Mechanical

Open Access

Bowen Yu and Chunli Xie

College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
Chunli Xie (xcl08 @ 126.com)

Received: 1 October 2022 — Revised: 11 November 2023 — Accepted: 22 December 2023 — Published: 19 February 2024

The problem of industrial bearing health monitoring and fault diagnosis has recently been a popular
research topic. Extracting sufficient features from the input raw vibration signals and mapping them to the most
likely fault labels is the essence of bearing fault diagnosis. This study proposes a novel framework for bearing
defect diagnostics by merging dilated residual convolutional neural networks and attention mechanisms. In this
framework, multiple parallel dilated convolutional networks can automatically learn rich fault features at each
scale from vibration signals. Simultaneously, the attention approach boosts fault-related features and suppresses
irrelevant ones, improving fault detection performance and generalization. According to the experimental results
of two different bearing datasets, the framework achieves a higher accuracy and can accurately identify various

types of faults.

With the advent of the era of big industrial data, mechan-
ical equipment is constantly developing toward complex-
ity and intelligence. As a basic component of mechanical
equipment, industrial bearings are also components with a
high incidence of failure. Industrial bearing failure can di-
rectly lead to the deterioration of the operating condition
of mechanical equipment and pose significant safety issues.
Based on statistics, bearing failures account for 40 %—70 %
of the electro-mechanical drive system, resulting in substan-
tial losses (Lessmeier et al., 2016). Therefore, real-time and
accurate diagnostics of industrial bearings are critical for en-
suring smooth operation and extending the equipment’s life.

The commonly used methods for industrial bearing diag-
nosis include oil pressure, infrared thermal imaging, vibroa-
coustic measurements, electric current, etc. (Thoppil et al.,
2021). Since low-cost vibration sensors can conveniently col-
lect a wide range of vibration fault information, vibration-
signal-based diagnostic methods are most widely adopted in
health condition monitoring. The fault signals of industrial
bearings are non-smooth and contain a lot of background
noise (Lin et al., 2004), and the defects are rarely single. It is
a great challenge for the diagnosis model to extract the effec-
tive fault information from the complex vibration signal and

ensure classification accuracy. Bearing fault diagnosis mod-
els usually have two major parts: feature extraction and fault
classification (Chen et al., 2021). Feature extraction refers
to the extraction of representative fault-related information
from the raw data based on the technicians’ signal process-
ing knowledge and practical engineering experience, usually
divided into time and frequency domain information.

A single time-domain signal often cannot accurately ex-
press bearing fault information. It is common to transform it
into the frequency domain or time—frequency domain, such
as wavelet packet (Yen and Lin, 2000), envelope analysis
(Tsao et al., 2012), and empirical mode decomposition dis-
tribution (Yu and Junsheng, 2006). Various machine learning
algorithms are used as classifiers on the extracted fault fea-
tures, such as support vector machines (SVMs) (Yang et al.,
2007), random forest methods (Roy et al., 2020), and K near-
est neighbor (KNN) (Tian et al., 2015).

Fault diagnosis models based on shallow machine learn-
ing techniques and manual feature extraction methods have
shown excellent recognition accuracy. However, there are
several clear drawbacks: (1) it needs to manually extract fea-
tures from the original vibration signal based on experience
and signal processing knowledge, which requires intensive
computation. What’s more, the effect of diagnosis mainly de-



pends on the quality of feature extraction. (2) Feature extrac-
tion and classification are two independent processes, and the
unsynchronized extraction and classification cannot meet the
requirements of real-time diagnosis in the production system.
(3) The diagnostic capability of shallow machine learning is
slightly insufficient in the face of massive and strongly dy-
namic data, making it difficult to adapt to complex working
conditions (Jiao et al., 2020).

The rapid development of deep learning has brought a
new approach to bearing fault diagnosis. As a common deep
learning model, the convolutional neural network (CNN) has
achieved remarkable results in object recognition, image pro-
cessing, and audio classification (Khan et al., 2020). Due to
its multi-layer network structure, CNN has a strong adap-
tive feature learning ability, does not require any complicated
manual extraction process, and can automatically learn fault
feature representations from raw signal data.

Zhu et al. (2019) transformed the original one-dimensional
time-domain signal into a time—frequency map through a
short-time Fourier transform and input it into a convolutional
neural network to identify fault features. Wang et al. (2019)
compared the classification performance of eight different
time—frequency analysis methods on the AlexNet model.

