosis are obtained
for signal reconstruction.

4. The peak factor, margin factor, and pulse factor of the
reconstructed signal as well as the sample entropy, en-
ergy entropy, and power spectrum entropy of the three
components are calculated to obtain a 12-dimensional
composite feature vector.

5. Use PCA to reduce the composite eigenvector to three
dimensions.

6. The feature samples are divided into a test set and a
training set and are put into the SVM classification
model for classification diagnosis. The classification ac-
curacy of the test samples is used to verify the quality
of the classification model.

3 Signal analysis of public datasets

This paper uses the bearing test bench data of Western Re-
serve University to verify the method (Hou et al., 2018). Fig-

Figure 3. Experimental device.

ure 3 shows a diagram of the experimental device. The mo-
tor spindle is supported by fan end (FE) and drive end (DE)
bearings, respectively. The bearings are pitted by electrical
discharge machining (EDM) to simulate common faults. The
experiment uses the vibration signal of the SKF62052RS
drive side bearing model collected by a 16-channel digital
audio tape (DAT) recorder. The motor speed is 1797 r min−1,
the sampling frequency is 12 kHz, and the load is 0 hp. Vi-
bration signals are collected in four states: normal (Normal),
inner-race failure (IRF), outer-race failure (ORF), and ball
failure (BF). In this study, 50 groups were sampled in each
state and 200 groups were sampled in four states, with 8192
sampling points in each group.

3.1 Public dataset analysis

To determine the relevant parameters of VMD, the vibra-
tion signals collected in the laboratory are analyzed. After
many experiments, the optimal particle swarm parameters
are as follows: the particle swarm is 100, the weight fac-
tors are all set to 1.1, the particle speed is updated in the
interval [−30,30], and the maximum number of iterations
is set to 50. The fitness function value change curve of the
training process is shown in Fig. 4. At the same time, in
order to verify the effectiveness of the proposed algorithm,
the particle swarm algorithm before and after the improve-
ment is compared in the experiment. The convergence speed
of the improved particle swarm algorithm is better than that
of the algorithm before the improvement, and the obtained
fitness value is also lower, which shows that the algorithm
can achieve more ideal prediction results. According to the
IPSO–VMD results, the final determined values of K and α
are [3,3003].

In order to verify the effectiveness of IPSO–VMD, the
fault signals processed by EMD, ensemble empirical mode
decomposition (EEMD), and VMD are compared. As shown
in Figs. 5 and 6, the time domain signal processed by VMD
is smoother than the signals of EMD and EEMD. The en-
velope spectrum of EMD and EEMD cannot clearly obtain
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Figure 4. Iterative curve of the public datasets IPSO–VMD and
PSO–VMD.

Figure 5. Three algorithms for time domain processing of public
datasets.

the fault frequency and its frequency multiples, while the en-
velope spectrum of VMD can be seen clearly. As shown in
Fig. 6, the characteristic frequency extracted by this method
is 161 Hz, which is close to the actual fault characteristic fre-
quency, although it is correct that the optimal number of de-
composition layers for the inner-ring fault vibration signal
is three layers. The peak factor, margin factor, pulse factor,
sample entropy, energy entropy, and power spectrum entropy
of the reconstructed signal are calculated to form a composite
feature vector.

PCA is used to reduce the dimension of the fault feature
matrix, retaining the principal component containing impor-
tant feature information. The analysis results are shown in
Table 1. The contribution rate of the first three principal
components is 96.9108 % and contains most of the feature
information. Therefore, this experiment uses the first three
principal components as feature samples after dimensional-
ity reduction, and the spatial distribution of the bearing state
obtained by PCA is shown in Fig. 7. As can be seen from

Figure 6. Three algorithms for processing the public dataset enve-
lope spectrum.

Table 1. Cumulative contribution of the principal components of
the public datasets.

Main Eigenvalue Contribution Cumulative
ingredient rate [%] contribution

rate [%]

1 8.2348 68.6233 68.6233
2 2.2231 18.5258 87.1491
3 1.1714 9.7617 96.9108

Fig. 7, each type of data is relatively concentrated and can be
roughly distinguished, indicating that the PCA algorithm can
extract feature information that can distinguish fault states.

3.2 Realization of the bearing fault diagnosis method

In order to reflect the superiority of the proposed method
in fault diagnosis, this paper divides the test samples into
five categories, as shown in Table 2. From the diagnosis re-
sults of Fig. 8a, b, c, and d, it can be seen that the recog-
nition rate of sample 4 in SVM is 97.5 %, which is higher
than that of samples 1, 2, and 3. The introduction of VMD–
multidimensional composite features can effectively improve
the accuracy of rolling bearing fault diagnosis, but the in-
troduction of these features will increase the complexity of
the classification model. In order to improve the accuracy,
this paper uses PCA to reduce the dimension of the samples
of VMD–multidimensional composite features. After the di-
mension reduction, the recognition accuracy of the samples
in SVM is 99.25 %, as shown in Fig. 8e. In order to verify
the superiority of SVM to similar algorithms, back prop-
agation (BP) is used to classify and identify the test sam-
ples, as shown in Fig. 9. To conduct a comprehensive perfor-
mance evaluation of the proposed method, this paper intro-
duces metrics such as accuracy (Eq. 11), precision (Eq. 12),
recall (Eq. 13), and F1 score (Eq. 14). The performance in-
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Figure 7. Bearing state space diagram for dimensionality reduction
by PCA (public datasets).

dicators of the public dataset diagnosis model are shown in
Table 3.

