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Abstract. The gear system with backlash is a strong nonlinear system. The generalized harmonic balance
method is capable of dealing with most strong nonlinear problems. The analytical solutions of unstable peri-
odic motion and quasi-periodic motion can also be obtained, and the principle of chaos generation can be further
explained. The present study employs the generalized harmonic balance method to obtain an approximate an-
alytical solution for a nonlinear gear dynamic system, which can be used to analyze the dynamics models of
gear system with backlash. The accuracy of the analytical solution can be controlled by changing the number of
harmonic terms. A characteristic diagram of harmonic amplitude versus the amplitude of the dynamic transmis-
sion error (DTE) is obtained using the generalized harmonic balance method, and the influence of DTE on the
stability and bifurcation of the system is discussed. The stable intervals and bifurcation of periodic motion of
the system are discussed in detail through the analysis of eigenvalue structures. It is found that the existence of
Hopf bifurcation at the intersection of stable and unstable branches of periodic solutions leads to changes in the
topology of periodic motion of the system.

1 Introduction

Gear transmission is widely used in various industries in hu-
man society, and its smooth operation is crucial for the en-
tire system. Backlash is the inherent characteristic of the gear
transmission system. In the split torque transmission system
of helicopter main reducers in particular, the meshing peri-
odic motion of branch spur gears directly affects the vibra-
tion characteristics of the system. The existence of this back-
lash can cause gear impact phenomena and lead to a series
of nonlinear behaviors in the system (Liu et al., 2022; Qi
et al., 2023). The stability of periodic motion is an impor-
tant part of the study of nonlinear system dynamics behavior,
which includes both the stability of parameters and the stabil-
ity of initial perturbations (Natsiavas, 2019; Huang and Fu,
2019). The traditional harmonic balance methods can only
study nonlinear systems with small parameters; that is, weak
nonlinear systems and the time multi-scale method and per-
turbation method cannot directly discuss the stability of pe-

riodic motion solutions. Luo and Huang (2011) proposed a
generalized harmonic balance method in 2012. The Fourier
series with time-varying coefficients is used to represent the
periodic solution of the system. The original nonlinear sys-
tem is replaced by a differential equation with coefficients.
The stability of the solution is determined by the eigenvalues
of the Jacobian matrix of the coefficient differential equa-
tion, and the precision of the solution can be controlled by
changing the number of harmonic terms. Through Hopf bi-
furcation, the mechanism of multi-period bifurcation can be
deduced theoretically, and the principle of chaos generation
can be further explained.

The analytical solutions of gear systems have been stud-
ied by scholars in the past. In 1992, Padmanabhan and
Singh (1992) studied gear systems with backlash and used
the harmonic balance method, numerical methods, and com-
puter simulations to prove the existence of harmonic, peri-
odic, and chaotic solutions. They constructed approximate
solutions for excitation frequencies using the harmonic bal-
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Figure 1. The dynamical model of the gear meshing system.

ance method, which were then used to classify weak, mod-
erate, and strong nonlinear spectral interactions. In 1995,
Blankenship and Kahraman (1995) attempted to explain the
complex behavior of steady-state forcing responses com-
monly observed in rotating machinery using harmonic bal-
ance methods and experimental verification. In 2005, Al-
shyyab and Kahraman (2005) obtained analytical solutions
for period-1 and sub-harmonic motions in multi-pair gear
trains using the harmonic balance method and applied the
Floquet theory to determine the stability of the periodic so-
lutions. However, these studies generally ignore the strong
nonlinear characteristics of the system and often only apply
to some specific low-speed and low-dimensional gear sys-
tems.

Since its birth, the application of the generalized harmonic
balance method in the field of nonlinear dynamics has at-
tracted the attention of many scholars. Luo and Huang (2013)
and Huang and Luo (2014, 2015) analyzed period-m motion
in the Jeffcott rotor system using the generalized harmonic
balance method, provided analytical expressions for the sys-
tem’s periodic solutions, and analyzed the stability and bi-
furcation of period-m motion. Huang and Fu (2019) deter-
mined the vector field of the subsystem using discontinu-
ity theory, explained simulated periodic motion and chaotic
motion using the generalized harmonic balance method, and
discussed periodicity and stability of steady-state motion.
Luo and Huang (2013), Xu et al. (2017), and Huang and
Luo (2014, 2015) used the generalized harmonic balance
method to obtain an analytical solution for periodic mo-
tion in a class of one-dimensional nonlinear dynamic sys-
tems and used eigenvalue analysis to determine the stabil-

Figure 2. The fitting curve of the function of gear backlash.

ity and bifurcation of the system’s periodic motion. Then,
Xu et al. (2022, 2023, 2024), studied a nonlinear rotor sys-
tem and found a sequence of odd-order independent sub-
harmonic vibrations being released for vibration isolation
and suppression. The frequency–amplitude characteristics of
independent sub-harmonic vibrations were discussed by the
generalized harmonic balance method. They provided a bi-
furcation tree from period 1 to period 8 using the amplitude–
frequency characteristics and completed numerical simula-
tions of stable period-1 to period-8 evolution to verify the
accuracy of the periodic evolution (Luo and Guo, 2018). Luo
and Huang (2012) used the generalized harmonic balance
method to obtain the analytical solutions for period-m flows
and chaos in nonlinear dynamical systems, which they pre-
sented. The nonlinear damping, periodically forced, Duffing
oscillator was investigated as an example to demonstrate the
analytical solutions of periodic motions and chaos, with the
mechanism for a period-m motion jumping to another period-
n motion in numerical computation founded.

