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Abstract. In recent years, the application of automated guided vehicles (AGVs) in the industrial field has been
increasing, and the demand for their path planning and tracking has become more and more urgent. This study
aims to improve the effectiveness of AGV path planning and path-tracking control and to design a comprehensive
hardware and software system in combination with the Robot Operating System (ROS) to improve the practi-
cality of the system. First, the real-time performance and accuracy of path planning by optimizing window size
and dynamic adjustment strategies are improved. Secondly, the research on the fusion of the improved particle
swarm algorithm and PID (proportional, integral, differential) control applied to path tracking is discussed in
depth. By combining the two organically, the accuracy and robustness of AGV path tracking in complex envi-
ronments are improved. In the hardware and software system design phase, the ROS provides a more flexible
and modular solution for the AGV system, and the introduction of ROS not only simplifies the integration of
system components, but also provides a convenient framework for future system upgrades and expansions. In the
experimental phase, the methodology adopted in the study is described in detail, and the superior performance of
the improved method over the traditional method is demonstrated. The experimental results not only confirm the
effectiveness of the improved method in improving path planning and path-tracking accuracy, but also provide
strong support for the active role of the ROS in AGV system design.

1 Research on laser SLAM positioning method

As automated guided vehicles (AGVs) are widely used in
industrial environments, real-time and accurate localization
and map construction become the key to ensuring their safe
and efficient operation. Laser SLAM (simultaneous localiza-
tion and mapping) technology has attracted much attention
because of its excellent performance in complex environ-
ments. This chapter discusses the principle, application, and
key role of laser SLAM in AGV path planning and control.

1.1 AGV modeling

1.1.1 AGV kinematic modeling

When exploring the navigation and control of automated
guided vehicles (AGVs), researchers usually use a simplified
two-dimensional planar motion model (Wang et al., 2023).

This model focuses on the movement of the AGV in the hor-
izontal plane and only considers its displacement changes in
the lateral and longitudinal directions while omitting motion
considerations in the vertical direction (Peng et al., 2024).
The AGV kinematic model in this paper is shown in Fig. 1.

The longitudinal position, lateral position and angle of the
automated guided vehicle can be described as in Eq. (1) be-
low.
ẋa = ν cos(θa),
ẏa = ν sin(θa),
θ̇a = ω,

(1)

where (xa,ya) is the AGV center point, r the radius of the
AGV body, ω the angular velocity, v the linear velocity, and
θa the angle between horizontal direction and AGV direction.

Hence, Z = [xa,ya,θa]
T is the state of the robot andM the

distance between the two wheels of the AGV.
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Figure 1. AGV kinematic model.

We can derive the nonlinear kinematics used in the
differential-drive two-wheeled automated guided vehicle in
Eq. (2).
xa = rcos(θa)(ωr+ωM)/2
ya = rsin(θa)(ωr+ωM)/2
θa = r(ωMωr)/2lω

(2)

1.1.2 TF coordinate system transformations

The transformation framework (TF) is a library for per-
forming coordinate transformations in the Robot Operat-
ing System (ROS). The TF library provides basic matrix
calculations for coordinate transformations as well as a
publisher–subscriber communication mechanism for trans-
forming points, vectors, and transformations between differ-
ent coordinate systems (Yan, 2024). The purpose of coordi-
nate transformations during robot motion is to consistently
characterize the current position of the robot in different co-
ordinate systems so that the robot’s position information can
be applied to the entire map. The position information ob-
tained from the sensors is usually in the sensor’s coordinate
system, and the introduction of coordinate transformations
helps to consistently describe the robot’s position and orien-
tation in different reference systems, thus improving the flex-
ibility and accuracy of robot control and navigation in ROSs.

Suppose that at moment t , the coordinates of the feature
point obtained by the automated guided vehicle (AGV) under
the map coordinate system are [x1,x2,x3]

T and the basis of
its linear space is (a1,a2,a3). Meanwhile, the coordinates of
the same feature point under the sensor coordinate system are
[x′1,x

′

2,x
′

3]
T , and the basis of its linear space is (a′1,a

′

2,a
′

3).
Then, the following can be obtained according to the defini-

Figure 2. TF tree.

tion of coordinate transformation:

[a1,a2,a3]

 x1
x2
x3

= [a′1,a′2,a′3]
 x′1
x′2
x′3

 . (3)

Move the base, (a1,a2,a3), of the linear space under the map
coordinate system to the right as follows: x1
x2
x3

=
 aT1 a

′

1 aT1 a
′

2 aT1 a
′

3
aT2 a

′

1 aT2 a
′

2 aT2 a
′

3
aT3 a

′

1 aT3 a
′

2 aT3 a
′

3

 x′1
x′2
x′3

= Rx′, (4)

where R is the rotation matrix and is orthogonal.
In the Robot Operating System (ROS), the transformation

framework (TF) builds a system for coordinate transforma-
tions, which establishes the specification and architecture of
coordinate transformations. In this system, each coordinate
system is assigned a superordinate coordinate system and can
have multiple subordinate coordinate systems. The TF is re-
sponsible for managing the transformation relationships be-
tween all coordinate systems within the system and is able to
dynamically construct and update transformations between
superordinate and subordinate coordinate systems. Using the
visualization software rqt, users can easily view the TF tree
built in the simulation environment to better understand and
debug the relationships of coordinate transformations in the
ROS as shown in Fig. 2 (P. et al., 2023).

The odometry coordinate system plays a crucial role in
revealing detailed information about the spatial layout of
the entire environment. By utilizing the coordinate transfor-
mation framework (TF), the odometry coordinate system is
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Figure 3. Lidar triangulation schematic diagram.

able to publish the position estimation data collected through
the odometers, which are essential for accurately tracking
the robot’s trajectory. Furthermore, the base_link coordi-
nate system represents the core part of the robot, while the
base_footprint coordinate system is an abstract coordinate
system usually located at the bottom center point of the robot.
The introduction of this virtual coordinate system greatly
simplifies the processing of collision detection and other re-
lated tasks, thus improving the efficiency and safety of robot
operation. These coordinate systems are related to each other
through TF coordinate transformations, forming a coordinate
system for the robot in the environment, which provides ac-
curate spatial references for navigation, perception, and con-
trol, enabling the robot to move and localize accurately in
complex environments (Xue et al., 2023).

1.1.3 Lidar model

Lidar is a key sensor that can be used to acquire position
data. The ranging mechanism of this sensor is based on two
main principles: triangulation and time-of-flight (TOF) tech-
niques. The triangulation method is suitable for some spe-
cific applications due to its high accuracy at medium to close
ranges and relatively low cost. On the other hand, the TOF
technique offers a wide range of ranging capabilities, high-
accuracy distance measurements, and strong anti-jamming
properties, which makes it useful in more diverse environ-
mental conditions. In this paper, triangulation is chosen to
be the type of ranging, taking full account of its advantages
in medium- and short-range applications, and its principle is
shown in Fig. 3.

In Fig. 3, l is the distance between the lidar and the de-
tected object, M the detected object, OA the transmitter of
the lidar, and OB the laser receiver.

1.1.4 Odometer model

Odometry is a technique used to measure the position and
orientation of a robot or vehicle. Odometry models typically
involve calculating the transition from a known position on
the robot or vehicle to the current position. The model takes

Figure 4. Odometer model.

into account a variety of sensor data, such as wheel speed
encoders, gyroscopes, and accelerometers to estimate the
change in position of the vehicle or robot in its frame of ref-
erence. Automated guided vehicles (AGVs) are usually fitted
with wheel encoders on each wheel and these encoders are
responsible for measuring the odometer data. A schematic of
the odometer model is shown in Fig. 4. By monitoring the
rotation of the wheels, the odometer is able to calculate the
displacement and orientation changes of the robot during mo-
tion, providing important data for robot localization in space
(Yu et al., 2023). This multi-sensor fusion can improve the
accuracy and robustness of localization, enabling the robot
to sense and understand its surroundings more accurately.

In Fig. 4, (xt−1,yt−1,θt−1) is AGV’s position at moment
t − 1, (xt ,yt ,θt ) is AGV’s position at moment t , 1d is the
amount of displacement in a given direction, and 1θ is the
amount of change in the heading angle.