Mechanical equipment conditions are complicated and
varied throughout the operation, and bearing failures come
in various shapes and locations. As a result, the signal con-
tains multiple scales of characteristics. Jiang et al. (2018) in-
troduced multi-scale coarse-grained layers in CNNs to cap-
ture different granularity features by smooth shifting. Peng et
al. (2020) offered a multi-branch, multi-scale CNN for learn-
ing rich and complementary defect information from wheel
set bearings. Multi-scale convolutional networks have more
layers and are susceptible to degradation. Liu et al. (2019)
incorporated residual learning into CNNs to improve model
training and prevent performance deterioration. Surendran
et al. (2022) utilized a residual multi-scale CNN model
(inception-resnet v2) to extract high-level fault characteris-
tics and optimize the parameters using the sailfish algorithm.

Motivated by the prior studies, we have developed a novel
fault diagnostic framework, which incorporates multi-filter
dilated CNNs, a residual convolutional neural network and
attentional mechanisms. The framework enables automatic
feature extraction and end-to-end detection for fault identifi-
cation, enhancing CNN stability and generalization in com-
plicated conditions. The following is a list of the paper’s ma-
jor contributions:

1. A multi-scale extraction module based on dilated CNNs
is proposed. Dilated CNNs produce diverse receptive
fields to capture different fault features by adjusting di-
lation rates.

2. We design the residual connection module to transfer
feature information between different layers, enabling
data from shallow levels to flow into deeper layers and
reducing information loss during transmission. Addi-

tionally, a wide convolutional kernel is used to capture
long-term dependencies and mitigate noise interference.

3. Multiple attention mechanisms are applied in the mod-
ule. The attention module assigns different weights to
captured fault features, thus enhancing representative
features while suppressing irrelevant ones.

4. The diagnostic framework is proposed. It was validated
under various scenarios with bearing vibration signals,
and the effect of various dilation rates and reduction ra-
tios on the model extraction capability was examined. It
is experimentally demonstrated that the framework per-
forms well in complex situations.

The following is the structure of this paper: Sect. 2 in-
troduces the background knowledge of convolutional neu-
ral networks, Sect. 3 explains the diagnostic framework’s
components and its procedure, and Sect. 4 introduces the
experimental datasets of Case Western Reserve University
(CWRU) and Jiangnan University (JNU). Section 5 in this
paper presents the experimental results under different tasks
and their corresponding analyses. Conclusions are presented
in Sect. 6.

Convolutional neural networks encompass three key con-
cepts: sparse interaction, parameter sharing, and equi-variant
representation (Goodfellow et al., 2016). As illustrated in
Fig. 1, a typical convolutional neural network comprises con-
volutional, pooling, and fully connected layers.

The convolutional layer in CNNs stands as a cornerstone
of its architecture. In this layer, input data are meticulously
scanned using convolutional kernels. These kernels, akin to
filters, possess a strong ability to discern intricate patterns
within the data. Through the convolutional operation, these
filters capture hierarchical and abstract representations of the
input. Activation functions in CNNs map the inputs of neu-
rons to their respective outputs. This transformation com-
monly employs nonlinear operations, enabling the network
to learn the complex nonlinear relationships within the data.
Pooling layers play a crucial role in simplifying computa-
tions within neural networks, which condense input dimen-
sions by synthesizing local regions of the feature map into a
single outcome. A CNN systematically extracts discrimina-
tive features related to faults from vibration signals by exe-
cuting convolution and pooling operations.

After the feature extraction phase, the acquired features, re-
fined through layers of convolutions and pooling, flow into



Convolutional MaxPooling

Convolutional neural network architecture.

Flatten

TR - 665

Comparison of fully connected layer and global average

pooling.

densely connected layers, where intricate connections form,
capturing abstract concepts. Each neuron in these fully con-
nected layers acts as a learned feature detector, discerning
complex combinations of visual elements. The final layer, of-
ten adorned with the softmax activation function, transforms
these intricate features into probabilities, quantifying the net-
work’s confidence in each potential class.