At present, there are some studies on the period and
motion stability of nonlinear gear system. Margielewicz et
al. (2017) introduced the computer simulation results of
the time change gear model, and in order to determine the
scope of irregular gear behavior, the branch of the branch
of the Lyapunov index and amplitude frequency distribu-
tion was drawn using the numerical method. Farshidianfar
and Saghafi (2014) conducted an analytical and numerical
study of bifurcation and path to chaos in gear systems. Ap-
plying the Melnikov analytical method, the threshold values
for the occurrence of chaotic motion are obtained. The nu-
merical simulation of the system including the bifurcation
diagram, phase plane portraits, Fourier spectra, and time his-
tories is considered to confirm the analytical predictions for
the occurrence of homoclinic bifurcation and chaos in non-
linear gear systems. In recent years, research on the non-
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linear behavior of gear backlash has mostly been based on
numerical methods. Mo et al. (2024) utilized phase trajec-
tory planes, phase diagrams, Poincaré maps, and bifurca-
tion diagrams to describe the nonlinear behavior of the sys-
tem. They employed the multi-scale method to analyze the
system’s superharmonic resonance characteristics and deter-
mined the stability conditions for superharmonic resonance
through numerical analysis. Hu et al. (2023) calculated the
time-varying meshing stiffness (TVMS) based on slicing the-
ory and numerical computation methods. Using the Runge–
Kutta method, they analyzed the periodic, sub-harmonic, and
chaotic behaviors of the system while also validating the ef-
fectiveness of their computational approach.

In this paper, based on the classical nonlinear dynamics
model of a single gear pair with backlash, the generalized
harmonic balance method is used to search the periodic mo-
tion of a gear system with given parameters and determine its
stability. The stability and bifurcation of periodic solutions
will be analyzed using eigenvalue structure analysis. The an-
alytical results will be compared with numerical solutions
to verify the accuracy of the analytical results. In addition,
the periodic motion of the gear system is studied through the
harmonic amplitude and phase diagram, and the stability is
determined. The stability of the strong nonlinear single-stage
gear system with periodic motion is studied to provide a ref-
erence for selecting the corresponding parameters and initial
conditions of the target periodic solution.

2 Nonlinear gear dynamics model with backlash

The dynamical model of a gear meshing system with time-
varying mesh stiffness, gear backlash, and the dynamic trans-
mission error (DTE) is shown in Fig. 1. θ1 and θ2 represent
the rotation angles of the driving and the driven gear, respec-
tively; I1 and I2 represent the moments of inertia of the driv-
ing and driven gear, respectively; rb1 and rb2 are the base
radii of the driving and driven gear, respectively; T1 and T2
represent the torques acting on the driving and driven gear,
respectively; c is the meshing damping; k(τ ) is the time-
varying mesh stiffness; e(τ ) represents the harmonic ampli-
tude of the dynamic transmission error (DTE); and b is the
gear backlash.

Establish the system’s motion equations based on the sys-
tem dynamics model in Fig. 1:
I1θ̈1+ c

(
rb1θ̇1− rb2θ̇2− ė(τ )

)
rb1+ k(τ )f,

(rb1θ1− rb2θ2− e(τ ))rb1 = T1,

I2θ̈2− c
(
rb1θ̇1− rb2θ̇2− ė(τ )

)
rb2+ k(τ )f,

(rb1θ1− rb2θ2− e(τ ))rb2 =−T2.

(1)

In the above equation, f is the function of gear backlash. By
defining the equivalent mass as me = I1I2 / (rb1I2− rb1I1),
the transmission error as x = rb1θ1−rb2θ2−e(τ ), and the ex-
ternal load force as F = (T1I2-T2I1) / I1I2, the system dy-

namics equation can be rewritten as

meẍ+ cẋ+ k(τ )f (x)= F −meë(τ ). (2)

The comprehensive transmission error is represented by
e(τ )= ε cos(�τ ), where � is the meshing frequency and ε
represents the error amplitude. The time-varying mesh stiff-
ness is denoted as k(τ ):

k(τ )= k0+ km cos(�τ ). (3)

In the above equation, k0 is average meshing stiffness and km
is amplitude of fluctuation in meshing stiffness. f (x) repre-
sents the function of gear backlash, which can be expressed
in a piecewise form as follows:

f1(x)=

 x− b,x > b,

0,−b ≤ x ≤ b,
x+ b,x <−b.

(4)

To obtain an analytical solution for the dynamics equation,
the function of gear backlash can be simplified to a cubic
polynomial form as shown in Eq. (5), and its fitting curve is
shown in Fig. 2.

f2(x)= γ1x+ γ2x
3 (5)

In the above equation, γ1 and γ2 represent the fitting coeffi-
cient of the backlash function.

3 Analytical solutions

The above dynamical model of gear meshing system can be
simplified to the following form through nondimensionaliza-
tion:

ẍ+αẋ+ (β1+β2 cos(�t))
(
γ1x+ γ2x

3
)
=

Q+Qm cos(�t). (6)

In this case, the gear discontinuity dynamics equation is
transformed into a continuous dynamics equation, which can
be solved using the generalized harmonic balance method for
continuous dynamical systems. The above equation can be
written in standard form as

ẍ = f (ẋ,x, t), (7)

where

f (ẋ,x, t)=−αẋ− (β1+β2 cos(�t))
(
γ1x+ γ2x

3
)

+Q+Qm cos(�t). (8)

Assuming that the continuous dynamical system has a
period-m solution with T = 2π/�, the analytical expression
of the periodic solution can be represented by a Fourier se-
ries:

x∗(t)= a(m)
0 (t)+

N∑
k=1[

b
(m)
k/m(t)cos

(
k

m
�t

)
+ c

(m)
k/m(t) sin

(
k

m
�t

)]
. (9)
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Figure 3. Bifurcation diagrams. (a) x− ε, forward change; (b) ẋ− ε, forward change; (c) x− ε, reverse change; (d) ẋ− ε, reverse change.
(�=2, α = 0.1, β1 = 1, β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004, Q= 0.1, ε ∈[0, 15].)