1.2 Brief description of the SLAM working principle

Autonomous mobile robots solve three major problems:
where am I, where am I going, and how do I get there, i.e.,
robot localization, mapping, and path planning. These three
are closely related: localization requires maps, mapping re-
quires accurate positioning, and path planning must have ac-
curate positioning and maps. SLAM technology can solve
the robot localization and mapping problems well (Michał et
al., 2023).

SLAM is synchronized localization and mapping technol-
ogy, which mainly includes two parts: localization and map-
ping. Localization means that the robot, through its own sen-
sors (lidar, depth camera, or IMU), can obtain information
about the surrounding environment with the system known
map correlation matching and then, in the process of con-
tinuous movement, calculate its own accurate position infor-
mation; mapping means that the robot builds and updates the
map based on its own position and the information of the sur-
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Figure 5. Working principle of the SLAM system.

rounding environment during the process of movement (Sun
et al., 2024). The working principle is shown in Fig. 5.

As shown in Fig. 5, SLAM technology firstly utilizes the
wheel odometer carried by the robot itself to obtain the
four-wheel mileage information of the robot and inputs the
odometer information into the kinematic model to predict the
current position information on the robot X1. Secondly, the
lidar carried by the robot itself continuously obtains the in-
formation of the robot’s surroundings and, at the same time,
matches the obtained laser point cloud information with the
known global map to calculate the more accurate position
information on the robot. The robot’s more accurate posi-
tion information is labeled X2; then, X2 is used to correct
X1, which leads to the robot’s accurate position information,
X3. The local map is then constructed using the X3 position
information and the composition algorithm; finally, the lo-
cal map is loaded into the global map and updated (Hu et
al., 2024).

1.3 AGV positioning algorithm

1.3.1 Monte Carlo particle filtering

Monte Carlo localization (MCL) is a state estimation method
for nonlinear and non-Gaussian noise systems. It represents
the likelihood of an automated guided vehicle (AGV) being
at each point by randomly distributing a set of particles on
an environmental map and assigning each particle a corre-
sponding probability density based on the sensor data. The
MCL algorithm achieves continuous tracking of the AGV’s
position by constantly updating the weights and positions of
these particles. This approach is able to handle uncertainty
information and shows strong robustness in the presence of
imperfect sensor data (Wang et al., 2024). This method is
suitable for both global and local localization, enabling the
robot to achieve efficient and accurate self-localization in dif-
ferent environments.

Figure 6. Schematic of Monte Carlo positioning.

The Monte Carlo localization process is shown in Fig. 6.
In the figure, b is the vehicle’s position, w the control vol-

ume, a the observed volume of the lidar, and M the known a
priori map.

The Monte Carlo method is a powerful computational
technique that focuses on solving physical and mathemati-
cal problems by modeling stochastic processes. The core of
this method lies in the use of state equations combined with
a priori knowledge of probability as a means to derive proba-
bility distributions for state variables. Specifically, the Monte
Carlo method first randomly generates a series of observable
particles that represent possible states or solutions.

Subsequently, the method determines the weight of each
particle by comparing the observed data of these particles
with the actual observations. This step is performed based
on the consistency between the observed data and the actual
data. Each particle is assigned a different weight based on
its proximity to the actual observations, with particles with
higher weights representing more likely states or solutions.

Next, the Monte Carlo method represents the current state
by randomly selecting particles from the particle population.
This random selection process takes into account the weights
of each particle and is therefore more likely to select particles
with higher weights. In this way, the Monte Carlo algorithm
is able to track and update the localization state efficiently.

The process is iterative, meaning that it repeats itself over
and over again, with each iteration updating the weights of
the particles based on new observations and re-selecting the
particles that represent the current state. As the iterations pro-
ceed, the Monte Carlo algorithm is able to gradually approx-
imate the true solution of the problem, providing accurate
probability distribution estimates of the state variables (Yang
and Ni, 2023).

Overall, the Monte Carlo method is a computational
method based on stochastic simulation, which effectively
solves various complex physical and mathematical problems
by combining state equations and prior probability knowl-
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edge along with iteratively updating particle weights and se-
lection processes.

The model of the Monte Carlo algorithm is defined as fol-
lows. The kinematic model is defined as

bt = f (bt−1,wt )+ yt , (5)

where wt , bt , and yt denote the control variables, state vari-
ables, and motion noise at moment t , respectively; bt−1 de-
notes the state variable at moment t − 1; and f is the state
transition function of the robot. The observation model is de-
fined as

It = k (bt )+ ct . (6)

In the equation, It, ct , and bt denote the observed variables,
observation noise, and state variables of the system at mo-
ment t , respectively, and k is the measurement function of
the robot observation.

Combining Eqs. (5) and (6), the main goal of the Monte
Carlo localization algorithm is to estimate the current robot
position on a known map of the environment using state
information and observations from the previous moment.
The algorithm continuously optimizes the estimation of the
robot’s position using a discrete set of particles to character-
ize the potential position of the robot and updating the state
of these particles with the help of probabilistic methods (Li
et al., 2022). By resampling the particles, the Monte Carlo
algorithm is able to derive the posterior distribution of the
state variables.

The specific steps of the Monte Carlo algorithm include
initialization, updating particles, calculating weights, and re-
sampling. A key step in the Monte Carlo localization algo-
rithm is resampling, which aims to maintain the stability and
accuracy of the algorithm when the number of valid particles
decreases after several iterations of sampling. During resam-
pling, particles are selected based on their weights, and par-
ticles with higher weights have a higher probability of being
selected, which helps to prevent the phenomenon of particle
degradation due to the reduction of effective particles. The
algorithm evaluates the degree of particle degradation using
the number of effective particles, Nff. The number of effec-
tive particles is calculated by the algorithm. Since it is not
possible to calculate Nff precisely, Eq. (7) is used to repre-
sent the approximation:

Nff =
1∑

n
i=1

(
cit

)2 . (7)

WhenNff is smaller than the set fixed threshold,Nth, it means
that the particle set cannot effectively represent the poste-
rior distribution of the state variable, indicating that the algo-
rithm has a serious particle degradation problem in the cur-
rent state; in order to cope with this situation, a resampling
operation is needed to increase the number of effective par-
ticles to improve the stability and accuracy of the algorithm

and to ensure that the robot can obtain reliable localization
results in different states.

Figure 7 illustrates part of the Monte Carlo localization
process during the ROS simulation.

In the Monte Carlo localization algorithm, a set of parti-
cles is randomly sprinkled in the environment that represent
the possible positions and orientations of the robot. The par-
ticle filter works based on the assumption that the particles
that best match the environment actually perceived by the
robot represent the locus that is most likely to be the true po-
sition of the robot. As the robot moves, these particles move
accordingly and predict the new position of the robot. When
the sensor data detect a change in the environment, the algo-
rithm updates the particle population, recalculating its prob-
abilities and weights for each particle based on the match
between the sensor data and the predicted data. This method
is effective in estimating the precise position of the robot in
complex environments. Then, the set of particles, N, is redis-
tributed according to the weight, cit , so that the distribution
density is proportional to the weight, cit , thus better reflect-
ing the robot’s current possible position. This process is iter-
ated to continuously improve the accurate estimation of the
robot’s position.

1.3.2 Extended Kalman filtering

The Kalman filter, as a recursive filter, plays an important
role in system state estimation. Its core principle is to esti-
mate the system state at the current moment by weighting
the observation data. The key lies in the measurement ac-
curacy of the sensors, and the observation of high-precision
sensors has a greater weight in Kalman filtering, which helps
to improve the accuracy of the estimation. Kalman filtering is
widely used in several fields and especially excels in systems
that require real-time control and iterative updates. However,
due to the nonlinear nature of many real systems, the ex-
tended Kalman filter (EKF) has been developed to address
the problem of the localization of nonlinear systems. The
core idea of the EKF is to expand the nonlinear system model
in a Taylor series as a way to achieve local linearization of the
system. This approach allows the EKF to maintain high effi-
ciency and accuracy when dealing with nonlinear problems,
making it suitable for a wider range of application scenarios.
In this way, the EKF is able to efficiently deal with nonlinear
characteristics in robot localization, such as nonlinear mo-
tion trajectories and nonuniform environment mapping. This
innovative approach allows the Kalman filter to be more flex-
ibly adapted to state estimation tasks for a variety of complex
systems.