Traditional models often incorporate multiple fully con-
nected layers to capture intricate dependencies within the
data. However, as convolutional neural networks progress
to depth and complexity, fully connected layers lead to a
surge in parameters, which amplifies the risk of overfitting
and puts forward higher requirements for the performance of
diagnostic equipment. In response to the problem, Hinton et
al. (2012) proposed the dropout method to randomly abandon
the connection, reduce the co-adaptation between nodes, and
empower the network to acquire robust features that general-
ize better to unseen data. To further improve the anti-fitting
ability of the model and reduce the parameters in the training
process, Lin et al. (2013) proposed a global average pool-
ing method, which is different from the traditional fully con-
nected layer by performing global average pooling on each
feature map. Figure 2 compares the operational mechanisms
of global average pooling and fully connected layers.
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The vibration signal gathered by the accelerometer is typ-
ically non-stationary, meaning that the signal’s frequency
component fluctuates with time and has a significant degree
of uncertainty. It comprises complex feature information of
various timescales and presents typical multi-scale charac-
teristics. Meanwhile, bearing faults come in various shapes
and sizes, and different types of faults produce distinct char-
acteristic frequencies. Due to these factors, traditional con-
volutional neural networks with a fixed filter do not extract
enough information for accurate fault diagnosis.

We propose a multi-filter dilated convolution module to
mine multi-scale information from the bearing vibration sig-
nals to perform the feature extraction work. The module’s
structure is depicted in Fig. 3. The module uses four parallel
dilated convolution structures with a filter w, sliding in the
vibration signal for convolutions to obtain multiple feature
maps (Wang and Ji, 2018). It can get several receptive fields
in the vibration signal sequence, allowing each output of the
local convolution stage to catch different scale features, the
formula being defined as

o= fli+d-slwlil, (M)

s=1

where d is the dilation rate and s denotes kernel size; the op-
eration process of dilated convolution is depicted in Fig. 4a.
Given the diverse output sizes stemming from different di-
lation rates, we employ padding techniques to ensure uni-
form output lengths. Subsequently, feature maps from dis-
tinct levels are connected along the channel dimensions
(Chen and Shi, 2021). Each structure is equipped with 64 fil-
ters and a kernel size of 5, so we can get the output in Eq. (2).

o=[o1,02,++,0n—nt1] € R"*€ )

Because the feature maps formed by convolution are substan-
tially different in recognizing bearing fault features, we em-
ploy attention mechanism approaches to learn discriminative



Dilated cnn layer

., oraecemnfayer 1

: Dilated cnn layer J

Multi-filter dilated convolutional neural network.

features and disregard valueless data. First, the global tempo-
ral information in the feature map of L length is compressed
into a channel descriptor using the global average pooling
layer (Hu et al., 2018).

1 L
ze=7 )0, 3)

i=1

where z. is channel-wise statistics, reflecting the global in-
formation of the ¢ feature map.

To properly capture the correlation of the channels in the
channel-wise statistics, the next step is to fuse the feature
map information of each channel across the fully connection
layer (Ye and Yu, 2021).

s =0 (F26(F12)), 4)

where & represents the ReLU activation function, F; and
F> denote the fully connected layers, and o is the sigmoid
that compresses the dynamic range of the vector between
[0, 1]. After that, channel-wise multiplication in Eq. (5) is
performed to complete the rescaling of the original features
in the channel dimension with the learned weights.

v-s =[v1S1, V282, -+, VeSe] (5)

After extracting characteristics from each structure, they are
combined across channels using concatenation.

The residual network provides the shortcut connection ap-
proach (He et al., 2016) connecting earlier layers to later
layers via shortcuts to allow the flow of information across
distinct layers. Shortcut connections encompass identity and
projection shortcuts, as illustrated in Egs. (6)—(7).

y=Fx Wi)+x, (6)
y=F(x, Wj)+ Wsx, (N
where y and x refer to input and output, F is residual map-

ping, and W; indicates weight. The schematic diagram can
be found in Fig. 4b.

We create a residual convolutional neural network that
learns to integrate feature information from the 1D signal,
which comprises convolutional layers with residual connec-
tions and a pooling layer. In designing our convolutional lay-
ers, we utilize a wider convolutional kernel of 32 for the ini-
tial filters to mitigate noise interference and capture global
trend information more effectively (Liang and Zhao, 2021).
Subsequently, the second layer employs filters with a kernel
size of 7. The chosen number of filters for these convolu-
tional layers are 128 and 256 to optimize the feature extrac-
tion capabilities of our model.

Due to the alteration in the number of channels across dif-
ferent layers, it is necessary to perform dimensional match-
ing. This is accomplished via projection shortcuts as defined
in Eq. (7), which employ a convolutional layer with a 1 x 1
kernel size to facilitate this transition. Finally, applying the
ReLU activation function introduces nonlinearity into the
model, enhancing its capacity to model complex functions.