Table 1. The stability of period-1 motion based on HB3.

Eigenvalue structures Amplitude of DTE ε Stability

(0, 0, 0 | 7, 0, 0) [0, 0.8698), [0, 3.4425), [4.0139, 5.3415), [4.1310, 15], stable
[0, 2.8082), [11.4643, 15], [4.0139, 15]

(0, 0, 0 | 6, 1, 0) [0.8698, 0.8815), [3.4430, 3.4485), [3.7847, 4.1308), unstable
[2.8082, 2.8627), [11.1882, 11.4644)

(0, 0, 0 | 5, 2, 0) [0.8815, 0.8936), [3.4485, 3.4650), [2.8627, 11.1182) unstable

(1, 1, 0 | 5, 1, 0) [3.7847, 15] unstable

(1, 1, 0 | 4, 2, 0) [0, 0.8936), [0, 5.3415) unstable

(0, 0, 0 | 4, 3, 0) [3.4650, 4.0123) unstable

(1, 1, 0 | 4, 2, 0) or (2, 0, 0 | 4, 2, 0) [0.8936, 0.9056] unstable

(1, 1, 0 | 5, 1, 0) or (2, 0, 0 | 5, 1, 0) [3.7540, 3.7847] unstable

The first and second derivatives of the periodic solution
are as follows:

ẋ∗(t)= ȧ(m)
0 (t)+

N∑
k=1

[(
ḃ

(m)
k/m(t)+ k�

m
c

(m)
k/m(t)

)
cos(

k�
m
t
)
+

(
ċ

(m)
k/m(t)− k�

m
b

(m)
k/m(t)

)
sin
(
k�
m
t
)]
,

(10)

ẍ∗(t)= ä(m)
0 (t)+

N∑
k=1

[(
b̈

(m)
k/m(t)+ 2 k�

m
ċ

(m)
k/m(t)

−
(
k�
m

)2
b

(m)
k/m(t)

)
cos

(
k�
m
t
)
+

(
c̈

(m)
k/m(t)−

2 k�
m
ḃ

(m)
k/m(t)−

(
k�
m

)2
c

(m)
k/m(t)

)
sin
(
k�
m
t
)]
.

(11)
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Figure 4. The harmonic amplitude versus the amplitude of DTE for periodic motions in the gear nonlinear dynamic system based on HB3:
(a) A1, (b) ϕ1, (c) A2, (d) ϕ2, (e) A3, (f) ϕ3, (g) a0 (�=2, α = 0.1, β1 = 1, β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004, Q= 0.1, εε [0, 15]).

By substituting Eqs. (9)–(11) into Eq. (6) and balancing
the coefficients of each harmonic component cos(k�t/m)
and sin(k�t/m) (k = 1, 2, ..., N ), the original dynamic sys-
tem can be transformed into a new dynamic system for cal-
culating the Fourier series coefficients:



ä
(m)
0 = F0

(
a

(m)
0 ,b(m),c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
,

b̈(m)
=−2�

m
k1ċ

(m)
+ (�

m
)2k2b

(m)
+F 1(

a
(m)
0 ,b(m),c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
,

c̈(m)
= 2�

m
k1ḃ

(m)
+ (�

m
)2k2c

(m)
+F 2(

a
(m)
0 ,b(m),c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
,

(12)

https://doi.org/10.5194/ms-16-417-2025 Mech. Sci., 16, 417–430, 2025



422 B. Dai et al.: Analytical periodic solutions of nonlinear gear systems

Figure 5. The eigenvalue structures and bifurcation of periodic motions in the gear nonlinear dynamic system based on HB3. (a)–(d) The
first, second, third, and fourth branches of periodic motion, a0, for example (�=2, α = 0.1, β1 = 1, β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004,
Q= 0.1).

Table 2. The bifurcation points of period-1 motion based on HB3.

Type of bifurcation Bifurcation points ε

HB 2.8082, 3.4430, 4.0123,
4.1308, 5.3415, 11.4644

SN none

UHB 0.8815, 2.8627, 3.4485, 3.4650, 11.1882

USN 0.8936, 3.7847

where

k1 = diag[1,2, . . .,N ],
k2 = diag[1,22, . . .,N2

],

b(m)
=

(
b

(m)
1/m,b

(m)
2/m, . . .,b

(m)
N/m

)T
,

c(m)
=

(
c

(m)
1/m,c

(m)
2/m, . . .,c

(m)
N/m

)T
,

F 1 = (F11,F12, . . .,F1N )T ,
F 2 = (F21,F22, . . .,F2N )T ,

(13)

and

F0

(
a

(m)
0 ,b(m),c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
=

1
mT

mT∫
0
f (ẋ,x, t)dt,

F1k

(
a

(m)
0 ,b(m),c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
=

2
mT

mT∫
0
f (ẋ,x, t)cos

(
k�
m
t
)

dt,

F2k

(
a

(m)
0 ,b(m),c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
=

2
mT

mT∫
0
f (ẋ,x, t) sin

(
k�
m
t
)

dt,

k = 1,2, . . .,N.