One of the main steps in implementing extended Kalman
filtering is to create a system state transfer model and an ob-
servation model. In order to deal with nonlinear systems, it
is common to use differentiable nonlinear functions f and h
instead of the linear equations of the traditional Kalman filter
(Sun, 2020). The most important effect of this modification is
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Figure 7. Particle swarm from divergence to convergence with it-
erative updates.

that the form of the state transfer equations and observation
models of the extended Kalman filter are modified to be more
consistent with the properties of nonlinear systems. The state
transfer equation and observation model formulations of the
extended Kalman are as follows:{
ct+1 = f (ct , rt+1)+pt+1,

Ot+1 = h(ct , rt+1)+ it+1,
(8)

where pt+1, it+1, rt+1, and ct+1 denote the motion noise,
observation noise, control variable, and state variable at time
t + 1, respectively. f and h denote the state transition func-
tion. The observation function, pt+1, with it+1, is as follows:{
pt+1 ∼N (0,Qt+1),
it+1 ∼N (0,Rt+1). (9)

Furthermore, the following applies:{
Qt+1 = E

[
rt+1, r

T
t+1
]
,

Rt+1 = E
[
it+1, i

T
t+1
]
,

(10)

where Qt+1 denotes the process noise covariance matrix at
moment t + 1.

The EKF employs linearization by means of a first-order
Taylor expansion to approximate the state transition function,
f , and the observation function, h. The linear equation is

ct+1 = f (ĉt , rt+1)+∇fc(ct − ĉt )+pt+1, (11)

where ĉt is the a posteriori estimate of the state vector at
moment t ; ∇fc is the Jacobian matrix of the state8 transfer
equation and the derivative of the function f at ĉt , rt with
respect to ĉ−t ; and the superscript dash denotes the predicted
value.

∇fc =
∂f (ct , rt+1)

∂ct
|ct=ĉ

−
t

(12)

The measurement model is then approximated as a linear
equation using a first-order Taylor expansion as follows:

ot+1 = h(ĉt+1)+∇hc(ct+1− ĉt+1)+ it+1, (13)

where ĉ−t is the a priori estimate of the state vector at moment
t+1 and ∇hc the Jacobi matrix of the observation model and
the derivative of the function h at ĉ−t+1 with respect to ĉt+1.

∇hc =
∂h(ct+1)
∂ct+1

|ct+1=ĉ
−

t+1
(14)

Suppose that an AGV has a trajectory, which is determined
by a set of control variables, n. Included in this set of con-
trol variables are two key parameters, the linear velocity, v,
and the angular velocity of the traverse pendulum, ω. To con-
cretize this scenario, we set the maximum linear velocity of
the AGV to be 0.1 m s−1, which is a relatively slow speed
suitable for a precisely controlled environment. Meanwhile,
the range of the traverse angular velocity, ω, is limited to
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±0.1 rad s−1. This setting ensures that the AGV has enough
of both flexibility and stability when performing steering.

The whole running process of the AGV was set to 60 s.
This is a medium-length running cycle, which is enough for
us to observe the motion behavior of the AGV under differ-
ent control parameters. In order to analyze the motion of the
AGV in more detail, we chose the sampling time, dt , to be
0.1 s. This means that during the whole running process of
the AGV, we will obtain 600 discrete sampling points (60 s
divided by 0.1 s equals 600), and each sample point repre-
sents the position and attitude of the AGV at that moment.

Based on these settings, the trajectory of the AGV can be
subdivided into three main parts: longitudinal displacement,
X; lateral displacement, Y ; and traverse angle, θ . The longi-
tudinal displacement, X, describes the positional change of
the AGV in the straight-ahead direction, which is obtained
by the accumulation of the linear velocity, v, over time. The
lateral displacement, Y , describes the position change of the
AGV in the transverse direction, which is the result of the
combined effect of the angular velocity of the pendulum, ω,
and the linear velocity, v. The lateral displacement, Y , on the
other hand, describes the position change of the AGV in the
lateral direction. The traverse angle, θ , on the other hand,
describes the angular change of the AGV with respect to the
initial direction, which is obtained by the accumulation of the
traverse angular velocity, ω, over time. Its observation model
is{
ct+1 = ct +U +

√
0.001 · rand n(3,1),

ot+1 = ct+1+R · rand n(3,1),
(15)

where U is the input variable and R is the observation noise:

U =

 ν.cos(θ )
ν.sin(θ )
ω.dt

 ,R =
 0.25 0 0

0 0.25 0
0 0 0.007

 . (16)

The observation model is a further interpretation and mod-
eling of the AGV’s trajectory, which includes sensor read-
ings, possible noise, and sources of error. This model helps
us understand how the AGV behaves in actual operation and
is crucial for the design of control and navigation algorithms.
By observing the model, we can accurately know the position
and attitude of the AGV at any given moment, thus ensuring
that it can follow a predetermined path accurately (Li et al.,
2024).

To summarize, by meticulously analyzing and modeling
the AGV’s trajectory, we are able to not only understand
the AGV’s behavior under different control parameters, but
also design a more accurate and reliable navigation system.
This kind of analysis is extremely important for both research
and applications in the field of automated transportation and
robotics.

The AGV is sampled 650 times from the initial position
(0, 0), and the simulation results are shown in Figs. 8, 9,
and 10.

Figure 8. EKF localization estimation.

Figure 9. EKF transverse pendulum angle estimation.

Figures 8, 9, and 10 vividly demonstrate the excellent re-
sults of the extended Kalman filter (EKF) for localization
and traverse angle measurements. For positioning, the EKF
shows high stability and successfully reduces to an aver-
age positioning error of 0.025 m. Regarding traverse angle
measurement, the EKF also achieved remarkable success,
with an average measurement error of only 0.003 rad, which
is in high agreement with the actual value. These results
fully demonstrate the excellent effectiveness of the extended
Kalman filter in localization and traverse angle estimation
and provide strong support for its widespread use in practical
applications.

1.4 Fusion algorithm for odometry and IMUs

1.4.1 Sensor fusion localization

In the case of an automated guided vehicle operating for a
long period of time, the use of an odometer for localization
may introduce a cumulative error, especially when the tilt
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Figure 10. EKF measurement error.

Figure 11. Positioning scheme.

rate is gradually increasing. To address this problem, this
study uses the extended Kalman filter (EKF) algorithm to
achieve more accurate estimation of position information by
merging odometer and inertial measurement unit (IMU) data.
The merged position information not only improves the posi-
tioning accuracy, but also provides more reliable support for
AGV global navigation using Monte Carlo positioning algo-
rithms, TF trees, lidar scanning point clouds, and global po-
sitioning map information (Zhang et al., 2022). For detailed
steps and processes of the whole localization scheme, refer
to Fig. 11.

Assuming the AGV’s position value at moment t , the data
from the odometer are used in the EKF for state prediction,
and the data from the (xt ,yt ,θt ), IMU are used for measure-
ment update.

State prediction

At moment t+1, the observation information of the odometer
is denoted as (xt+1,yt+1,θt+1). This observation information
includes data such as speed, position, direction, and other
data related to the movement state of the AGV. Meanwhile,
the control variable, ut+1 = (ν ω), of the AGV involves a

parameter or instruction for adjusting the movement of the
AGV, such as the traveling direction, speed, and stopping.