After the features are extracted by the multi-filter dilated
and residual convolutional neural network, they are fused
by element-wise addition. A discriminative enhanced module
(DEM) is then applied to the extracted multi-level features to
further deepen the model’s ability to screen for critical fea-
tures before entering the classification layer. The DEM mod-
ule is shown in Fig. 5. It includes two branches: the spatial
channel attention module and the channel attention module
(Woo et al., 2018).

As for spatial information, we apply the convolutional op-
eration to aggregate the compressed information from the
channel dimensions (Roy et al., 2018).

The channel attention technique produces two feature
maps with complementing global information through av-
erage and maximum pooling, respectively. Then, these two
feature maps are then subjected to two separate convolution
operations.

Cout =0 (W2 ® (8 (W1 ® Crnax))
+W2® (8 (W1 ® Cavg))). 8)

where Ciax and Cyyg are the global maximum pooling and
global average pooling feature, Wi and W, are the weights,
8 is ReLU activation, o denotes sigmoid activation, and ® is
convolution operation.

Input vectors can be optimized adaptively by DEM, to
score the characteristics adaptively learned at various scales
to enhance key information.

We present a framework for fault detection in Fig. 6. The
framework adopts an end-to-end learning approach compris-
ing four steps: signal acquisition and segmentation, model
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Figure 4. Dilated convolutional neural network and residual block.
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Figure 5. Discriminative enhanced module.

architecture development, model training workflow, and fault
classification.

Step 1: signal acquisition and segmentation. The acquisi-
tion system collects the vibration data of mechanical com-
ponents in varying states. Next, the original signal is divided
into smaller units every 1024 data points, represented by

€]

Each segment of the vibration signal is tagged with one hot
code during processing, so a separate bearing time-domain
vibration dataset is represented as

{(vi, F), (v1, Fp), oo s (Un, F)}.

If the number of data obtained are insufficient, data augmen-
tation techniques are used to increase the sample size; other-
wise, they are not necessary.

v={v17v23“'7vﬂ}'

(10)

https://doi.org/10.5194/ms-15-87-2024

Maxpool

IxC/r
Avgpool

Step 2: model architecture development. Fault character-
istics are extracted using multi-filter dilated and residual
convolutional neural networks. The discriminative enhanced
module picks characteristics from the extracted information
that enhance the discriminating ones. Finally, we use the
global average pooling layer to generate feature vectors and
transfer them into softmax to output several fault sorts.

Zi
Z?:ﬁzj

Step 3: model training workflow. We feed the model our
training data and then iteratively move forward through each
model layer to get the prediction. According to the loss func-
tion, the loss between the prediction and the target is deter-
mined. The error is then back-propagated while modifying
the training parameters to minimize the difference.

Softmax (z;) =

(1)

Mech. Sci., 15, 87-98, 2024
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Figure 6. Fault detection framework.

Step 4: fault classification. Input test data to the trained
model. The detection model returns the fault category corre-
sponding to the input signal.

Mech. Sci., 15, 87-98, 2024

4 Data description

4.1 CWRU dataset

The rolling bearing dataset from Case Western Re-
serve  University (CWRU;  http://csegroups.case.edu/
bearingdatacenter, last access: September 2022) has been

https://doi.org/10.5194/ms-15-87-2024
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Description of CWRU dataset.

Load Fault Defect size
(hp, horsepower)  location (inch)
A B C
1 2 3 Normal -
1 2 3 Inner race  0.007/0.014/0.021
1 2 3 Outer race  0.007/0.014/0.021
1 2 3 Ball 0.007/0.014/0.021

Description of JNU dataset.

Speed  Fault location  Defect size

(rpm) (mm)
800 Normal -
800 Inner race 0.3 x0.25
800 Outer race 0.3x0.25
800 Roller element 0.5 x 0.15

used extensively and has been considered a benchmark
(Smith and Randall, 2015) in recent years.

The vibration signals were collected from an accelerome-
ter mounted on the drive end (DE) with a sampling frequency
of 12 kHz. Three locations of failure were considered: inner-
ring failure, outer-ring failure, and ball failure. Each posi-
tion had three different fault diameters: 0.007, 0.014, and
0.021in. Consequently, there were three fault types times
three different fault diameters, along with normal operating
conditions, totaling 10 fault types.

Datasets A, B, and C encompass vibration data from
SKF 6205 bearings in three conditions: 1772 rpm (1 hp),
1750 rpm (2 hp), and 1730 rpm (3 hp), where bearing failures
are seeded through electro-discharge machining, as shown in
Table 1.

