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Abstract. In this paper, a bio-inspired masticatory mechanism has been developed to reproduce the chewing
behaviors of human beings. It is a natural spatial parallel mechanism constrained directly by the base at its
end effector. These constraints form two point-contact higher kinematic pairs, producing parasitic motions and
redundant actuations simultaneously. To facilitate the model-based control, a rigid-body inverse dynamic model
is built and the inertia coupling is analyzed. Firstly, by virtue of a dynamic method, the Hessian matrices of
the constraint equations and the kinetic energy are derived. The modeling process is straightforward, and the
correctness is validated by virtue of the classical Lagrange equations. However, from the comparison between
the technique in this method and a classical method in computing the first time derivative of the Jacobian matrices
and the Coriolis–centrifugal force matrix, the former is more time-consuming. Secondly, the inertia coupling is
analyzed via the inertia matrix in the joint space, showing that the first, third, and fourth active joints are the most
strongly coupled. Finally, by comparing both the inverse dynamics and inertia coupling of the target mechanism
and its counterpart, the foregoing constraints raise the computational cost of the inverse dynamics extraordinarily
but greatly alleviate the inertia coupling.

1 Introduction

The food industry is very interested in evaluating the time-
varying textures and properties of newly developed foods
during the entire masticatory process, which can contribute
to the development of healthy and widely accepted food
products (B. Chen et al., 2021). Nevertheless, generally,
different from the real complicated three-dimensional (3D)
masticatory behaviors of human beings, the current instru-
ments available can only perform simple one-dimensional
crushing. Thus, the time-varying properties of newly devel-
oped foods during the chewing process cannot be discovered
accurately or completely (Sun et al., 2014), and a robotic de-
vice that can replicate the chewing motions and forces with
high fidelity will no doubt facilitate the development of new
food textures in this industry. Nature is a great source of in-
spiration that enhances technological innovations, and a great
variety of bionic robots have been designed to imitate vari-
ous animals (Chen et al., 2023, 2024; Wang et al., 2024).

In this regard, a human-like parallel chewing robot has been
designed according to the layout of the muscles of masti-
cation and the physiological jaw structure of human beings,
mimicking the masticatory system of human beings faith-
fully (Cheng et al., 2015): the base attached to the skull is
the fixed upper jaw; the end effector is the lower moving jaw;
and the six kinematic chains working in parallel mimic the
primary mouth-closing chewing muscle groups, i.e., the tem-
poralis, masseter, and pterygoid at the two sides of the mas-
ticatory system, since these muscles work in parallel to drive
the mandible in the three-dimensional space (Xu et al., 2008
a, b). The large temporalis muscles are attached from the side
of the skull to the top of the lower jaw behind the teeth and
consist of vertical and horizontal muscle fibers. The masseter
muscles are attached between the cheek on the skull and the
lower rear section of the lower jaw. The pterygoid muscles
are attached between the skull and the lower jaw in a hori-
zontal fashion. Further, to model the two temporomandibular
joints (TMJs) between the temporal bone of the skull and the
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condyles of the lower jaw, direct constraints from the base to
the end effector are implemented, forming two point-contact
higher kinematic pairs (HKPs). A detailed description of the
masticatory system of human beings and chewing robotics
can be found in Koolstra (2002) and Chap. 1 of Xu and Bron-
lund (2010).

Compared to open-loop serial-chain mechanisms, there
are many closed loops in parallel mechanisms (PMs). Due
to this topology, PMs display greater stiffness (Sun et al.,
2024; Song et al., 2020), a better motion accuracy (Han et
al., 2021; Qiancheng et al., 2022), a larger acceleration capa-
bility (Corbel et al., 2010), a larger payload capacity (Chen
and Liao, 2016), and better elastodynamic performance (Ger-
main et al., 2015) than their serial-chain counterparts. There-
fore, these mechanisms are widely employed in a variety of
fields where these strengths are greatly needed, such as ma-
chine tools (Zhang et al., 2022; Guo et al., 2022; Hernández
et al., 2020), and telescope applications (Díaz-Rodríguez et
al., 2016).

Before our robotic device can be commanded to replicate
the chewing behaviors of human beings, and even further em-
ployed in the food industry as a well-established commercial
product, it is very necessary to implement the model-based
motion and/or force control in real time. In addition, since
the inverse kinematics of the target PM has already been an-
alyzed in Cheng et al. (2015), it is natural to extend the study
to inverse dynamics. However, it is a challenging job as there
are so many constraints in the mechanism: the end effector is
not only constrained by the six chains, but also by the base
directly at two HKPs. As such, we are strongly motivated to
seek a computationally efficient methodology to establish an
inverse dynamic model.