Accuracy=
TP+TN

TP+TN+FP+FN
(11)

Precision=
TP

TP+FP
(12)

Recall=
TP

TP+FN
(13)

F1 score= 2×
precision× recall
precision+ recall

(14)

TP stands for true positive, TN stands for true negative, FP
stands for false positive, and FN stands for false negative.
The F1 score is a metric used to evaluate the performance
of classification models, particularly in scenarios involving
imbalanced data. Its primary function is to integrate the pre-
cision and recall of the model, offering a balanced evaluation
by harmonizing the mean.

Combined with Figs. 8 and 9 and Table 3, the recogni-
tion accuracy of SVM is better than that of BP for rolling
bearing fault samples. The classification effect of VMD–
multidimensional composite features combined with PCA
samples in SVM is better, so this fault diagnosis method can
be applied to rolling bearings.

4 Experimental results and analysis

Figure 10 shows the inner-ring fault and outer-ring fault of
the variable amplitude mechanism bearing. This paper col-
lects the acceleration signal of the faulty bearing when it ro-
tates through the bearing test bench. Four states, i.e., Normal,
IRF, ORF, and BF, are collected. Fifty groups of samples are
collected for each state, 200 groups of samples are collected
for the four states, 8192 sampling points are collected for
each group, and the collection frequency is 12 800 Hz. The
fault signal of the luffing mechanism bearing is collected.
Since the collected signal contains a high degree of noise,

VMD processing is performed on the inner-ring fault signal.
As shown in Fig. 11, IPSO is used to optimize the parame-
ter combination [K,α] of VMD, and the optimization goal is
to maximize the kurtosis of each component after decompo-
sition. Here, we take a set of sampling point data as an ex-
ample, and the optimal parameter combination is K = 3005
and α= 4. The 8192 data of each set of sampling points are
subjected to variational mode decomposition to obtain four
components.

In order to verify whether IPSO–VMD is effective, EMD,
EEMD, and IPSO–VMD process fault signals are compared.
As shown in Figs. 12 and 13, the time domain signal of EMD
is relatively chaotic, and the effect of extracting characteris-
tic faults is not very good. Although traces of noise reduction
can be seen in the EEMD time domain signal, there is still
some noise interference. The time domain signal processed
by IPSO–VMD is relatively smooth and smoother than the
signals of EMD and EEMD. The envelope spectrum of EMD
cannot clearly obtain the fault frequency and its frequency
multiples. The fault frequency can be observed in the enve-
lope spectrum of EEMD, but the frequency doubling is not
obvious and there is noise interference. The envelope spec-
trum of VMD can clearly see the fault frequency and its dou-
ble frequency.

This paper uses IPSO–VMD to extract the fault frequency
from the bearing inner-ring fault signal. However, although
the fault frequency can be observed in the extracted signal,
the signal after tripling the frequency is not very obvious. The
peak factor, margin factor, pulse factor, sample entropy, en-
ergy entropy, and power spectrum entropy in the modal clas-
sification after IPSO–VMD are extracted to form a composite
feature component. PCA is used to reduce the dimension of
the vector. As shown in Table 4, after dimensionality reduc-
tion processing, these feature vectors retain the main com-
ponents of important feature information and remove some
components with low impact. The cumulative contribution
rate of the first three main elements reaches 96.3159 %, in-
dicating that most of the information has been included. As
can be seen in Fig. 14, in the spatial distribution, there is no
overlap between the four types of feature data after PCA di-
mensionality reduction, and each type of data is relatively
concentrated. This shows that the PCA results extract the
characteristics of the fault state.

To demonstrate the advantages of the method proposed in
this paper, we generated a total of five test samples to train the
SVM and BP models. The relevant evaluation indicators are
presented in Table 5. As shown in Fig. 15, the identification
accuracy rates of the first, second, third, and fourth types of
fault samples are 94.5 %, 95.75 %, 96.25 %, and 97 %. It can
be concluded that VMD–multidimensional composite fea-
ture samples can effectively improve the accuracy of rolling
bearing fault diagnosis. However, this sample will lengthen
the SVM training time and also affect the SVM classification
accuracy. Therefore, this paper uses VMD–multidimensional
composite features combined with PCA samples as the input
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Figure 8. Public dataset samples identified in SVM: (a) Class 1, (b) Class 2, (c) Class 3, (d) Class 4, and (d) Class 5.

Figure 9. Public dataset samples identified in BP: (a) Class 1, (b) Class 2, (c) Class 3, (d) Class 4, and (d) Class 5.
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Table 2. Test sample types.