The kinematics of the automated guided vehicle at mo-
ments is modeled as Eq. (17), and the Jacobian matrix is as
in Eq. (18):

x̂i+1 = F x̂i +Bu=

 1 0 0
0 1 0
0 0 1

 ,
x̂i +

 cos(θ (t)) 0
sin(θ (t0)) 0
0 1

[ υ(t)
ω(t)

]
dt, (17)

∇fx =


dx
dx

dx
dy

dx
dθ

dy
dx

dy
dy

dy
dθ

dθ
dx

dθ
dy

dθ
dθ

= [ 1 0 −νt sinθ (t)dt
0 1 νi cosθ (t)dt
0 0 1

]
. (18)

Measurement update

An observation from the inertial measurement unit (IMU) is
labeled θt+1 at time point t + 1. This observation follows a
specific observation model (Eq. 19), which is used to de-
scribe the relationship between the IMU measurements and
the actual state. In order to accurately estimate the state vari-
ables, it is necessary to calculate the Jacobian matrix (Eq.
20) of the measurement model, which characterizes the sen-
sitivity of the measurements to the state variables. With this
Jacobian matrix, the prediction error in the Kalman filter can
be adjusted more accurately. Ultimately, based on this infor-
mation and the Kalman filter algorithm, the Kalman gain is
calculated as in Eq. (21). The Kalman gain is a key param-
eter that determines the relative weights of the observed and
predicted values in updating the state estimate.

z
t+1 =

 0
0
θ
t+1.odom

 (19)

∇hx =

[
dθ
dx

dθ
dy

dθ
dθ

]
= [0 0 1] (20)

kt+1 =
p−t ∇h

T
x

∇hxp
−

t+1∇h
T
x +Rt+1

(21)

pt+1 denotes the motion noise at time t+1. ∇hx denotes the
Jacobi matrix for measurement models.

Let the covariance matrix Rt+1 of the observation noise be

R
t+1 =

 0 0 0
0 0 0
0 0 σθ

 , (22)

where σθ denotes the noise variance of the IMU measure-
ment, θ .
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Figure 12. ROS simulation positioning.

From this, the Kalman gain can be derived as follows:

Kt+1 =

 0 0 0
0 0 0

0 0
P−t+1,θ

P−t+1,θ+σθ

 . (23)

The final error covariance matrix can be updated as follows:

Pt+1 = (I −Kt+1)P−t+1,x . (24)

The efficient integration of the localization algorithm with
the Monte Carlo algorithm is achieved by utilizing the results
of the extended Kalman filter as the a priori distribution data
in the prediction step of the Monte Carlo fusion localization
algorithm and combining the results of the lidar and point
cloud data fitting for the update step (Zhang and Li, 2024).
This fusion process plays a key role in global localization,
ensuring that the AGV can accurately perceive its position in
the environment and finally realizing the global localization
of the AGV.

1.4.2 Simulation test and result analysis

In the study, firstly, a simulated cart was built in the Gazebo
simulation environment and the corresponding environment
map was constructed. Then, a comparative study of the lo-
calization effect of AGV carts with and without fusion al-
gorithms was conducted. This process was tested using the
Robot Operating System (ROS) for simulated localization as
shown in Fig. 12. In this test, the parameter settings of the
lidar were carefully adjusted to ensure high efficiency and
accuracy: the update frequency was set to 10 times per sec-
ond, i.e., 10 Hz, which provides smooth and continuous en-
vironment sensing data; the sampling range reaches 360°,
which realizes all-around environment coverage. The max-
imum and minimum sampling angles are set to ±3.15°, re-
spectively. This configuration helps to focus on scanning spe-
cific areas and improve the accuracy of measurements; as for
the detection distance, it is precisely limited to between 0.1
and 1 m, a proximity range that is particularly suitable for
occasions requiring high-resolution and high-precision data,
such as robotic navigation or the detection of obstacles in the
proximity of self-driving vehicles.

Figure 13. Positioning effect without adding EKF.

Figure 14. Positioning effect of adding EKF.

A path is planned from the starting point (3, 3) then to
(9,−3) and finally to (12, 0), the command $rosbag-a record
is executed during the movement of the vehicle and records
all the contents of the ROS topic, which includes data from
various sensors as well as information processed by the al-
gorithm. Eventually, by analyzing this data, a series of mea-
surements can be obtained. As shown in Figs. 13, 14, 15,
and 16.

By comparing Figs. 13 and 14 in the experiment, it can be
observed that before the fusion of EKF is added, there is a
significant difference between the position measured by the
odometer alone and the actual position, especially after the
vehicle is turned. The position deviation gradually increases,
which seriously affects the accuracy of global localization,
especially at the end point. The Monte Carlo localization er-
ror without EKF can reach up to 0.552 m. And after adding
the EKF, the localization error is significantly reduced, and
the maximum error is only 0.171 m, which indicates that the
EKF can effectively correct the localization error when fus-
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Figure 15. Measurement results of transverse pendulum angle
without adding EKF.

Figure 16. Adding EKF transverse pendulum angle measurement
results.

ing the odometer and IMU data and improve the accuracy of
local localization.

In addition, by comparing the transformation of quater-
nions in Figs. 15 and 16, the error of the traverse angle (i.e.,
the steering angle of the vehicle) gradually increases over
time in the localization system without the integration of the
extended Kalman filter (EKF), a phenomenon that is partic-
ularly noticeable when the vehicle undergoes a turning op-
eration. This is due to the fact that conventional localization
algorithms have difficulty in accurately handling and com-
pensating for sensor noise as well as external disturbances,
resulting in increasing cumulative errors.

However, when the EKF is integrated into the positioning
system, even if there is some deviation in the sensor measure-
ments, the EKF is still able to process and optimize these data
efficiently. The EKF is able to adjust and correct the estimate
of the traverse angle in real time by taking into account the
uncertainty of the system model. This algorithm is able to

not only closely track the actual transverse pendulum angle
changes, but also significantly improve the accuracy and sta-
bility of the transverse pendulum angle estimation.

The experimental results show that the EKF has a signifi-
cant effect in improving the accuracy of vehicle traverse an-
gle estimation, which is of great significance for application
in the fields of vehicle navigation, automatic driving, and ve-
hicle stability control. By accurately estimating the traverse
angle, the safety and stability of vehicle traveling can be im-
proved, and it also helps to improve the performance and ef-
ficiency of the vehicle control system. Therefore, EKF, as an
advanced filtering technique, has a wide range of applications
in vehicle positioning and navigation systems.

2 AGV path planning based on improved dynamic
window method

2.1 Fusion navigation algorithm

The dynamic window approach (DWA) algorithm performs
well in local obstacle avoidance; however, it mainly relies
on a single final destination point for navigation, which may
lead the algorithm to fall into the problem of a locally opti-
mal solution. The paths plotted by theA∗ algorithm are rather
one-sided, containing only the start point, end point, and crit-
ical nodes in the navigation paths, but the algorithm cannot
avoid the unknown obstacles in the environment (Hu et al.,
2023). In view of this, this study proposes a fusion method
that combines the DWA algorithm with a global-path critical-
point extraction method. In the DWA algorithm, these criti-
cal points are used as intermediate targets in the navigation
process. Based on this, the fusion method of multi-source in-
formation is utilized to achieve the overall optimization of
the mobile robot on the motion trajectory and the obstacle
avoidance on the motion trajectory (Fig. 17) shows the de-
tailed flow of the algorithm.

Firstly, with the help of the A∗ algorithm, a route is
planned as a whole, and then based on the optimal objec-
tive function of A∗ algorithm, the route is optimized twice,
and finally the key nodes in the route are determined. Sec-
ondly, in DWA, we will temporarily use the method as an
intermediate objective point, and on the basis of this, we will
carry out local path planning for AGVs. The DWA algorithm
simulates the robot’s motion trajectory by sampling multiple
sets of velocities and selects the optimal trajectory with the
help of the evaluation function and key point information.
By fusing it with the improved A∗ algorithm, the combina-
tion of global path planning and local obstacle avoidance can
be realized. The AGV will gradually approach or arrive at
the intermediate target point according to the planned path
and finally reach the target point. In this process, the set of
pathway nodes needs to be continuously updated, and redun-
dant nodes are excluded, and necessary pathway nodes are
retained.
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Figure 17. Flowchart of fusion navigation algorithm.