Two types of roller bearings (N205 and NU205) were used
in Jiangnan University bearing datasets (Li et al., 2013). The
sampling frequency is 50 kHz, and the sampling duration is
20s. The vertical vibration signals of the bearings were mea-
sured in four states: normal, defective inner ring, defective
outer ring, and defective roller element. The measurements
were conducted independently using an accelerometer, am-
plified through a signal conditioner, and recorded. We utilize
data obtained at 800 rpm; detailed information is outlined in
Table 2.

Training the model with a substantial volume of vibration
signal data is critical to ensuring robust model fit. We have
implemented an overlapping data augmentation technique

T ] T T ) ] I
| | | | | | |
1 | T L Y ' 1
1 ] | 1 1 1 |

Overlapping data augmentation.

(Zhang et al., 2017) to address the limited number of sam-
ples, as illustrated in Fig. 7. This method significantly in-
creases the available training data, enhancing our model’s
performance.

In this section, we validate various scenarios and analyze the
corresponding outcomes.

The training set of A, B, and C comprises 2000 samples,
with a separate validation set and test set, each containing
300 samples.

We choose cross-entropy loss as the loss function to mea-
sure performance, and its mathematical formula is as follows:

H(p.q)=—)_p(x)logq(x), (12)

where p(x) indicates the true probability distribution and
q(x) is the predicted probability distribution.

In order to accelerate the training speed while avoiding
falling into local optimal points, this paper uses the Adam
stochastic optimization algorithm for training, which can dy-
namically adjust the learning rate of different parameters
by iterating the weights according to the training data. The
dropout rate during training is 0.3.

The framework used for the experiments is Tensor-
Flow 2.6.0, running on a computer with an Intel i5
11400 CPU and an RTX3060 12GB GPU. To better train
the model in the TensorFlow framework, callback functions,
early stop, and exponential decay learning rate scheduler are
utilized to ensure optimum generalization performance.

If the kernel size of the filter is ks and the dilation rate is d,
then the equivalent convolution kernel size ks’ is

ks’ =ks+ (ks — 1) x (d — 1). (13)

When the dilation rate exceeds 1, the receptive field of the
convolution kernel can be enlarged based on Eq. (13). By
configuring a set of dilation rates to establish multiple recep-
tive fields, the module can capture signal features across a
broad range of scales.

To find the optimal combination, we attempted to validate
sets with various rates. The standard convolution combina-
tionis (1, 1, 1, 1), while the other combinations tested include
1,2,3,4),(1,2,4,8),(1,3,5,7),and (1,4, 6,9).
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Results of different reduction ratios.

Validation was conducted using training set C, test set A,
and test set B, while keeping all other variables constant and
with an initial reduction ratio of 16. In the comparison of
sets of dilation rates in Fig. 8, the combination of (1,2, 3,4)
achieved the best results with an average diagnostic accuracy
of 97.5 %, indicating it has the strongest feature extraction
performance.

The attention mechanism enhances the model’s ability to dis-
cern fault features by adjusting weights, and the reduction
ratio stands out as a crucial parameter. This ratio reduces
computational complexity by decreasing the number of in-
put channels, aiding the model in efficiently capturing inner
correlations. An appropriate reduction ratio helps regulate
weight ranges, concentrating on the most pertinent elements
in the input and enhancing the model’s expressiveness. Typ-
ically, the reduction ratio is a positive integer, with common
values being 2, 4, 8, 16, etc. Comparative diagnostic results
for the model with different reduction ratios are presented in
Fig. 9. The optimal ratio for this diagnostic task is 4.

Due to production requirements and unforeseen external en-
vironmental factors, machines often operate under varying
conditions, including speed, load, and temperature. These

fluctuations impact the vibration frequency and amplitude of
signals captured by accelerometers, leading to notable differ-
ences in signal characteristics. Consequently, these changes
introduce interference, affecting the accuracy of classifica-
tion. The variation in data distribution caused by these fluc-
tuations significantly impacts the overall generalization per-
formance of fault diagnosis models.

It requires good robustness of the diagnostic model to
adapt to various changes in operating conditions. In the fol-
lowing section, the adaptability of the models, i.e., the pro-
posed method, ConvNet, DRSN-CW (Zhao et al., 2019),
ResNet, and TICNN (Zhang et al., 2018), is tested under
different workloads. The validation method involves train-
ing the model on a specific workload and then applying it to
test sets from a different workload, with results presented in
Fig. 10.