Many a method has been devoted to formatting the equa-
tions of motion (EOMs) of a wide variety of PMs, for in-
stance, Newton–Euler’s law (Bi and Kang, 2014; Gosselin,
1996; M. Chen et al., 2021; Yan et al., 2022), the Lagrangian
formulation (Mohan and Corves, 2017; Hernández et al.,
2020; Li et al., 2009), the principle of virtual work (Car-
bonari et al., 2013; Liu et al., 2019; Carricato and Gos-
selin, 2008), the Jourdain principle of virtual power (Yang
et al., 2019), the natural orthogonal complement (Wang et
al., 2019; Eskandary and Angeles, 2018), Kane’s equations
(Cibicik and Egeland, 2019), and the method based on Screw
and Lie group theory (Müller, 2022, 2019). However, these
spatial or planar PMs are all composed of lower kinematic
pairs; that is, HKPs are probably uncommon in PMs.

On the other hand, since PMs are typical multi-input and
multi-output mechanical systems, generally, it is very diffi-
cult to derive forward kinematics that can be calculated in
real time, which is of great significance in motion control
in the task space. Meanwhile, exteroceptive vision devices
that can directly measure the motions of end effectors in real
time as in Bellakehal et al. (2011) increase the expenditure
and the intricacy of the experimental setup. In this regard,
the motion control in the active joint space of PMs is much

easier to be implemented. However, the existence of many
closed loops usually produces strong couplings among ac-
tive joints: one active joint burdens not only the inertia from
its own kinematic chain, but also the coupling inertias from
the other ones. Mathematically, the inertia coupling is from
the non-diagonal terms of the inertia matrix, which can be
found in the dynamic model. The coupled inertias can be
viewed as disturbances to the active joint, increasing motion
control difficulties. Henceforth, this property is a significant
reference to design convenient motion control strategies in
the joint space. In addition, this dynamic performance is also
an important reference for motor sizing and resonance fre-
quency analysis (Shao et al., 2012). Finally, from the pub-
lications, the study on this property is mainly composed of
only lower kinematic pairs in PMs. Thus, this property in
PMs with direct constraints from the base like the one under
study is unclear. In this regard, the inertia coupling is ana-
lyzed after the dynamic model is built in this paper.

From the literature, an index judging the inertia coupling
among different active joints was proposed and applied in a
3-UPS PM in Guo et al. (2022), where U, P, and S mean
universal, prismatic, and spherical joints, respectively. This
index takes both the diagonal and off-diagonal elements of
the inertia matrix into consideration, evaluating the iner-
tia coupling among different chains. In Liu et al. (2014),
the eigenvalues of the inertia matrix of a Stewart platform
were decomposed, and the largest one was adopted to judge
the inertia-decoupling characteristic. The matching issue be-
tween the inertias of the actuator and the load on the kine-
matic chain in the Stewart platform was studied in Shao
et al. (2012), where an index named joint-reflected inertia
was developed based on the coupling analysis of the joint-
space inertia matrix. This index used the average value of the
principal diagonal elements of the inertia matrix in the joint
space; however, it cannot reflect the imbalance of the inertia
property among chains. To this end, a coefficient of varia-
tion of the joint-space inertia index equaling the coefficient
of variation of the principal diagonal elements of the inertia
matrix was proposed and employed in a pick-and-place PM
with 4 degrees of freedom (DOFs) in Mo et al. (2017). A mi-
nor value of this index promises a better inertia isotropy for
all chains. In Zou et al. (2022), two indices from both Mo et
al. (2017) and Shao et al. (2012) were employed to compare
the dynamic performance of two PMs with 3 translational
DOFs. In addition, two new indices based on the off-diagonal
elements of the inertia matrix, i.e., the branch-coupling ab-
solute inertia index and the variation in the branch-coupling
inertia index, were designed to study the inertia couplings
among different chains.

According to these publications on inverse dynamics and
inertia coupling, studies on dynamic modeling have made
considerable achievements in PMs, but inertia coupling anal-
yses are relatively rare (Guo et al., 2022), and the works
on these two fields are primarily about PMs composed of
lower kinematic pairs. Meanwhile, a dedicated study in PMs

Mech. Sci., 15, 587–600, 2024 https://doi.org/10.5194/ms-15-587-2024



C. Cheng et al.: Inverse dynamics and inertia coupling analysis of a parallel mechanism 589

constrained by the base directly like the one under study is
rather limited. That is probably because this sort of PM is
very uncommon. As a result, it is a challenging job to estab-
lish a cost-effective inverse dynamic model for the PM under
study and analyze its coupling performance. Among the pub-
lications, the inverse dynamic model in Abo-Shanab (2020)
for PMs using the Hessian matrix under the framework of
the Lagrange–D’Alembert principle provokes our interest.
The first time derivative of the Jacobian matrices and the
Coriolis–centrifugal force matrix can be derived by the Hes-
sian matrices of the constraint equations and the overall ki-
netic energy of a mechanism, respectively. The derivation of
the EOMs is simple and straightforward, and the final model
is rather well-structured and compact. As such, it is particu-
larly attractive to develop inverse dynamic models for PMs
with complex topologies by virtue of these strengths. Never-
theless, so far, this method has only been applied in a simple
planar PM in Abo-Shanab (2020), and no further attempt has
been made to evaluate its computational efficiency yet. Due
to these, it is to be employed to build the inverse dynamic
model of our target PM, and its correctness will be verified
by the model built by the Lagrange formulation. The method
of deriving these foregoing matrices will be compared with a
classical one from Liang et al. (2017), concerning the com-
putational cost. Meanwhile, the index from Guo et al. (2022)
which uses both the diagonal and off-diagonal elements of
the inertia matrix is to be applied to evaluate the inertia cou-
pling property of this uncommon PM.