2.2 Simulation test

A 25× 25-field raster map is constructed for simulation ex-
periments to verify whether the fusion navigation algorithm
is effective. On the global path of the robot planned by the
A∗ algorithm, four unknown static obstacles are randomly
set, and an unknown uncertain dynamic obstacle is also set
in the simulated system. In the raster map, the black raster
represents an obstacle area, while the white raster represents
a blank area that can be moved by the AGV, 4 denotes the
starting position where the AGV is located, and ◦ denotes the
goal point that the AGV is trying to reach.

Figure 18 shows the result of the simulation test run of the
fusion algorithm; the black grid in Fig. 18 is the static known
obstacles, the dashed blue line is the global path planning of
the A∗ algorithm in the static environment, and the solid red
line is the route planned by the A∗ algorithm for the dynamic
unknown obstacles.

As shown in Fig. 19, in the A∗ algorithm, the search pro-
cess generates a path from the start point to the end point
which passes through a number of grids (also called nodes).
Among them, the * symbol indicates the path-critical nodes
in the A∗ algorithm, which are some special nodes on the
path. These nodes are important for path optimization in the
A algorithm. When fusing the A∗ algorithm with the DWA
algorithm, these critical nodes are used as intermediate tar-
get points in the DWA algorithm to obtain a smoother path.
In addition, the yellow squares indicate dynamic unknown
obstacles.

Figure 18. A∗ algorithm global path planning.

Figure 19. Extracting the key points of the A∗ algorithm path plan-
ning.

Figure 20 shows that the gray grid is used to model static
unknown obstacles randomly appearing in the environment;
the AGV first bypasses the static unknown obstacles, and
then encounters dynamic unknown obstacles, and the DWA
algorithm starts to perform local dynamic path planning as a
means of bypassing dynamic unknown obstacles.

As shown in Fig. 21, the automated guided vehicle (AGV)
successfully navigates from the starting point to the end point
through dynamic path planning, ensuring the optimization of
the overall path. In this process, the green line at the end of
the track represents the simulated track, the dashed black line
indicates the moving trajectory of the dynamic unknown ob-
stacle, and the solid blue line is the navigation path generated
by the fusion algorithm.
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Figure 20. Dynamic unknown obstacles being avoided.

Figure 21. Arriving at the destination.

From Fig. 22, it can be seen that the maximum linear ve-
locity of the AGV in the simulation test of the fusion algo-
rithm is 0.48 m s−1, and the angular velocity is 0.3 rad s−1.

Figure 23 shows that the maximum attitude angle of the
AGV in the fusion simulation test is 1.48 rad.

As can be seen from Table 1, the improved algorithm fur-
ther improves not only the efficiency of the algorithm, but
also the smoothness of the path.

Through the simulation of the method, this paper finds a
new method of local trajectory planning based on the tempo-
rary target point using the key point of the route extracted by
the A∗ algorithm and using this key point as an intermedi-
ate temporary target point for the dynamic window method.
By classifying the categories of known obstacles, the inter-
ference of the path is reduced so that the planned path can
effectively avoid the unknown obstacles in the shortest time.

Figure 22. Linear and angular velocity.

Figure 23. Attitude angle.

3 Improved particle swarm algorithm and PID
control fusion

In order to overcome the limitations of traditional PID con-
trol methods and further improve the accuracy and robust-
ness of AGV path-tracking control, researchers propose var-
ious improvement and optimization schemes. Among them,
the introduction of optimization algorithms is a highly effi-
cient solution. As a heuristic optimization algorithm, particle
swarm optimization has the global search ability and strong
adaptability and has achieved remarkable results in optimiza-
tion problems (Sebastian et al., 2023). Therefore, the method
of particle swarm optimization fused with PID control can
theoretically further improve the efficiency of AGV path-
tracking control.

This paper modifies the fusion scheme of the particle
swarm algorithm and PID control to optimize the accuracy
and robustness of AGV path-tracking control. Through the
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Table 1. AGV kinematic parameters.

Parameters Value

Maximum linear velocity 0.48 m s−1

Maximum linear acceleration 0.2 m s−1

Maximum angular velocity 0.3 rad s−1

Maximum angular acceleration 1.30 rad s−2

Maximum attitude angle 1.48 rad

Figure 24. PID control schematic.

adaptive adjustment of PID controller parameters and the on-
line optimization of the particle swarm algorithm, the path-
tracking error is minimized (Liu, 2021). By comparing tradi-
tional PID control methods, this study aims to verify the ef-
fectiveness and superiority of the improved scheme. We be-
lieve that by improving and optimizing AGV path-tracking
control, we cannot only improve the work efficiency and
accuracy of automated guided vehicles, but also promote
the development of automated logistics and manufacturing
(Yuan et al., 2023).

3.1 AGV path-tracking control method

AGV path-tracking control is a key task to realize the ac-
curate travel of automated guided vehicles according to the
planned path. To achieve this goal, researchers have proposed
a variety of different path-tracking control methods. These
methods can be categorized into two main groups: traditional
control methods and control methods based on intelligent al-
gorithms (Ye et al., 2023).

3.1.1 Traditional control methods

Traditional control methods have a wide range of applica-
tions in AGV path tracking. Here, the PID (proportional, in-
tegral, differential) control algorithm is the most common
method (Yang et al., 2021). PID control keeps the AGV on
the desired path by adjusting the control signal according
to the proportional, integral, and differential components of
the current deviation. The PID control schematic is shown in
Fig. 24.

For the PID controller, as a widely used control strategy in
the field of industrial control, the key is to make the actual
response of the system as close as possible to the predeter-
mined control target by adjusting the control variables of the
controlled system (Zou et al., 2023). The fundamentals of a

PID controller cover four main components. The first is the
target signal, which is the signal that indicates the desired
output of the control system.

Next is the deviation calculation, in which the system cal-
culates the current deviation by comparing the target signal
with the actual output. Next is the PID calculation, includ-
ing the proportional, integral, and differential terms, which
is calculated according to the size of the deviation, the rate
of change, and the integral value to obtain the control output,
whose formula is shown in Eq. (25).

u(t)=Kp+Ki

∫ t

0
e(t)dt +Kd

de(t)
dt

, (25)

where e(t)= rin(t)−y(t) is the control deviation,Kp the pro-
portionality coefficient,Ki the integration coefficient, andKd
the differentiation coefficient.

Finally, the control quantities from the PID calculations
are applied to the controlled objects, adjusting the program’s
behavior so that the corresponding outputs are close to the
set desired values.

Among the key points of the PID controller, the perfor-
mance indicators are the key criteria for evaluating the ef-
fectiveness of PID control, which usually include the steady-
state error of the system, the rise time, and the amount of
overshoot (Zhang et al., 2023). The smaller the value of these
performance metrics, the smaller the impact of the PID con-
troller on the system and the more desirable the system re-
sponse.

Performance optimization is a central goal in PID con-
troller design because different combinations of PID param-
eters result in different values of performance metrics. By
finding an optimal set of parameter values, the system can
be optimized in terms of performance metrics, such as min-
imum steady-state error, shortest rise time, and minimum
overshoot. This optimization process is designed to achieve
higher control accuracy and response speed than the PID
control system to meet the control requirements under dif-
ferent operating conditions (Sun et al., 2023).

Practical requirements are crucial for parameter optimiza-
tion of PID controllers. Different industrial application sce-
narios have different requirements for system performance,
so the PID parameters need to be adjusted according to spe-
cific practical requirements to accomplish the desired control
effect of the system under different operating conditions (Lu
et al., 2022). This flexibility allows PID controllers to be used
in a wide range of applications.

In AGV path tracking, the PID control method has many
advantages, including simplicity, being easy to understand
and adjust, and good real-time performance. Many research
efforts have focused on the improvement and optimization
of PID control methods to improve the performance of path
tracking. For example, researchers have tried to improve the
accuracy, stability, and robustness of path tracking by adjust-
ing PID parameters and using methods such as adaptive PID
control or fuzzy PID control.
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However, traditional PID control methods have certain
limitations in dealing with dynamic environments, uncer-
tainty, and nonlinear characteristics. When the AGV encoun-
ters external disturbances or changes in system parameters,
traditional PID control may not achieve accurate path track-
ing. Therefore, further research and optimization are neces-
sary for AGV path tracking based on PID control.