TICNN, configured with a wide kernel size of 64, consis-
tently achieves accuracy above 96 % for the initial four work-
loads. However, a substantial decline in diagnostic accuracy
is observed for C-A and C-B, plummeting to 78.06 % and
86.72 %, respectively. In contrast to TICNN, ConvNet em-
ploys small kernels in each layer. Notably, ConvNet gains
better performance exclusively in the A—B scenario. This ob-
servation demonstrates that a wide kernel is instrumental in
extracting crucial vibrational features from the signal while
suppressing spurious feature interference.

DRSN-CW embeds soft thresholding within the architec-
ture, achieving an average diagnostic accuracy of 96.78 % for
the initial four loads. Nevertheless, it incorporates a limited
number of filters, potentially impeding the extraction of intri-
cate feature representations and diminishing the capacity to
distinguish various fault features effectively. DRSN-CW can
just achieve more than 80 % diagnostic ability under C-A
and C-B.

ResNet uses the same filter quantity as DRSN-CW in the
B-C scenario but falls behind DRSN-CW by over 9 %, in-
dicating that incorporating soft thresholding aids the DRSN-
CW model in learning more robust feature representation.
Our model achieves the best average diagnostic results in
multi-load domain adaptation tasks, demonstrating that our
model in this study can learn more discriminative features
about these defects and enhance the model’s robustness in
complex scenarios.

To intuitively observe the final classification results, we
employ the t-SNE algorithm (Van Der Maaten and Hinton,
2008) to map abstract features under the A—C workload into
a comprehensible geometric plane, as illustrated in Fig. 11.
Different colors represent various bearing failures, visually
demonstrating the degree of separation among failure char-
acteristics. The model equipped with the DEM module ex-
hibits higher separation when distinguishing between differ-
ent classes of samples, underscoring its ability to prioritize
fault-relevant information and enabling more accurate clas-
sification decisions.
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Figure 10. Results of different workloads.
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Figure 11. t-SNE visualization results.

5.3 Performance with the JNU dataset

To assess the generalizability of the proposed model, vali-
dation experiments were performed using the JNU dataset.
In order to gain a deeper understanding of the model’s di-
agnostic capabilities, we introduced the confusion matrix to
provide a detailed representation of the model’s performance
within each fault category.

https://doi.org/10.5194/ms-15-87-2024

As illustrated in Fig. 12, the four confusion matrices rep-
resent the diagnostic results of our model, TICNN, DRSN-
CW, and ResNet. In the case of outer-race fault detection,
DRSN-CW exhibits a 12 % probability of erroneously classi-
fying such faults as roller element faults. Regarding roller el-
ement damage diagnosis, this model encounters a 2 % chance
of confusion with inner-race faults and an 8.2 % likelihood
of incorrect classification as outer-race faults. TICNN accu-

Mech. Sci., 15, 87-98, 2024
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Figure 12. Comparison of confusion matrices.

rately predicts all samples in the healthy state; however, it
trails our model by 4 % in diagnosing inner-race faults and
lags by a margin of 2% in the other two fault scenarios.
ResNet shows commendable accuracy in diagnosing faults
in inner-race and healthy-state samples, with a 100 % correct
prediction rate in these categories. Nonetheless, its diagnos-
tic accuracy diminishes by 8 % and 4 % for the remaining
fault types.

Our proposed model excels in superior diagnostic profi-
ciency across a spectrum of bearing faults and degrees of
damage, accurately detecting all instances of faults in three
scenarios and attaining a 94 % accuracy in identifying outer-
race faults. The experimental outcomes demonstrate that our
model achieves a convincing performance with the JNU
dataset, substantiating its robust generalizability.

6 Conclusion

This study offers a novel framework based on convolutional
neural networks for detecting industrial bearing faults. The
framework incorporates dilated convolution, residual convo-
lutional neural network, and attention mechanisms to gain
rich fault feature representations and adaptively enhance key
information. It is able to extract multi-scale features from
nonlinear vibration signals to overcome the limitations of
single-structure convolutional neural networks’ weak flexi-

Mech. Sci., 15, 87-98, 2024
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bility and extraction capacity. Multiple types of experimen-
tal validation are performed on bearing datasets. The exper-
imental results show that the proposed model considerably
exceeds traditional CNNs in feature learning and classifica-
tion ability.
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