In this study, it is assumed that there are no link defor-
mations, and joints are free of clearances or friction effects.
These are all complicated subjects and are left for future de-
velopments. In the following, at first, a detailed description
of the target PM is provided in Sect. 2, and then the deriva-
tions of parasitic motions and redundant actuations are given
in Sect. 3. The derivation of the constraint Jacobian matrices
and their first time derivatives by Hessian matrices is pre-
sented in Sect. 4. The dynamic models under the framework
of the Lagrange–D’Alembert principle by the Hessian ma-
trices and under the classical Lagrangian equations are both
derived in Sect. 5. In Sect. 6, the inertia coupling of the target
PM is performed. In Sect. 7, the correctness of the dynamic
method is verified by comparing the numerical results from
the classical Lagrange formulation. The computational effi-
ciency to derive the first time derivative of the Jacobian ma-
trices and the Coriolis–centrifugal force matrix in the Hes-
sian matrix approach is studied, by comparing the mathemat-
ical method from Liang et al. (2017) to obtain these matrices.
Moreover, the effects of direct constraints from the base to
the end effector in terms of both computational demands in
inverse dynamics and inertia coupling are further explored
by making a comparative study between the target PM and
a 6-Revolute-Spherical-Spherical (RSS) PM, where the italic
letter R means it is the active joint in the kinematic chain.
Finally, some conclusions are given in Sect. 8.

The contributions of this paper are as follows:

1. The rigid-body inverse dynamics of a novel spatial PM
featuring direct constraints from the base to the end ef-
fector at the HKPs is addressed by the Hessian matrix
method in Abo-Shanab (2020). Further, from the com-
parison between the mathematical techniques in Abo-
Shanab (2020) and Liang et al. (2017) to derive the first
time derivatives of constraint Jacobian matrices and the
Coriolis–centrifugal force matrix, the computational ef-
ficiency of this approach is discovered.

2. The inertia coupling property of the target PM is re-
vealed numerically.

3. The influence brought by the direct constraints from the
base in inverse dynamics and inertia coupling is iden-
tified clearly by comparing these two features between
the target PM and a 6RSS PM.

2 The robotic mechanism

The scheme of the mechanism is illustrated in Fig. 1. The
maxilla (i.e., the base) is fixed on the ground, and the mov-
able mandible (i.e., the end effector) is connected to the base
by six independent kinematic chains. The primary part of the
maxilla is not shown for a clear illustration of the movable
bodies, except for the upper articular surfaces of the TMJs as
3© and 4© for the sake of the illustration of the point-contact

HKPs between the condyles and the maxilla. The inertia co-
ordinate system {S} is assigned to the maxilla. This system
consists of a horizontal XS–YS plane perpendicular to the
vertical ZS axis. A coordinate system {M} is established at
the mass center OM of the end effector. The origins and ori-
entations of {S} and {M} overlap when the mechanism is at
the home position; that is, the maxilla and the mandible are
in the occlusal state. The position of the origin OM in {S} is
used as the reference to describe the mandibular translations,
and its orientations with respect to {S} are expressed by X–
Y–Z Euler angles. In each chain, the crank GiSi (i = 1, . . . ,
6) is driven by a base-mounted rotary actuator with a revolute
joint at Gi , and the coupler SiMi joins the crank and the end
effector via two spherical joints at its two ends Si andMi , re-
spectively. The rotation of the ith actuator with respect to {S}
is described by the actuator frame {Ci} attached atGi . In this
{Ci} frame, the XCi axis is directed from Gi to Si ; the ZCi
axis runs through the driving shaft of the actuator; and the
YCi axis completes the frame, obeying the right-hand rule.
The numbers of the chains are given in the subscripts of G,
S, and M . With centers at Ti (i = L, R), the condyles of the
mandible are modeled as two balls as 1© and 2©, which are
always touching 3© and 4©, respectively, forming two HKPs.
These contacts play the role of TMJs in the chewing sys-
tem of human beings. As clearly shown in this figure, the
end effector is driven by six chains at spherical jointsMi and
constrained by the base at two HKPs simultaneously. At the
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Figure 1. Schematic diagram of the PM constrained by the base at
two point-contact HKPs, where 1© and 2© are condylar balls, and
3© and 4© are articular surfaces of TMJs.

initial time, the coordinates of Gi and Si (i = 1, . . . , 6) in
frame {S} and Mi in frame {M} are given in Table 1.