3.1.2 Control method based on intelligent algorithm

With the development of intelligent algorithms, more and
more studies have begun to apply these algorithms to AGV
path-tracking control. These include fuzzy control, neural
network control, and genetic algorithms (Zhao et al., 2022).

Fuzzy control methods deal with uncertainty and ambigu-
ity by applying fuzzy logic to rule inference in path-tracking
control. Neural network control uses the powerful nonlin-
ear modeling capabilities of neural networks to achieve path-
tracking control. Genetic algorithms optimize the parameters
and structure of path-tracking control by simulating natural
evolutionary processes.

These intelligent algorithm-based control methods have
shown superior performance in some cases, especially when
dealing with nonlinear, complex environments and fuzzy in-
put and output. However, these methods often require more
complex computation and training processes, and parameter
tuning is relatively difficult.

In summary, when reviewing the existing AGV path-
tracking control methods, the traditional PID control meth-
ods have been widely adopted in practical applications and
achieved certain success. At the same time, the control
method based on an intelligent algorithm also has a certain
amount of potential. However, for AGV path tracking based
on PID control, further research and optimization are still
necessary to improve the performance and robustness of path
tracking (Wu et al., 2021).

In order to overcome the limitations of traditional PID con-
trol methods, the introduction of the improved particle swarm
optimization algorithm and PID control fusion scheme pro-
vides a very efficient solution. As a heuristic optimization
algorithm, particle swarm optimization has the global search
ability and strong adaptability and can achieve significant re-
sults in optimization problems. The integration of the particle
swarm algorithm and PID control can further promote the ac-
curacy and robustness of AGV path-tracking control.

3.2 Fusion algorithm AGV path planning

There is a close relationship between path planning and path-
tracking control, which complement each other and together
constitute the complete navigation and control process of
AGV system (Miao and Niu, 2021). In this study, in order to
achieve the optimization of AGV path-tracking control, the
first step is to plan the path so as to determine the ideal path
of the AGV.

3.2.1 AGV path-planning simulation experiment

A 25× 25 grid map was built for simulation experiments to
verify whether the fusion navigation algorithm was effective.
On the global path that the robot must pass through by theA∗

algorithm, four unknown stationary obstacles are randomly
set. At the same time, an unknown and uncertain dynamic
obstacle is also set in the simulated system. In a raster map, a
black raster represents an obstacle area, while a white raster
represents a blank area that can be moved by an AGV, 4
represents the starting point where the AGV is located, and ◦
represents the target point to be reached by the AGV.

The result of the simulation test run of the fusion algo-
rithm is shown in Fig. 25. The black grid in Fig. 25 is the
static known obstacles, the dashed blue line is the global path
planning of the A∗ algorithm in the static known environ-
ment, and the solid red line is the route planned by the A∗

algorithm for the dynamic unknown obstacles.
As shown in Fig. 26, in the A∗ algorithm, the search pro-

cess generates a path from the start point to the end point
which passes through a number of grids (also called nodes).
Among them, the red star symbol represents the path criti-
cal nodes in the A∗ algorithm, that is, some special nodes on
the path. These nodes are an important basis for path opti-
mization in algorithm A. When fusing the A∗ algorithm with
the DWA algorithm, these key nodes are used as mid-target
points for the DWA algorithm, resulting in smoother paths.
In addition, the yellow squares indicate dynamic unknown
obstacles.

The gray grid in Fig. 27 is used to model random stationary
unknown obstacles in the environment; AGV first bypasses
stationary unknown obstacles, then encounters dynamic un-
known obstacles, and then starts DWA algorithm to perform
local dynamic path planning to bypass dynamic unknown ob-
stacles.

As can be seen in Fig. 28, the automated guided vehicle
(AGV) successfully navigates from the origin to the desti-
nation through dynamic path planning, making sure that the
overall route is optimized.

In the figure, the green line at the end of the track is the
simulated track, the dashed black line is the moving track of
the dynamic unknown obstacle, and the solid blue line is the
track generated by the fusion algorithm.

The improved algorithm further improves not only the ef-
ficiency of the algorithm, but also the smoothness of the path.
It is important to lay the foundation for subsequent path con-
trol.

3.2.2 Complementary navigation and control
relationships

The objective of the path-tracking control phase is to have the
AGV navigate accurately along the planned path. In the pro-
cess of path-tracking control, the current status information
of the AGV is obtained through the sensor, and the feedback
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Figure 25. A∗ global path planning.

Figure 26. Extracting the key points ofA∗ algorithm path planning.

control algorithm, such as PID control, is used to adjust the
speed, direction, and attitude of the AGV so that it moves ac-
cording to the planned path. The key to path-following con-
trol is to modify the control parameters in real time to guar-
antee that the AGV accurately follows the intended path and
adapts to changes in the environment (Tao, 2021).

The close relationship between path planning and path-
tracking control plays a key role in realizing autonomous
navigation and precise control of AGV systems. Proper path
planning can provide suitable navigation goals for path-trace
control, while optimization of path trace control depends on
accurate path-planning results (Zhu et al., 2023). Through in-
depth understanding of the correlation between path planning
and path-tracking control, this paper lays the foundation for
the design and realization of the subsequent improved parti-

Figure 27. Avoiding dynamic unknown obstacles.

Figure 28. Arriving at the destination.

cle swarm algorithm and PID control fusion scheme, which
further improves the performance and effect of AGV path-
tracking control.

3.3 Improved particle swarm optimization PID fusion
algorithm

3.3.1 Principles of standard particle swarm arithmetic

Particle swarm optimization (PSO) is a group-intelligence-
based optimization tool that simulates the foraging behavior
of a flock of birds to find an optimal solution to a problem
(Yuan et al., 2021). PSO operates on aD-dimensional search
space, where D denotes the dimensionality of the problem.
Each particle flies through the search space by constant itera-
tion and evaluates its own performance based on the adapta-
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tion values determined by the objective function (Ye, 2021).
The target of PSO is to gradually converge the particle swarm
to the optimization solution of the problem by performing a
global search in the entire search space to find a globally op-
timal solution. This population cooperative search strategy
makes PSO show good performance in complex optimiza-
tion problems.

The velocity and position update updates the velocity and
position of the particle based on information about the cur-
rent velocity, individual optimum, and global optimum (Vi-
jayakumar and Sudhakar, 2024). The velocity update formula
is as follows:

v
(t+1)
i = ω · v

(t)
i + d1 · a1 ·

(
pbesti − x

(t)
i

)
+d2 · a2 ·

(
gbest− x(t)

i

)
. (26)

The position update formula is as follows:

x
(t+1)
i = x

(t)
i + v

(t+1)
i , (27)

where vi and xi are the velocity and i the position of the parti-
cle; ω the inertia weights, which control the particle velocity
and persistence; pbesti the individual optimal position of par-
ticle i; and gbest the global optimal position of the particle
population.
d1 and d2 are acceleration coefficients, which control the

attraction of the particles towards the individual optimal and
global optimal positions and a1 and a2 are random numbers
in the interval [0, 1].

When the maximum number of the iterations is reached,
the particle will approximate the global optimum solution
within the error margin and output the global optimum so-
lution.

3.3.2 Improved particle swarm arithmetic

In order to enhance the performance of particle swarm opti-
mization algorithm (PSO), this paper proposes an improved
algorithm which is optimized through the following aspects:

1. Dynamic inertia weight adjustment. In the standard
PSO algorithm, the inertia weight is a fixed value, which
may cause the algorithm to be too aggressive in explor-
ing the solution space at the initial stage, while it may
be too conservative at the later stage. Therefore, this
paper introduces a dynamic inertia weight-adjustment
strategy, which is formulated as follows:

ωt = ωmin+ (ωmax−ωmin) ·
1− t

T

1− ωmin
ωmax

, (28)

where ωt is the inertia weight at the time step, ωmin and
ωmax the minimum and maximum values of the inertia
weight, and T the total number of iterations. This for-
mula causes the inertia weights to decrease linearly with

Figure 29. Schematic diagram of the improved particle swarm al-
gorithm tuning PID parameters.

the number of iterations, thus providing greater explo-
ration capabilities in the early stages of the calculation
algorithm and enhanced local search capabilities in the
later stages.