(14)
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The following equations can be obtained by calculation:

F0

(
a

(m)
0 ,b(m),c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
=−αȧ

(m)
0 −β1γ1a

(m)
0 −β1γ2f1

−
1
2β2γ1b

(m)
m/m−β2γ2f2−Qm,

F1k

(
a

(m)
0 ,b(m),c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
=−α(ḃ(m)

k/m+
k�
m
c

(m)
k/m)−β1γ1b

(m)
k/m

−β2γ1f3k −β2γ2f4k −β1γ2f7k +Qmδ
m
k ,

F2k

(
a

(m)
0 ,b(m),c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
=−α(ċ(m)

k/m−
k�
m
b

(m)
k/m)−β1γ1c

(m)
k/m

−β2γ1f5k −β2γ2f6k −β1γ2f8k,

k = 1,2, . . .,N,

(15)

where

f1 =
1
mT

mT∫
0
x3dt

= (a(m)
0 )3
+ 3a(m)

0

N∑
i=1

N∑
j=1

b
(m)
i/mb

(m)
j/mf20(i,j )

+c
(m)
i/mc

(m)
j/mf22(i,j )

+

N∑
i=1

N∑
j=1

N∑
l=1
[b

(m)
i/mb

(m)
j/mb

(m)
l/mf30(i,j, l)

+3b(m)
i/mc

(m)
j/mc

(m)
l/mf32(l, j, i)],

(16)

f2 =
1
mT

mT∫
0
x3 cos(�t)dt

= 3(a(m)
0 )2

N∑
i=1
b

(m)
i/mf20(i,m)+ 3a(m)

0

N∑
i=1

N∑
j=1[

b
(m)
i/mb

(m)
j/mf30(i,j,m)+ c(m)

i/mc
(m)
j/mf32(i,j,m)

]
+

N∑
i=1

N∑
j=1

N∑
l=1

[
b

(m)
i/mb

(m)
j/mb

(m)
l/mf40(i,j, l,m)

+3c(m)
i/mc

(m)
j/mb

(m)
l/mf42(i,j, l,m)

]
,

(17)

f3k =
2
mT

mT∫
0

x cos(�t)cos(
k�

m
t)dt

= 2a(m)
0 f20(m,k)+ 2

N∑
i=1

b
(m)
i/mf30(i,m,k), (18)

f4k =
2
mT

mT∫
0
x3 cos(�t)cos

(
k�
m
t
)

dt

= 2(a(m)
0 )3f20(m,k)+ 6(a(m)

0 )2
N∑
i=1
b

(m)
i/mf33(i,m,k)

+6a(m)
0

N∑
i=1

N∑
j=1
[b

(m)
i/mb

(m)
j/mf40(i,j,m,k)

+c
(m)
i/mc

(m)
j/mf42(i,j,m,k)]

+2
N∑
i=1

N∑
j=1

N∑
l=1
[3c(m)

i/mc
(m)
j/mb

(m)
l/mf52(i,j, l,m,k)

+b
(m)
i/mb

(m)
j/mb

(m)
l/mf50(i,j, l,m,k)],

(19)

f5k =
2
mT

mT∫
0
x cos(�t) sin

(
k�
m
t
)

dt

= 2
N∑
i=1
c

(m)
i/mf32(i,k,m),

(20)

f6k =
2
mT

mT∫
0
x3 cos(�t) sin

(
k�
m
t
)

dt

= 6(a(m)
0 )2

N∑
i=1
c

(m)
i/mf32(i,k,m)

+12a(m)
0

N∑
i=1

N∑
j=1

b
(m)
i/mc

(m)
j/mf42(j,k,m,i)

+2
N∑
i=1

N∑
j=1

N∑
l=1

[
c

(m)
i/mc

(m)
j/mc

(m)
l/mf54(i,j, l,k,m)

+3c(m)
i/mb

(m)
j/mb

(m)
l/mf52(i,k,m,j, l)

]
,

(21)

f7k =
2
mT

mT∫
0
x3 sin( k�

m
t)dt

= 6(a(m)
0 )2

N∑
i=1
b

(m)
i/mf20(i,k)

+6a(m)
0

N∑
i=1

N∑
j=1

b
(m)
i/mb

(m)
j/mf30(i,j,k)+ c(m)

i/mc
(m)
j/m

f32(i,j,k)+ 2
N∑
i=1

N∑
j=1

N∑
l=1

[
b

(m)
i/mb

(m)
j/mb

(m)
l/mf40(i,j, l,k)

+3c(m)
i/mc

(m)
j/mb

(m)
l/mf42(i,j, l,k)

]
,

(22)

https://doi.org/10.5194/ms-16-417-2025 Mech. Sci., 16, 417–430, 2025



424 B. Dai et al.: Analytical periodic solutions of nonlinear gear systems

f8k =
2
mT

mT∫
0
x3 cos( k�

m
t)dt

= 6(a(m)
0 )2

N∑
i=1
c

(m)
i/mf22(i,k)

+12a(m)
0

N∑
i=1

N∑
j=1

c
(m)
i/mb

(m)
j/mf32(i,k,j )

+2
N∑
i=1

N∑
j=1

N∑
l=1

[
3c(m)
i/mb

(m)
j/mb

(m)
l/mf42(i,k,j, l)

+c
(m)
i/mc

(m)
j/mc

(m)
l/mf44(i,j, l,k)

]
,

(23)

and

f20(i,j )= (δ0
i−j + δ

0
i+j )/2,

f22(i,j )= (δ0
i−j − δ

0
i+j )/2,

f30(i,j, l)= (δ0
i−j+l + δ

0
i+j−l + δ

0
i−j−l + δ

0
i+j+l)/4, (24)

f32(i,j, l)= (δ0
i−j+l + δ

0
i−j−l − δ

0
i+j−l − δ

0
i+j+l)/4, (25)

f40(i,j, l,k)= (δki+j+l + δ
k
|i+j−l|+ δ

k
|i−j+l|+ δ

k
|i−j−l|)/8,

(26)

f42(i,j, l,k)= (δk
|i−j+l|+ δ

k
|i−j−l|− δ

k
|i+j+l|− δ

k
|i+j−l|)/8, (27)

f44(i,j, l,k)= (−δki+j+l + sign(i+ j − l)δk
|i+j−l|

+sign(i− j + l)δk
|i−j+l|− sign(i− j − l)δk

|i−j−l|)/8,
(28)

f50(i,j, l,k,m)= (δk+mi+j+l + δ
k+m
|i+j−l|+ δ

k+m
|i−j+l|+ δ

k+m
|i−j−l|

+δk−mi+j+l + δ
k−m
|i+j−l|+ δ

k−m
|i−j+l|+ δ

k−m
|i−j−l|)/16,

(29)