A closer observation of Fig. 1 reveals that the point-contact
HKPs between the condylar balls and articular surfaces of
TMJs are only schematic, since condylar balls only receive
unilateral constraints from the articular surfaces of TMJs.
As such, in practical manipulations of the PM, due to er-
rors in manufacturing, assembling, or motion control, condy-
lar balls easily lose contact with the articular surfaces. Thus,
the nature of the mechanism is changed. In this regard, the
computer-aided design (CAD) model of the HKPs and re-
lated mechanical parts in engineering practice are designed
as in Fig. 2. The condylar ball slips along a condylar socket,
with the width being equal to its diameter. Thus, the two
point-contact HKPs during the arbitrary movements of the
end effector can be guaranteed satisfactorily.

3 Derivations of parasitic motions and redundant
actuations

How parasitic motions and redundant actuations are gener-
ated in the target PM is presented in this section. In frame
{S}, the mathematical functions of surfaces where the left
and right condylar ball centers are situated are

Figure 2. The target PM: (a) CAD model, (b) magnification of the
right HKP, and (c) prototype of the HKP-related mechanical parts.

p1 ·XS +ZS +p2 = 0, p3 ≤XS ≤ p4,

p5 ≤ Y
L
S ≤ p6, −p6 ≤ Y

R
S ≤−p5

p1 = 1.1, p2 =−13.215, p3 =−10, p4 = 5,
p5 = 69, p6 = 75, (1)

where Y iS (i = L, R) denotes the coordinates along the YS
axis of the left and right surfaces, respectively; p1 is a di-
mensionless parameter; and the unit of p2–p6 is millimeters.

The coordinates of the condylar ball centers Ti (i = L, R)
in {S} are

OSTi =OSOM +
S
MR ·MOMTi, (2)

where OSOM = [X Y Z]
T denotes the 3× 1 position vector

of the mass center OM in {S}, MOMTi is the constant posi-
tion vector of Ti in {M}, and S

MR is the rotation matrix from
{S} to {M} in terms of X–Y–Z Euler angles and is computed
as

S
MR= RX (α) ·RY (β) ·RZ (γ )

=

[
1 0 0
0 cα −sα
0 sα cα

]
·

[
cβ 0 sβ
0 1 0
−sβ 0 cβ

]

·

[
cγ −sγ 0
sγ cγ 0
0 0 1

]

=

[
cβcγ −cβsγ sβ

sαsβcγ + cαsγ −sαsβsγ + cαcγ −sαcβ
−cαsβcγ + sαsγ cαsβsγ + sαcγ cαcβ

]
, (3)

Mech. Sci., 15, 587–600, 2024 https://doi.org/10.5194/ms-15-587-2024



C. Cheng et al.: Inverse dynamics and inertia coupling analysis of a parallel mechanism 591

Table 1. Coordinates of Gi and Si (i = 1, . . . ,6) in frame {S} and Mi in frame {M} (unit: mm).

G1 G2 G3 G4 G5 G6 S1 S2 S3 S4 S5 S6

x 23.65 23.65 40.15 40.15 36.15 36.15 32.19 32.19 54.11 54.11 23.96 23.96
y −12.25 12.25 −58.24 58.24 −61.67 61.67 −17.45 17.45 −59.47 59.47 −63.49 63.49
z −16.02 −16.02 −36.24 −36.24 39.47 39.47 −16.02 −16.02 −30.91 −30.91 48.02 48.02

M1 M2 M3 M4 M5 M6

x 10.33 10.33 28.61 28.61 36.13 36.13
y −40.47 40.47 −54.65 54.65 −52.46 52.46
z −7.00 −7.00 −51.28 −51.28 −1.32 −1.32

where RX(α), RY (β), and RZ(γ ) are the rotation matrices
around the XM , YM , and ZM axes by α, β, and γ , respec-
tively, and s and c are short for sin(·) and cos(·), respectively.

Substituting Eqs. (2) and (3) into Eq. (1) produces the ge-
ometric constraint equation at two HKPs as

p1 ·
(
X+ S

MR(1,:) ·
MOMTj

)
+Z+ S

MR(3,:) ·
MOMTj

+p2 = 0, (j = L,R) , (4)

where S
MR(i,:) is the ith (i = 1, 3) row of SMR. Considering

the left-right symmetry of MOMTL and MOMTR in {M}, a
summation and a subtraction of the two equations in Eq. (4)
sidewise yield

Z =−
(
p1X+p2+

(
p1 ·

S
MR(1,:)+

S
MR(3,:)

)
·

 MOMTL(1)
0

MOMTL(3)


γ = atan

sα

p1cβ + cαsβ
, (5)

where MOMTL(j ) (j = 1, 3) is the j th term of MOMTL. As
a consequence, these constraints at HKPs change 1 transla-
tional DOF Z and one Euler angle γ into parasitic motions,
which are the functions of 4 DOFs, i.e., 2 translational DOFs,
X and Y , and two Euler angles, α and β. In fact, from the
Kutzbach–Grübler criterion, the mechanism has 4 DOFs, but
it does not tell us which 4 and cannot judge whether para-
sitic motions exist or not. From this rigorous computation,
not only the 4 DOFs but also two parasitic motions in the
mechanism can be found. As such, the target mechanism can
still perform motions in six directions in the 3D space. Be-
cause there are still six actuators, it is redundantly actuated.
Thus, parasitic motions and redundant actuations are explic-
itly brought by the direct constraints from the base to the end
effector. By contrast, generally, parasitic motions in PMs are
caused by the constraints in the chains (Carretero et al., 2000;
Nayak et al., 2018), and the conventional ways to form actu-
ation redundancy as stated in Gosselin and Schreiber (2018)
are to raise the number of actuators in the chains. That is to
say, both parasitic motions and actuation redundancy are usu-
ally rooted in the kinematic chains. The above mathematical

derivation of the constraints at the HKPs shows that the man-
ner of producing these two features in the target mechanism
is very unconventional.