2. Local optimal solution update. In order to increase the
diversity of the particle swarm and avoid premature con-
vergence, this paper proposes that in each iteration, the
particles not only update their velocity and position ac-
cording to the global optimal solution, but also adjust
according to the local optimal solution. The updating
formula of the local optimal solution is as follows:

vt+1
i,j = w · v

t
i,j + d1 · a1 · (pti,j − x

t
i,j )

+d2 · a2 · (gtj − x
t
i,j ), (29)

where ω is the inertia weight, vt+1
i,j the value of the ve-

locity of the ith particle in the j th dimension at iteration
t + 1, d1 and d2 the acceleration coefficients, a1 and a2
random numbers in the interval [0, 1], gtj the value of
the global optimal solution in the j th dimension, pti,j
the value of the local optimal solution of the ith parti-
cle in the j th dimension, and xti,j the value of the ith
particle in the j th dimension.

With these improvements, the algorithm augments the lo-
cal search capability while maintaining the global search ca-
pability and improves the ability of the algorithm to spring
from the locally optimal solution, thus achieving better per-
formance in multi-dimensional complex optimization prob-
lems.

3.3.3 Improved particle swarm algorithm for optimizing
PID parameters

The fitness function is formed by transforming the input val-
ues of the evaluation function, whereby the improved particle
swarm optimization (PSO) technique adjusts the parameters
Kp,Ki , andKd , aiming at improving the system control per-
formance.

Figure 29 illustrates the process of tuning the PID parame-
ters using the improved PSO algorithm. The six specific steps
are listed below.
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1. Considering the parameters Kp, Ki, and Kd in the PID
controller as potential solutions in a three-dimensional
space, the solution set range of the parameters Kp, Ki,
and Kd is first determined empirically. Next, initial val-
ues are assigned to the inertia weights ωstart and ωend;
the maximum value, Vmax, and minimum value, Vmin, of
the particle velocity; and the number of iterations. The
acceleration constants, d1 and d2, are set as follows:

d1 = d2 =

{
0.95+ 0.1a4 (unimodal function),
1.4+ (1.8− 1.4)a5 (multimodal function),

(30)

where a4 and a5 are uniformly distributed random num-
bers between 0 and 1.

In the initial stage of the algorithm, it is necessary to set
the initial position of the sensitive particles, determine
the size of the particle swarm, and assign an initial ve-
locity value to each particle. It is also necessary to define
a threshold for the maximum number of iterations.

2. The fitness function is as follows:

J =
1∫

∞

0 t |e(t)|dt
. (31)

In the initial particle swarm, the individual with the
highest fitness is first identified and set as the globally
optimal solution, Gbest. Subsequently, according to the
fitness of each particle, each of them is set as the indi-
vidual optimal solution, Pbest.

First, set the limit of the integral to infinity, i.e., time T .
Next, discretize the continuous time so that T =m1t ,
and, here, m is a positive integer. Specifically, a time
array, t(i), is created, where i takes values from 0 to m.
Finally, the error, e(t), is computed at each discrete time
point, where i again takes values from 0 to m.

3. Particle update module according to the following:{
vt+1
i,d = v

t
i,e + d1a1(P ti,e − x

t
i,e)+ d2a2(P tξ,e − x

t
i,e),

xt+1
i,e = x

t
i,e + v

t+1
i,e .

(32)

Here, d1 and d2 are the acceleration constants, which are
usually d1 = d2 = 2, and a1 and a2 are random numbers
in the range (0, 1).

P tξ = (pt
ξ,1, pt

ξ,2, ..., pt
ξ,e)

T is the global optimal posi-
tion, P ti = (pt

i,1, pt
i,2, ..., pt

i,e)
T is the individual opti-

mal position, and xti = (xt
i,1, xt

i,2, ..., xt
i,e)

T is the initial
position.

4. When the adaptive values of the sensitive particles
change by more than a predetermined threshold, the po-
sitions and velocities of all particles in the swarm will
be reinitialized according to a specific ratio.

Figure 30. Improved particle swarm and classical particle swarm
tuning Kp parameter.

5. Check whether the optimal solution in the current envi-
ronment has been found. If it has been found, return to
step (2) to continue iteration; if it has not been found,
jump out of the loop.

6. Through this process, we can obtain the global optimal
particle in the dynamic environment, which is the opti-
mal Kp, Ki, and Kd parameter value of the PID.

3.4 Experimental simulation

A dynamic environment refers to a scenario in which the op-
timal solution and its position change over time during the
search process, and such an environment is suitable for mea-
suring the adaptability of an algorithm to dynamic changes. It
is possible to create a dynamic environment containing mul-
tiple peaks through MATLAB, where the optimal value and
optimal position of the particle swarm will change over time,
which is expressed as follows:

f = a sina cos(2a)− 2a sin(3a)(b sinb)
cos(2b)− 2b sin(3b). (33)

The improved particle swarm algorithm is used for the op-
timal goal search in a dynamic environment, with a total of
1200 environment changes and a population containing 20
particles. The algorithm is iterated 100 times within each
environment, and there are 20 sensitive particles. The pop-
ulation reset condition is that the sensitive particle fit value
changes more than a certain percentage of 1. The improved
algorithm is optimized on a traditional basis, and the effect
of PID optimization is verified experimentally and compared
with the optimization results of PID parameters of the tra-
ditional algorithm. The three parameters Kp, Ki, and Kd of
the PID were tuned using conventional and modified parti-
cle swarm algorithms, and the related graphs are displayed
in Figs. 30, 31, and 32, respectively.

As can be seen from Figs. 30, 31, and 32, the tradi-
tional particle swarm optimization algorithm often encoun-
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Table 2. Particle swarm optimization data of the PID control system.

Dynamic Traditional particle swarm Improve particle swarm
performance optimization optimizes algorithm to optimize
metrics PID control system PID control system

Adjust the time [s] 815 621
Rise time [s] 102 241
Overshoot [%] 0.39 0.12

Figure 31. Improved particle swarm and classical particle swarm
tuning Ki parameter.

Figure 32. Improved particle swarm and conventional particle
swarm tuning Kd parameter.

ters the oscillation problem when adjusting the PID param-
eters and usually requires about 40 iterations to reach a sta-
ble state, which is not satisfactory. In contrast, the modified
particle swarm optimization algorithm significantly dimin-
ishes the oscillation phenomenon when adjusting the PID
parameters and converges in only about 20 iterations, show-
ing higher stability and reliability. This tuning process was
accomplished with a unit step signal input, which is consis-
tent with the system conditions, using the traditional particle
swarm optimization algorithm.

Figure 33. Unit step response curve corresponding to the optimal
parameters of the traditional particle swarm.

Figure 34. The improved unit step response curve corresponding
to the optimal parameters of the particle swarm.

The PID parameters are adjusted from the original val-
ues of Kp = 33.782, Ki = 0.167, and Kd = 1.058 to the
improved values of Kp = 168.623, Ki = 0.216, and Kd =

1.083 by means of algorithmic optimization. The corre-
sponding step response curves for these parameters are dis-
played in Figs. 33 and 34, respectively. The dynamic perfor-
mance metrics of the optimized PID control system with the
particle swarm algorithm are listed in Table 2.

Observing Figs. 33 and 34, the modified particle swarm
optimization PID controller outperforms the conventional
particle swarm optimization PID controller in terms of con-
trol performance. Although the improved system has a longer
rise time of 136 s, its regulation time is reduced by 24 %, and
the amount of overshoot is reduced by 0.27 %. This shows
that the revised particle swarm algorithm has enhanced the
performance of the control system in optimizing the PID pa-
rameters.
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In summary, the proposed particle swarm optimization
(PSO) algorithm is the basis of PID control, and it is more ef-
fective in improving the control performance compared with
the standard PSO algorithm. This improved PSO control is
able to meet the high-precision requirements of automatic
guided vehicle guidance, thus verifying the practical effec-
tiveness of the improved PSO-optimized PID controller in
track-following control.