Class 1 Class 2 Class 3 Class 4 Class 5

Sample Multidimensional EMD–multidimensional EEMD–multidimensional VMD–multidimensional VMD–multidimensional
content composite features composite features composite features composite features composite features

combined with PCA

Table 3. Public dataset diagnostic model performance indicators.

Type Number of samples Training Accuracy Precision Recall F1 score
in the training set time [s] [%] [%] [%] [%]

Sample 1 in SVM 200 162 94.00 88.12 88.00 87.93
Sample 2 in SVM 200 124 95.50 91.05 91.00 90.99
Sample 3 in SVM 200 111 96.50 93.09 93.00 93.02
Sample 4 in SVM 200 75 97.50 95.14 95.00 95.00
Sample 5 in SVM 200 32 99.25 98.52 98.50 98.50
Sample 1 in BP 200 204 91.75 83.70 83.50 83.54
Sample 2 in BP 200 181 94.5 88.97 89.00 88.97
Sample 3 in BP 200 169 96.25 92.84 92.50 92.52
Sample 4 in BP 200 132 96.75 93.90 93.50 93.55
Sample 5 in BP 200 64 98.50 97.05 97.00 96.98

Figure 10. Inner- and outer-ring faults of the luffing mechanism bearing.

Table 4. Cumulative contribution of the principal components of
the actual signal.

Main Eigenvalues Contribution Cumulative
ingredient rate [%] contribution

rate [%]

1 9.1871 76.5592 76.5592
2 1.5429 12.8575 89.4167
3 0.8279 6.8992 96.3159

of the SVM model. As shown in Fig. 15e and Table 5, the
recognition accuracy of the feature sample after PCA dimen-
sion reduction in SVM is 99.5 %, and the training time is
43 s. The recognition accuracy of the feature sample without
dimension reduction is 97 %, and the training time is 85 s.

Therefore, judging from the comprehensive classification re-
sults of the samples, the classification effect of the samples
with VMD–multidimensional composite features combined
with PCA in SVM is better. In order to verify that SVM is
more effective than similar algorithms, we use BP to classify
all of the samples. The results are shown in Fig. 16. It can be
seen from Figs. 15 and 16 and Table 5 that SVM has better
classification and recognition effects among the same types
of algorithms.

5 Conclusions

In order to detect the fault condition of the bearing of the
crane luffing mechanism, this paper proposes a kurtosis-
based IPSO to optimize the penalty factor α and the num-
ber of decomposition levels k in VMD. Through simulation
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Table 5. Actual signal diagnostic performance indicators.

Type Number of samples in Training Accuracy Precision Recall F1 score
the training set time [s] [%] [%] [%] [%]

Sample 1 in SVM 200 179 94.50 89.20 89.00 89.00
Sample 2 in SVM 200 136 95.75 91.69 91.50 91.52
Sample 3 in SVM 200 123 96.25 92.70 92.50 92.47
Sample 4 in SVM 200 85 97.00 94.04 94.00 94.00
Sample 5 in SVM 200 43 99.50 99.03 99.00 99.00
Sample 1 in BP 200 214 92.50 85.12 85.00 84.81
Sample 2 in BP 200 182 93.75 87.89 87.50 87.52
Sample 3 in BP 200 153 95.50 91.15 91.00 91.01
Sample 4 in BP 200 133 96.25 92.57 92.50 92.52
Sample 5 in BP 200 71 98.25 97.09 97.00 97.02

Figure 11. Iteration curve of the actual signal IPSO–VMD and
PSO–VMD.

Figure 12. Three algorithms for the actual signal time domain pro-
cessing.

data and experimental data analysis, this method can obtain
optimal parameter values. A method is also proposed to in-
tegrate time domain indicators with entropy features and ex-

Figure 13. Three algorithms for the actual signal envelope spec-
trum.

Figure 14. Bearing state space diagram for dimensionality reduc-
tion by PCA (actual signal).

Mech. Sci., 16, 431–443, 2025 https://doi.org/10.5194/ms-16-431-2025



Z. Tian et al.: Bearing fault diagnosis method in a crane amplitude-changing mechanism 441

Figure 15. Actual signal samples identified in SVM: (a) Class 1, (b) Class 2, (c) Class 3, (d) Class 4, and (e) Class 5.

Figure 16. Actual signal samples identified in BP: (a) Class 1, (b) Class 2, (c) Class 3, (d) Class 4, and (e) Class 5.

https://doi.org/10.5194/ms-16-431-2025 Mech. Sci., 16, 431–443, 2025
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tract their streamlined features through the PCA algorithm.
Experimental data verification shows that this method not
only reduces the training time of the classification model but
also improves the classification accuracy.

Although this paper has achieved significant results in the
detection technology of crane luffing mechanism bearings,
certain limitations remain. The study focuses primarily on
a single type of fault, whereas in real-world scenarios com-
pound faults may occur. The paper lacks an in-depth discus-
sion of compound faults, which restricts the method’s appli-
cability in complex real-world scenarios.

Data availability. The public dataset from Case Western Reserve
University (CWRU) can be found at https://engineering.case.edu/
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