To conveniently build the dynamic model in the follow-
ing, a 4× 1 vector grouping the 4 DOFs of the mechanism is
defined as

qEE =
[
X Y α β

]T
. (6)

Meanwhile, to characterize the instantaneous configuration
of the mechanism, a 6× 1 vector is denoted as

XEE =
[
X Y Z α β γ

]T
. (7)

From this section, the mechanism in Fig. 1 can be generated
by imposing direct constraints from the maxilla to the condy-
lar balls 1© and 2© of the 6RSS PM with 6 DOFs as in Chap. 4
of Xu and Bronlund (2010). In other words, by deleting these
constraints, the 6RSS PM is recovered. Mathematically, for
the target PM, the six variables in XEE contain 4 DOFs and
two parasitic motions. Meanwhile, in the 6RSS PM, its six
motion variables can also be expressed in the form of XEE,
but they are all DOFs.

4 Constraint Jacobian matrices and their first time
derivatives

By following the procedure of the Hessian matrix method in
Abo-Shanab (2020), this section is mainly to derive the Ja-
cobian matrices between the constraint equations and gener-
alized coordinates and their first time derivatives. They serve
as fundamental elements in the dynamic model in Sect. 5.1.

As shown in Fig. 1, a constraint equation in each chain can
be defined as

hi (θi,qEE)= ‖OSGi +GiSi − (OSOM +OMMi)‖2

−‖SiMi‖
2
= 0 (i = 1, . . .,6) , (8)

where θi is the rotational displacement of the ith actuator
around the ZCi axis of frame {Ci} and has been calculated in
inverse kinematics from Eq. (7) of Cheng et al. (2015).OSGi
is a constant vector for Gi , which is a fixed point, and

GiSi = S
Ci0

R ·RZ (θi) ·
[
‖GiSi‖

02×1

]
, (9)
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where SCi0R is the rotation matrix from {S} to {Ci} at the ini-
tial configuration of the mechanism, RZ(θi) is the rotation
matrix around the ZCi axis by the angle θi , and ‖GiSi‖ is the
length of the ith crank. The numerical values of SCi0R (i = 1,
. . . , 6) are

S
C10

R=

 0.8541 0.5201 0
−0.5201 0.8541 0

0 0 1

 ,
S
C20

R=

 0.8541 0.5201 0
0.5201 −0.8541 0

0 0 −1

 ,
S
C30

R=

 0.9310 0.3651 0
−0.0822 0.2096 0.9743
0.3558 −0.9071 0.2251

 ,
S
C40

R=

 0.9310 −0.3651 0
0.0822 0.2096 −0.9743
0.3558 0.9071 0.2251

 ,
S
C50

R=

 −0.8127 0.5827 0
−0.1215 −0.1694 0.9780
0.5699 0.7948 0.2085

 ,
S
C60

R=

 −0.8127 −0.5827 0
0.1215 −0.1694 −0.9780
0.5699 −0.7948 0.2085

 .
For the displacement of the end effector, the term OSOM in
Eq. (8) is the position vector of the mass center OM in {S}
and has been defined under Eq. (2), and

OMMi =
S
MR ·MOMMi, (10)

where MOMMi is the constant 3× 1 position vector of Mi

in {M}. Their coordinates are given in the last three lines of
Table 1. Finally, in Eq. (8), ‖SiMi‖ is the length of the ith
coupler SiMi . The lengths of the six cranks and couplers are
given as (unit: mm)

‖G1S1‖ = ‖G2S2‖ = 10,

‖S1M1‖ = ‖S2M2‖ = ‖S3M3‖ = ‖S4M4‖ = 33
‖G3S3‖ = ‖G4S4‖ = ‖G5S5‖ = ‖G6S6‖ = 15,
‖S5M5‖ = ‖S6M6‖ = 52.

Henceforth, a 6× 1 constraint vector can be defined as

H (q)=

 h1 (θ1,qEE)
...

h6 (θ6,qEE)

= 06×1, (11)

where q=
[

θ

qEE

]
is the generalized coordinate vector, and

θ =

 θ1
...

θ6

. Differentiating H with respect to time pro-

duces

Jθ · θ̇ + JqEE · q̇EE = 06×1, (12)

where Jθ and JqEE are the Jacobian matrices of H with re-
spect to θ and qEE, respectively. In this paper, symbols with
one and two dots above indicate their first and second time
derivatives, respectively.