4 AGV test and result analysis

With the rapid development of industrial automation, AGV
plays an increasingly important role in realizing intelligent
and flexible production. This thesis takes the mobile robot
xBot as the research object and carries out in-depth research
around the path-tracking control.

4.1 ROS-based laser SLAM real vehicle test

4.1.1 AGV real vehicle building test

In this paper, the operating system of the AGV (automated
guided vehicle) uses the Ubuntu 16.04 operating system with
integrated ROS (Robot Operating System) kinetic version.
Among the core nodes of the AGV, the slam_gmapping node
undertakes the task of building the map, and it realizes the
exchange of information with other nodes through the topic
of ROS. Figure 35 illustrates the topic relationship between
these nodes.

The slam_gmapping node subscribes to two main topics:
odometer information (/odom) and lidar scan data (/scan).
The odometer information provides the current position and
attitude of the AGV, while the lidar scan data provide detailed
information about the surrounding environment. After pro-
cessing these data, the node publishes coordinate transforma-
tion information (/tf), which describes the interrelationships
between the lidar coordinate system, the base coordinate sys-
tem, and the odometer coordinate system.

These coordinate transformation messages are critical for
the entire AGV system to work together as they provide ac-
curate position and attitude information that allows the AGV
to properly understand and respond to its surroundings for
navigation and mission execution.

This paper describes the use of a lidar-equipped xBot plat-
form to collect environmental data and vehicle position in-
formation. A keyboard control node is used to remotely oper-
ate the vehicle by inputting commands from a PC. In a ROS
(Robot Operating System) environment, initiating a SLAM
(synchronized localization and map building) process typi-
cally involves running a series of ROS nodes that work in
concert to build a map of the environment. This is typically
accomplished through the following steps:

1. Starting the ROS core. First, ensure that the ROS core is
started. This can be done by running a command in the
terminal.

Figure 35. gmapping message topic relationship.

$roscore

2. Starting SLAM-related nodes. Next, start the nodes re-
sponsible for SLAM. This typically includes sensor
driver nodes, SLAM algorithm nodes, and visualization
tools.

$roslaunch my_robot_slam.launch

Here, my_robot_slam.launch is a startup file that con-
tains all the nodes and parameters needed to start the
SLAM process.

3. Controlling robot movement. In order to build the map,
the robot needs to be controlled to move in order to scan
the environment. A predefined path planner is used for
automatic navigation.

$roslaunch my_robot_navigation navigation.launch

4. Viewing the map building process. Use the Rviz visu-
alization tool to view the SLAM process and the built
map. It can be run in another terminal.

$rosrun rviz rviz-d ‘rospack find
my_robot_rviz_config‘/slam.rviz

5. Saving the map. When the map is built, you can use the
map save tool to save the map for subsequent use.

$rosrun map_server map_saver-f my_map

According to the simulation (Fig. 36), complete the real ve-
hicle test as shown in Figs. 37 to 40.

4.1.2 Sensor fusion localization test

In order to test the accuracy of the fused localization algo-
rithms, it is indeed necessary to accurately determine the co-
ordinate transformation relationships between the IMU and
the lidar and the vehicle coordinate system (base_link). In
the ROS (Robot Operating System), this is usually done by
means of a TF (transform framework), which is used to man-
age the transformations between different coordinate sys-
tems.

Two coordinate transformation relations have been set up
correctly:
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Figure 36. AGV path simulation.

Figure 37. AGV initial position.

1. Transformation between base_link and imu_link.

This transformation specifies the fixed position and ori-
entation of the IMU relative to the vehicle coordinate
system.

args=”0 0 0.05 0 0 0 0 1 /base_link /imu_link” means
that the IMU is located 0.05 m directly above the origin
of the base_link coordinate system and has no rotation
(a quaternion of 1 means no rotation).

2. Conversion between base_link and lidar_platform_link.

This transformation specifies the position and orienta-
tion of the lidar platform relative to the vehicle coordi-
nate system.

args=”0.05 0 0 0 0 0 0 0 1 /base_link /li-
dar_platform_link” means that the lidar platform is lo-
cated 0.05 m to the right of the origin of the base_link
coordinate system and is not rotated.

Figure 38. AGV is avoiding dynamic unknown obstacles.

Figure 39. AGV completes avoidance.

These transformations are published via the
static_transform_publisher node, which is used in ROS
to publish static coordinate transformations. Make sure that
these transformation parameters match your actual hardware
configuration, which is critical for accurate positioning and
navigation.

The fused coordinate relationships are shown in Fig. 41.
Implement the xBot to rotate for 1 week around the start-

ing point and return to the starting position and collect data
through the encoder and IMU, then integrate this data using
the extended Kalman filter (EKF) following the steps below.

First, a keyboard control node is activated in order to man-
ually control the movement of the xBot. Through keyboard
input, control the xBot to rotate around the starting point for
1 week and ensure that it eventually returns to the starting
position. Ensure that the nodes for the encoder and IMU are
started and post data to the appropriate ROS topics. Encoder
data are posted to the /odom topic, and IMU data is posted
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Figure 40. AGV arrives at target point.

Figure 41. tf coordinate transformation after fusion.

to the /imu_data topic. The extended Kalman filter node is
launched, subscribes to the /odom and /imu_data topics, in-
tegrates this information, and publishes the fused data to the
/robot_pose_ekf/odom_combined topic. Log all sensor data
using the rosbag tool. Once logging is complete, use the ros-
bag tool to extract the required data and save it in .csv format.

Figure 42. xBot positioning.

Figure 43. xBot transverse pendulum angle measurement.

The experimental results demonstrate the dynamic charac-
teristics of the xBot’s position and attitude changes as well as
the traverse angle through these data. Figures 42 and 43 show
the measurement results during the movement of the xBot.

According to the data shown in Figs. 42 and 43, the
three different localization methods (Monte Carlo localiza-
tion, EKF localization, and odometer localization), all with
starting coordinates of (0, 0), have position and traverse an-
gles change as follows:

– The end point coordinates for the Monte Carlo local-
ization were (−0.167, 0.116), and the traverse angle in-
creased from 0 to 1.502.
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– The end point coordinates for the EKF localization were
(−0.209, 0.159), and the traverse angle increased from
0 to 1.468.

– The end point coordinates for the odometer localiza-
tion are (−0.228, 0.31), and the cross pendulum angle
increases from 0 to 1.421.

From Figs. 42 and 43, it can be observed that Monte Carlo
localization provided the highest localization accuracy in this
experiment, and its end point position was the closest to the
theoretical graph trajectory. EKF localization was the next
closest, and its end point position was also relatively close
to the graph trajectory, but there was a certain gap compared
with Monte Carlo localization. The error of odometer local-
ization is larger, and its end position is obviously deviated
from the graph trajectory. This indicates that the odometer
does not perform as well as the Monte Carlo and EKF meth-
ods in dealing with nonlinear problems caused by rotation.

5 Conclusions

This paper focuses on the laser SLAM-based AGV path-
tracking control method, which realizes efficient and sta-
ble AGV path tracking in complex industrial environments
through laser SLAM localization, path planning with im-
proved dynamic windowing method, and fusion of the par-
ticle swarm algorithm and PID control. The following sum-
marizes the present main results.

First, the positioning algorithm applicable to AGVs is se-
lected and optimized by thoroughly studying different laser
SLAM positioning methods. The algorithm performs well in
experiments, with high localization accuracy and robustness,
providing a reliable foundation for subsequent path tracking.

Secondly, this paper proposes and applies the AGV path-
planning algorithm based on the improved dynamic window
method. The algorithm is able to efficiently plan a safe and
fast path when facing complex situations such as dynamic
environment and obstacle changes. The experimental results
show that the algorithm is able to achieve satisfactory path-
planning results under various environmental conditions.

In addition, we fuse the particle swarm algorithm with
PID control to improve the control performance of AGV path
tracking. The experimental results show that this fusion strat-
egy can effectively improve the stability and robustness of
the system and effectively overcome some of the limitations
of traditional PID control in nonlinear systems.
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