f52(i,j, l,k,m)= (δk+m
|i−j+l|+ δ

k+m
|i−j−l|− δ

k+m
i+j+l − δ

k+m
|i+j−l|

+δk−m
|i−j+l|+ δ

k−m
|i−j−l|− δ

k−m
i+j+l − δ

k−m
|i+j−l|)/16,

(30)

f54(i,j, l,k,m)= (−δk+mi+j+l + sign(i− j + l)δk+m
|i−j+l|

+sign(i+ j − l)δk+m
|i+j−l|+ sign(−i+ j + l)δk+m

|−i+j+l|

−δk−mi+j+l + sign(i− j + l)δk−m
|i−j+l|+ sign

(i+ j − l)δk−m
|i+j−l|+ sign(−i+ j + l)δk−m

|−i+j+l|)/16,
(31)

and finally

δij =

{
0, i 6= j,
1, i = j, sign=

 1, i > 0,
0, i = 0,
−1, i < 0.

(32)

Define

z(m)
= (a(m)

0 ,b(m),c(m))T

= (a(m)
0 ,b

(m)
1/m, . . .,b

(m)
N/m,c

(m)
1/m, . . .,c

(m)
N/m)T,

z
(m)
1 = ż(m)

= (ȧ(m)
0 , ḃ(m), ċ(m))T

= (ȧ(m)
0 , ḃ

(m)
1/m, . . ., ḃ

(m)
N/m, ċ

(m)
1/m, . . ., ċ

(m)
N/m)T.

(33)

The state equation for Eq. (33) is expressed as follows: ż(m)
= z

(m)
1 ,

ż
(m)
1 = g(m)

(
z(m),z

(m)
1

)T
,

(34)

where

g(m)(z(m),z
(m)
1 )

=

 F0(z(m),z
(m)
1 )

−2�
m

k1ċ
(m)
+ (�

m
)2k2b

(m)
+F 1(z(m),z

(m)
1 )

2�
m

k1ḃ
(m)
+ (�

m
)2k2c

(m)
+F 2(z(m),z

(m)
1 )

 . (35)

Let{
y(m)
≡ (z(m),z

(m)
1 ),

f (m)
= (z(m)

1 ,g(m))T.
(36)

Therefore, the new dynamic system can be represented as

ẏ(m)
= f (m)(y(m)). (37)

The steady-state periodic solution of the system can be ob-
tained at ẏ(m)

= 0, where

F0(a(m)
0 ,b(m),c(m),0,0,0)= 0,

F 1(a(m)
0 ,b(m),c(m),0,0,0)+ (�

m
)2k2b

(m)
= 0,

F 2(a(m)
0 ,b(m),c(m),0,0,0)+ (�

m
)2k2c

(m)
= 0.

(38)

The nonlinear system of equations consisting of the above
(2N+1) algebraic equations can be solved using the
Newton–Raphson method. Assuming that the solution ob-
tained is y(m)∗

= (z(m)∗,0)T , the linearized expression of
the dynamical system ẏ(m)∗

= f (m) (y(m)) at the equilibrium
point y(m)∗

= (z(m)∗,0)T is

1ẏ(m)
=Df (m)(y(m)∗)1ẏ(m),

Df (m)(y(m)∗)= ∂f (m)(y(m))
∂y(m)

∣∣∣
y(m)∗

.
(39)

The stability of the original nonlinear dynamic system can
be analyzed by solving the eigenvalues of the new dynamic
system. The eigenvalues of the Jacobian matrix of the new
dynamic system can be solved using the following formula:∣∣∣Df (m)(y(m)∗)− λI 2(2N+1)2(2N+1)

∣∣∣
= 0(n1,n2,n3 |n4,n5,n6 ) . (40)

In the above equation, λk (k = 1, 2, ..., 2N+1) is the eigen-
values of the dynamic system, n1 represents the number of
negative real roots, n2 represents the number of positive real
roots, n3 represents the number of real roots equal to 0, n2
represents the number of conjugate complex roots with neg-
ative real parts, n5 represents the number of conjugate com-
plex roots with positive real parts, and n6 represents the num-
ber of conjugate complex roots with real parts equal to 0.

The stability of the system’s periodic solution can be de-
termined according to the following criteria:
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Figure 6. Unstable period-1 motion (ε = 13.26). Panels (a), (c),
(e), and (g) show trajectory diagrams compared with numerical
solution based on HB2, HB4, HB6, and HB8, respectively. Pan-
els (b), (d), (f), and (h) show amplitude–frequency diagrams com-
pared with numerical solution based on HB2, HB4, HB6, and HB8,
respectively. (i) The time histories of displacement diagram based
on HB8. (j) The harmonic phase diagram based on HB8 (�= 2,
α = 0.1, β1 = 1, β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004, Q= 0.1;
ICs: x ≈ 17.9867, ẋ ≈−3.5406, t = 0).

1. If all the characteristic roots of the system have negative
real parts, the periodic solution of the system is stable.

2. If at least one of the characteristic roots of the system
has a positive real part, the periodic solution of the sys-
tem is unstable.

3. The boundary between the stable and unstable equilib-
rium with higher-order singularity gives the bifurcation
conditions and stability with higher-order singularity.