Because hi(θi,qEE) does not contain the terms θj where
j 6= i, explicitly, Jθ is a diagonal matrix. From Eq. (12) one
can derive

θ̇ = Jθ1 · q̇EE, (13)

where

Jθ1 =−J−1
θ · JqEE , (14)

and J−1
θ exists when the mechanism is not at its singular con-

figuration. Differentiating Eq. (12) with respect to time and
putting Eq. (13) into the result gives rise to

Jθ · θ̈ +
(
J̇θ · Jθ1+ J̇qEE

)
· q̇EE+ JqEE · q̈EE = 06×1. (15)

Thereby, the accelerations of the active revolute joints are

θ̈ = Jθ2 · q̇EE+ Jθ1 · q̈EE, (16)

where

Jθ2 =−J−1
θ ·

(
J̇θ · Jθ1+ J̇qEE

)
. (17)

As a result, the first and the second time derivatives of q are

q̇= Jθ3 · q̇EE

q̈= Jθ3 · q̈EE+ Jθ4 · q̇EE, (18)

where

Jθ3 =

[
Jθ1
I4

]
, Jθ4 =

[
Jθ2
04

]
, (19)

with I4 and 04 being 4× 4 identity and zero matrices, re-
spectively. In this paper, In, where n is a positive integer, is
an n× n identity matrix. To compute J̇θ in Jθ2, one can find
that

d
dt

(
∂hi

∂θi

)
= q̇T ·Hi(:,i) (i = 1, . . .,6), (20)

where Hi is the Hessian matrix of hi with respect to q, and
the subscript (:, i) represents its ith column. In this regard,

J̇θ =

(
I6⊗ q̇T

)
· diag

(
H1(:,1) · · · H6(:,6)

)
, (21)

where ⊗ is the Kronecker product. Identically, to compute
J̇qEE , one can see that

d
dt

(
∂hi

∂qEE(j )

)
= q̇T ·Hi(:,j+6)

(i = 1, . . .,6;j = 1, . . .,4), (22)
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where qEE(j ) (j = 1, . . . , 4) is the j th entry of qEE, and
Hi(:,j+6) is the (j + 6)th column of Hi . Consequently, it can
be found that

J̇qEE =

(
I6⊗ q̇T

)
·

 H1(:,7:10)
...

H6(:,7:10)

 , (23)

where the subscript (:,7 : 10) indicates the 7th to the 10th
columns of Hi . From the definition of Jθ and JqEE , and
Eqs. (14), (21), and (23), Jθ2 can be computed; thus, Eq. (18)
can be calculated.

5 Dynamic modeling of the mechanism

5.1 Hessian matrix method

In this section, the inverse dynamic model of the target PM is
built using the Hessian matrix method under the Lagrange–
D’Alembert principle from Abo-Shanab (2020). Thus, the
kinetic and potential energies of the entire mechanism are
derived prior to use of the Hessian matrix method.

5.1.1 Kinetic energy

Because the ith (i = 1, . . . , 6) crank can only rotate around
the ZCi axis, for the six cranks, their kinetic energy is

TGS =
1
2
θ̇T ·MGS · θ̇ , (24)

where MGS = diag
(
IG1S1 · · · IG6S6

)
, and IGiSi is the

rotational inertia of the ith crank. Their values are (unit:
g mm2)

IG1S1 = IG2S2 = 3510

IG3S3 = IG4S4 = 6630
IG5S5 = IG6S6 = 17 628.

For the ith (i = 1, . . . , 6) coupler, the distance from Si to an
arbitrary point Pi on SiMi is set as x. As a result,

OSPi =OSSi +SiPi =OSSi + x ·
SiMi

‖SiMi‖
. (25)

Further, one can obtain that

SiMi =OSMi −OSSi . (26)

Putting Eq. (26) into Eq. (25) gives rise to

OSPi =
(

1−
x

‖SiMi‖

)
·OSSi + x ·

OSMi

‖SiMi‖
. (27)

The velocity of point Pi is

VPi = JPi · q̇, (28)

where JPi is the Jacobian matrix between OSPi and q,
namely, JPi = Jacobian( OSPi, q ). Thus, the kinetic en-
ergy of the ith coupler is

TSiMi
=

1
2
· q̇T ·MSiMi

· q̇, (29)

where

MSiMi
=

‖SiMi‖∫
0

JTPi · ρi ·Ai · JPi · dx (30)

is the inertia matrix of the ith coupler. In it, ρi = 7.8 g mm−3

andAi = 17.3494 mm2 are its density and cross-section area,
respectively.

The 6× 1 twist of the end effector is

TEE =M0a · ẊEE, (31)

where

M0a = diag
(

I3 Rω
)
, Rω =

 1 0 sβ

0 cα −sαcβ

0 sα −cαcβ

 .
Note that Z and γ in XEE are parasitic motions which
are functions of qEE, and ẊEE can be further written using
qEE, q̇EE as

ẊEE =MJ · q̇EE, (32)

where MJ is the Jacobian matrix of XEE with respect to qEE.
Upon putting Eq. (32) into Eq. (31), one can find that

TEE =M0b · q̇EE, (33)

where M0b =M0a ·MJ .
By virtue of Eq. (33), the kinetic energy of the end effector

is

TEE =
1
2
·TTEE · diag

(
mEE · I3 IEE

)
·TEE, (34)

where mEE = 340.22 g and IEE =
S
MR ·MIEE ·

S
MRT are the

mass and the inertia tensor of the end effector with respect to
{S}, respectively, and

MIEE =

[
820091.15 −26.57 −137019.15
−26.57 423459.18 −88.60
−137019.15 −88.60 818784.7

]
gmm2

is the inertia tensor with respect to {M}.
Putting Eq. (33) into Eq. (34) gives rise to

TEE =
1
2
· q̇TEE ·MEE · q̇EE, (35)

where

MEE =MT
0b · diag

(
mEE · I3 IEE

)
·M0b (36)
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is the inertia matrix of end effector. In this regard, the overall
kinetic energy is

T = TGS+
6∑
i=1

TSiMi
+ TEE =

1
2
· q̇T ·M · q̇, (37)

where

M= diag
(

MGS MEE
)
+

6∑
i=1

MSiMi
(38)

is the inertia matrix of the entire robotic mechanism.

5.1.2 Potential energy

It is noted that in the ith chain, the revolute joint centerGi is
a fixed point in the inertia frame {S}, and it is also the mass
center of the ith crank. Thus, the potential energy VGiSi of
the crank is a constant.

The potential energy of the ith coupler SiMi is

VSiMi
=mSiMi

· g ·OSEi(3), (39)

where mSiMi
is the mass of SiMi , g = 9800 mm s−2 is the

gravitational acceleration, Ei is the mass center, and OSEi(3)
is the third term of OSEi that is computed as

OSEi =
1
2
· (OSSi +OSMi) . (40)

The potential energy of the end effector is

VEE =mEE · g ·Z. (41)

From Eqs. (5), (31)–(33), and (41), parasitic motions are
clearly taken into the dynamic model by virtue of qEE, q̇EE.

The potential energy of the mechanism is

V =

6∑
i=1

(
VGiSi +VSiMi

)
+VEE. (42)

5.1.3 Dynamic model

Based on the derived kinetic and potential energies of the
mechanism, the dynamic model can be built. From the
Lagrange–D’Alembert principle, one can write that

δqT ·
(

d
dt

(
∂T

∂q̇

)
−
∂T

∂q
+
∂V

∂q
−F

)
= 0, (43)

where δq=
[

δθ

δqEE

]
is the virtual displacement vector of

q, and F=
[

τ

FEE

]
is the 10× 1 generalized force vector

corresponding to the 10 elements of q. In it, τ is the 6× 1 ac-
tuating torque vector, and FEE is the 4× 1 generalized force

vector formed by the reacted bite force on the end effec-
tor. By virtue of the expression of q and F , Eq. (43) can be
rewritten as

δθT ·

(
d
dt

(
∂T

∂ θ̇

)
−
∂T

∂θ
+
∂V

∂θ
− τ

)
+δqTEE ·

(
d
dt

(
∂T

∂q̇EE

)
−

∂T

∂qEE
+

∂V

∂qEE
−FEE

)
= 0. (44)

From Eq. (13), one can obtain

δθ = Jθ1 · δqEE. (45)

Putting this into Eq. (44), deleting the free term δqEE, and
rewriting the result gives rise to

JTθ1 · τ = JTθ3 ·

(
d
dt

(
∂T

∂q̇

)
−
∂T

∂q
+
∂V

∂q

)
−FEE, (46)

from which one can derive that

d
dt

(
∂T

∂q̇

)
=M · q̈+ Ṁ · q̇. (47)

To compute the matrix Ṁ, a vector U=
[

q̇T qT
]T is set.

Then, a 20× 20 Hessian matrix of the kinetic energy T of
the mechanism with respect to U can be obtained as

H= Hessian
(
T , U

)
. (48)

Then, the first time derivative of M is

Ṁ=H(1:10,11:20), (49)

where H(1:10,11:20) is the submatrix of H containing its first
10 rows and second 10 columns. Additionally,

∂T

∂q
=

1
2
· ṀT
· q̇. (50)

These computational details are not described in this paper
for the sake of brevity, and interested readers can find how
they are derived in Abo-Shanab (2020). Consequently, one
can obtain

d
dt

(
∂T

∂q̇

)
−
∂T

∂q
+
∂V

∂q
=M · q̈+C · q̇+

∂V

∂q
, (51)

where

C= Ṁ−
1
2
· ṀT (52)

is the Coriolis–centrifugal force matrix. From Eqs. (18), (46),
and (51), this results in the dynamic model expressed by the
independent generalized coordinates qEE as

JTθ1 · τ =Mf · q̈EE+Cf · q̇EE+Gf +FEE, (53)
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which has four equations and six unknowns in τ , indicating
the mechanism is redundantly actuated. In it,