4 Stability and bifurcation analysis

The gear parameters for the gear pair are as follows: the num-
ber of teeth for the driving and driven gears is z1 = 30 and
z2 = 60, respectively, with a face width of 100 and 95 mm, a
module of m= 3 mm, and a pressure angle of α0 = 20°. Fig-
ure 3 shows the bifurcation diagram of the amplitude of DTE
ε (Qm/�

2) with dimensionless coefficients �= 2, α = 0.1,
β1 = 1, β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004, and Q= 0.1.
Figure 3a and b show the bifurcation diagrams of the sys-
tem as the bifurcation parameter ε changes from 0 to 15,
and Fig. 3c and d show the bifurcation diagrams as the bi-
furcation parameter ε changes from 15 to 0. Figure 3a shows
the bifurcation diagram of the dimensionless displacement of
the system as a function of the bifurcation parameter ε, and
Fig. 3b shows the bifurcation diagram of the dimensionless
displacement as a function of the bifurcation parameter ε.
Figure 3c and d show the bifurcation diagrams of the dimen-
sionless displacement and velocity, respectively, as a func-
tion of the bifurcation parameter ε. It can be observed that
during the forward change, the system undergoes the follow-
ing bifurcation sequence: period-1→ period-2→ period-1
→ period-2→ period-4→ period-8→ chaos→ period-2
→ chaos → period-1 motion. However, during the reverse
change, the system only exhibits bifurcation behavior from
period 1 to period 2, indicating the existence of multiple so-
lutions for the periodic motion of the nonlinear system.

In order to verify the nonlinear phenomena in the bifurca-
tion diagram and predict the stability and bifurcation behav-
ior of the system under various parameters, the generalized
harmonic balance method was used to obtain the approxi-
mate analytical solution of the system. The relationship be-
tween the harmonic amplitude and the amplitude of DTE di-
agram of the analytical solution was obtained, which further
predicted the stability of the periodic solution and bifurcation
points in the system. By expressing Eq. (9) in the form of the
relationship between the harmonic amplitude and the phase
function, we can write the following:

x∗(t)= a(m)
0 +

N∑
k=1

A(m)
k/m cos

(
k

m
�t −ϕ

(m)
k/m

)
, (41)
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Figure 7. Stable period-1 motion (ε = 13.26). (a) The time histories of displacement diagram, (b) the trajectories diagram, (c) the harmonic
amplitude diagram, and (d) the harmonic phase diagram (�= 2, α = 0.1, β1 = 1, β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004, Q= 0.1; ICs: x ≈ -
22.4261, ẋ ≈−31.9578, t = 0).

where the harmonic amplitude and harmonic phase can be
expressed as

A(m)
k/m =

√(
b

(m)
k/m

)2
+

(
c

(m)
k/m

)2
,ϕ

(m)
k/m = arctan

(
c

(m)
k/m/b

(m)
k/m

)
. (42)

In the following study, for example, only the stability and bi-
furcation behavior of the period-1 (m= 1) motion of the sys-
tem are analyzed. Figure 4 shows the relationship between
the harmonic amplitude, the amplitude of DTE and harmonic
phase, and the amplitude of DTE diagrams based on the ap-
proximate analytical solution obtained by the three-item gen-
eralized harmonic balance method. In the figure, the black
curve represents stable solutions, while the red curve repre-
sents unstable solutions, and the abbreviation HB stands for
Hopf bifurcation. It can be seen from the figure that each bi-
furcation parameter ε corresponds to multiple stable or unsta-
ble amplitudes and phases, indicating the existence of mul-
tiple solutions under this parameter, some of which are sta-
ble and some unstable. As the system bifurcation parameter
changes, the system’s solution may change from stable to un-
stable or from unstable to stable, and Hopf bifurcations oc-
cur at the boundary of the transition between stable and un-
stable solutions, causing changes in the topology of the sys-
tem’s period-1 motion and leading to the appearance of other
types of motion. For example, the system experiences Hopf

bifurcations at bifurcation points ε = 3.4430, ε = 4.0123,
ε = 5.3415, and ε = 11.4644, corresponding to the transition
from period-1 to period-2 and period-2 to period-1 motion as
shown in Fig. 3.

Figure 5 presents a detailed view of some of the features
and bifurcation points in Fig. 4, indicating the eigenvalue
structures of each curve and some specific bifurcation points.
From Fig. 5, it can be seen that the system exhibits not only
Hopf bifurcations at the transition between stable and un-
stable solutions, but also unstable Hopf bifurcations (UHBs)
and unstable saddle-node bifurcations (USNs) on the unsta-
ble curves. The eigenvalue structures of each segment of the
analytical solutions are indicated by arrows, and the bifurca-
tion points are marked with black dots. It can be seen that
the eigenvalue structures of the stable solutions are all (0, 0,
0 | 7, 0, 0), while the unstable solutions exhibit a variety of
eigenvalue structures. Table 1 provides detailed information
on the eigenvalue structures and stability of each segment
of the system’s solutions, while Table 2 lists the bifurcation
points for each type of bifurcation that occurs in the system.
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Figure 8. Stable period-1 motion (ε = 2). (a) The time histories of displacement diagram, (b) the trajectories diagram, (c) the harmonic
amplitude diagram, and (d) the harmonic phase diagram (�= 2, α = 0.1, β1 = 1, β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004, Q= 0.1; ICs: x ≈ -
1.3399, ẋ ≈ 0.2507, t = 0).

5 Analysis of the precision control of the solution

In this section, the multi-term generalized harmonic balance
method is used to obtain the approximate analytical solution
for the system’s period-1 motion, and the time histories of
displacement and trajectories as well as the harmonic am-
plitude and phase diagrams of the system are obtained. The
accuracy of the analytical solution is verified by comparing
it with the numerical solution.

In Fig. 6, the system parameters are �=2, α = 0.1,
β1 = 1, β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004, Q= 0.1, and
ε = 13.26. The initial conditions (ICs) are x ≈ 17.9867, ẋ ≈ -
3.5406, t = 0. The trajectories and amplitude diagrams ob-
tained using HB2, HB4, HB6, and HB8 are compared with
the analytical and numerical solutions. The black dots in
Fig. 6a, c, e, and g represent the trajectories diagrams ob-
tained by the numerical solution, and the red circles represent
the trajectories diagrams obtained using the multi-term gen-
eralized harmonic balance method. The black dots in Fig. 6b,
d, f, and h represent the amplitude–frequency diagrams ob-
tained by the numerical solution using the fast Fourier trans-
form, and the red crosses represent the harmonic amplitudes
obtained using the multi-term generalized harmonic balance
method. It can be seen that with the increase in the number of
harmonic terms, the overlap between the analytical and nu-

merical solutions in the trajectories diagrams increases and
that the number of harmonic amplitude peaks correspond-
ing to each harmonic term also increases. That is to say, the
more harmonic terms are used, the lower the truncation er-
ror ignored by the analytical solution, and the more accu-
rate the analytical solution obtained. When using the eight-
term generalized harmonic balance method (HB8), the con-
stant term is a0 = A0 ≈ 5.3907, and the harmonic amplitudes
are A1 ≈ 18.0306, A2 ≈ 3.3413, A3 ≈ 1.0545, A4 ≈ 0.6765,
A5 ≈ 0.2279, A6 ≈ 0.0867, A7 ≈ 0.0369, and A8 ≈ 0.0143.
The maximum ignored harmonic amplitude is A9 ≈ 0.0048,
and the relative error is A9/A1 ≈ 2.6621× 10−4. The time
histories of the displacement and trajectory diagrams based
on HB8 are shown in Fig. 6i and j, respectively. The time
histories of displacement of the periodic motion oscillates
once within one period, and the harmonic phase ϕk ε [0, 2π ),
ϕ0 = π , indicates that the center of the periodic motion is on
the left side of the velocity axis. The eigenvalue structure of
the periodic motion is (1, 1, 0 | 5, 1, 0), which shows unstable
period-1 motion.

Due to the sensitivity of nonlinear systems to initial con-
ditions, the stability of the solution may change with dif-
ferent initial values under the same parameters. In Fig. 7,
with system parameters �= 2, α = 0.1, β1 = 1, β2 = 0.7,
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Figure 9. Stable period-1 motion (ε = 4.56). (a) The time histories of displacement diagram, (b) the trajectories diagram, (c) the harmonic
amplitude diagram, and (d) the harmonic phase diagram (�= 2, α = 0.1, β1 = 1, β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004, Q= 0.1; ICs: x ≈ -
4.3849, ẋ ≈ 0.8194, and t = 0).

γ1 = 0.3444, γ2 = 0.03004, Q= 0.1, and ε = 13.26, the ini-
tial conditions are set to x ≈ -22.4261, ẋ ≈ -31.9578, and
t = 0. As shown in the time histories of the displace-
ment diagram (Fig. 7a), the system experiences two os-
cillations within one period T , and the next period T re-
peats the periodic motion. Similarly, in the trajectory dia-
gram Fig. 7b, the trajectory of periodic motion shows two
circles in the phase plane. The harmonic amplitude val-
ues of the system are shown in Fig. 7c, with the constant
term being a0 = A0 ≈ 2.7632, and the harmonic amplitudes
A1 ≈ 10.9170, A2 ≈ 26.8007, A3 ≈ 4.0060, A4 ≈ 0.4221,
A5 ≈ 0.9852, A6 ≈ 0.5713, A7 ≈ 0.6012, A8 ≈ 0.1761, and
the maximum ignored harmonic amplitude A9 ≈ 0.0354,
with a relative error in A9/A2 ≈ 1.3209×10−3. The har-
monic phase diagram of periodic motion is shown in Fig. 7d,
with the harmonic phase ϕkε [0, 2π ), and ϕ0 = π indicates
that the center of periodic motion is located to the left of the
velocity axis. The eigenvalue structure of periodic motion is
(0, 0, 0 | 7, 0, 0), which represents stable period-1 motion.

In Fig. 8, with system parameters �= 2, α = 0.1, β1 = 1,
β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004, Q= 0.1, and ε = 2,
the initial conditions (ICs) are x ≈ -1.3399, ẋ ≈ 0.2507, and
t = 0. The time histories of displacement diagram in Fig. 8a
show that the system undergoes one oscillation within one

period T , and the motion is similar to a sine function. In
Fig. 8b, the trajectory of the periodic motion shows like an
ellipse. The harmonic amplitude values are shown in Fig. 8c,
with the constant term a0 = A0 ≈ 0.8515, and the harmonic
amplitudes A1 ≈ 2.1762, A2 ≈ 0.0154, A3 ≈ 4.4121×10−4,
A4 ≈ 4.3897× 10−4, A5 ≈ 6.4662× 10−6, A6 ≈ 2.9707×
10−7, A7 ≈ 8.9344× 10−8, and A8 ≈ 2.0399× 10−9. The
maximum harmonic amplitude that is neglected, A9, is
smaller than A8, and the relative error is no higher than
A8/A2 ≈ 9.3737× 10−10. The harmonic phase diagram of
periodic motion is shown in Fig. 8d, with the harmonic phase
ϕkε [0, 2π ) and ϕ0 = π indicating that the center of periodic
motion is to the left of the velocity axis. The eigenvalue struc-
ture of periodic motion is (0, 0, 0 | 7, 0, 0), indicating a stable
period-1 motion.

In Fig. 9, the system parameters are �= 2, α = 0.1,
β1 = 1, β2 = 0.7, γ1 = 0.3444, γ2 = 0.03004, Q= 0.1, and
ε = 4.56, and the initial conditions (ICs) are x ≈ -4.3849,
ẋ ≈ 0.8194, and t = 0. From the time histories of the dis-
placement diagram and the trajectory diagram, we see that
the periodic motion exhibits a sinusoidal waveform and an
elliptical shape, respectively. The amplitudes of harmonic
components of the periodic motion are shown in Fig. 9c,
with the constant term being a0 = A0 ≈ 0.8515, and the
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harmonic amplitudes ranging from A1 ≈,2.1762 to A8 ≈

2.0399× 10−9. The neglected maximum harmonic ampli-
tude A9 is less than A8, with a relative error in A8/A2 ≈

9.3737× 10−10, and higher accuracy can be obtained by in-
creasing the number of generalized harmonic components.
The harmonic phase diagram of periodic motion is shown in
Fig. 9d, with the harmonic phase ϕkε [0, 2π ) and ϕ0 = 0 in-
dicating that the center of the periodic motion is on the right
side of the velocity axis. The eigenvalue structure of the peri-
odic motion is (0, 0, 0 | 7, 0, 0), representing a stable period-1
motion.

6 Conclusions

This article establishes the dynamic equation of a gear sys-
tem with clearance based on practical engineering applica-
tions and uses polynomials to mesh the segmented clearance
function, and the analytic solution of the nonlinear dynamic
system is obtained using the generalized harmonic balance
method. A harmonic amplitude–amplitude of DTE charac-
teristic diagram is obtained based on the generalized har-
monic balance method. Through the analysis of the eigen-
value structure, the stability and bifurcation of the periodic
motion are discussed in detail, and the influence of the exter-
nal excitation amplitude on system stability and bifurcation
is discussed. The following conclusions are obtained:

1. The system exhibits not only Hopf bifurcations at the
transition between stable and unstable solutions, but
also unstable Hopf bifurcations (UHB) and unstable
saddle-node bifurcations (USN) on the unstable curves.

2. The more harmonic terms are used, the lower the trun-
cation error ignored by the analytical solution, and
the more accurate the analytical solution obtained.
When using the eight-term generalized harmonic bal-
ance method (HB8), the precision requirement for the
gear system can be satisfied in engineering application.

3. Due to the sensitivity of nonlinear systems to initial con-
ditions, the stability of the solution may change with dif-
ferent initial values under the same parameters. In dif-
ferent initial conditions, the harmonic amplitude of the
harmonic amplitude of the system changes the precision
of the solution.

The stability of the strong nonlinear single-stage gear system
with periodic motion is studied to provide a reference for
selecting the corresponding parameters and initial conditions
for the target periodic solution.
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Margielewicz, J., Gąska, D., and Wojnar, G.: Numerical modelling
of toothed gear dynamics, Sci. J. Sil. Univ. Tech., 97, 105–15,
2017.

Mo, S., Liu, Y., Huang, X., and Zhang, W.: Nonlinear Vibra-
tion and Superharmonic Resonance Analysis of Wind Power
Planetary Gear System, Nonlinear Dyn., 112, 4085–4115,
https://doi.org/10.1007/s11071-023-09268-y, 2024.

Natsiavas, S.: Analytical Modeling of Discrete Mechanical Systems
Involving Contact, Impact, and Friction, Appl. Mech. Rev., 71,
050802, https://doi.org/10.1115/1.4044549, 2019.

Padmanabhan, C. and Singh, R.: Spectral Coupling Issues in a Two-
Degree-of-Freedom System with Clearance Non-Linearities,
J. Sound Vib., 155, 209–230, https://doi.org/10.1016/0022-
460X(92)90508-U, 1992.

Qi, S., Guan, Y., Liu, Y., Zhang, Y., and Yu, G.: Impact-
Meshing Vibration Characteristics of High-Speed
Gear Systems with Backlash, Adv. Mech., 15, 1–12,
https://doi.org/10.1177/16878132231200483, 2023.

Xu, Y., Luo, A. C. J., and Chen, Z.: Analytical Solutions of Peri-
odic Motions in 1-Dimensional Nonlinear Systems.” Chaos Soli-
ton Fract, 97, 1–10, https://doi.org/10.1016/j.chaos.2017.02.003,
2017.

Xu, Y., Jiao, Y., and Chen, Z.: On an Independent Subharmonic
Sequence for Vibration Isolation and Suppression in a Non-
linear Rotor System, Mech. Syst. Signal Pr., 178, 109259,
https://doi.org/10.1016/j.ymssp.2022.109259, 2022.

Xu, Y., Zhao, R., Jiao, Y., and Chen, Z.: Stability and Bifurcations
of Complex Vibrations in a Nonlinear Brush-Seal Rotor System.
Chaos 1 March, 33, 033113, https://doi.org/10.1063/5.0134907,
2023.

Xu, Y., Wang, M., Lu, D., and Zandigohar, M.: Construction of
Complex High Order Subharmonic Vibrations in a Nonlinear
Rotor System I: Eigenvalue Dynamics and Prediction, J. Sound
Vib., 582, 118439, https://doi.org/10.1016/j.jsv.2024.118439,
2024.

Mech. Sci., 16, 417–430, 2025 https://doi.org/10.5194/ms-16-417-2025

https://doi.org/10.1007/s40435-013-0055-4
https://doi.org/10.1142/S0218127415500029
https://doi.org/10.3390/machines10121112
https://doi.org/10.1142/S021812741830046X
https://doi.org/10.1177/1077546311421053
https://doi.org/10.1142/S0218127412500939
https://doi.org/10.1007/s11071-013-0913-9
https://doi.org/10.1007/s11071-023-09268-y
https://doi.org/10.1115/1.4044549
https://doi.org/10.1016/0022-460X(92)90508-U
https://doi.org/10.1016/0022-460X(92)90508-U
https://doi.org/10.1177/16878132231200483
https://doi.org/10.1016/j.chaos.2017.02.003
https://doi.org/10.1016/j.ymssp.2022.109259
https://doi.org/10.1063/5.0134907
https://doi.org/10.1016/j.jsv.2024.118439

	Abstract
	Introduction
	Nonlinear gear dynamics model with backlash
	Analytical solutions
	Stability and bifurcation analysis
	Analysis of the precision control of the solution
	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