Mf = JTθ3 ·M · Jθ3,

Cf = JTθ3 · (M · Jθ4+C · Jθ3) , and

Gf = JTθ3 ·
∂V

∂q
are the 4× 4 inertia matrix, the 4× 4 Coriolis–centrifugal
force matrix, and the 4× 1 gravitational vector, respectively.
Theoretically, there are infinite solutions in Eq. (53), since
there are more unknowns than equations. In general, the min-
imum norm of the actuating torques is used as a feasible solu-
tion in redundantly actuated PMs (Han et al., 2021; Hernán-
dez et al., 2020; Yan et al., 2022; Wang et al., 2019). Regard-
ing this, the actuating torques are computed as

τ =
(

JTθ1

)+
·
(
Mf · q̈EE+Cf · q̇EE+Gf +FEE

)
, (54)

where (JTθ1)+ = Jθ1 · (JTθ1 · Jθ1)−1 is the Moore–Penrose
pseudo-inverse matrix of JTθ1, which clearly satisfies the four
Moore–Penrose conditions:

JTθ1 ·
(

JTθ1

)+
· JTθ1 = JTθ1,(

JTθ1 ·
(

JTθ1

)+)T
= JTθ1 ·

(
JTθ1

)+
(

JTθ1

)+
· JTθ1 ·

(
JTθ1

)+
=

(
JTθ1

)+
,((

JTθ1

)+
· JTθ1

)T
=

(
JTθ1

)+
· JTθ1.

5.2 Lagrangian equations

The software at hand, i.e., Simscape Multibody in MATLAB,
does not support inverse dynamic analysis in a rigid multi-
body system with actuation redundancy. As a consequence,
software simulation is not performed to verify the correctness
of the dynamic model in Sect. 5.1. Considering its kinetic en-
ergy and potential energy have already been derived, the La-
grange equations of the first type (Tsai, 1999) are applied to
build a second theoretical model to validate the correctness.

The first set of Lagrangian equations is

JTqEE
·λ=

d
dt

(
∂L

∂q̇EE

)
−

∂L

∂qEE
−FEE, (55)

where L= T −V , and λ is the 6× 1 vector of Lagrangian
multipliers.

The second set of Lagrangian equations is

JTθ ·λ+
∂L

∂θ
−

d
dt

(
∂L

∂ θ̇

)
= τ. (56)

From Eqs. (55) and (56), by eliminating λ, one can derive
that the minimum norm solution of the actuating torques is

τ =−
(

JTθ1

)+
·

(
JTθ3 ·

(
d
dt

(
∂L

∂q̇

)
−
∂L

∂q

)
−FEE

)
. (57)

6 Inertia coupling analysis

To discover the inertia coupling property among the active
joints in the target PM, an inertia matrix in the active joint
space must be obtained. Firstly, from Eq. (13), one can derive
that

˙q= J θ5 · θ̇ , (58)

where Jθ5 =

[
I6

J+θ1

]
and J+θ1 is the pseudo-inverse matrix

of Jθ1. By virtue of this, the kinetic energy of the mechanism
in Eq. (37) can be rewritten as

T =
1
2
· θ̇T ·MA · θ̇ , (59)

where MA = JTθ5·M·Jθ5 is the 6× 6 inertia matrix in the joint
space. To judge the inertia coupling among different active
joints, the index MCIi (i = 1, . . . , 6) from Guo et al. (2022)
as

MCIi = ln


6∑

k=1,k 6=i

∣∣MA(i,k)
∣∣

5
∣∣MA(i,i)

∣∣ + 1

 (60)

is resorted to, where MA(i,k) is the element at the ith row and
kth column of MA, MA(i,i) is the ith diagonal element, and |·|
means the absolute value of the specific element. From this
definition, a larger MCIi indicates that the coupling to the ith
active joint from the other ones is stronger; on the contrary,
the smaller the MCIi is, the weaker the coupling.

7 Numerical results and discussions

To justify the dynamic model and analyze the inertia cou-
pling numerically, the mechanism is commanded to follow
a real incisor trajectory of a healthy human subject, which
lasts 5 s. Detailed techniques of capturing the chewing tra-
jectories of human subjects are given in Chap. 6 of Xu and
Bronlund (2010). The corresponding six variables in XEE in
the time history are provided with their first and second time
derivatives in Fig. 3, where T and R represent the transla-
tional and rotational variables in XEE, respectively, and D,
V , and A represent the displacements, velocities, and ac-
celerations, respectively. Clearly, the mechanism exhibits a
rhythmic chewing motion, with a larger translation along the
ZS axis than that along the XS and YS axes and a larger
rotation around the YM axis than that around the XM and
ZM axes. This comparison shows that mouth-opening and
mouth-closing movements play an important role in chew-
ing motions. The corresponding angular displacements, ve-
locities, and accelerations of the six active revolute joints
are given in Fig. 4, by virtue of the inverse kinematics from
Cheng et al. (2015). One can find that the motions between
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Figure 3. Motions of the end effector.

Figure 4. Motions of the six active revolute joints.

the ith and (i+ 1)th (i = 1, 3, 5) active joints on the left and
right sides are nearly symmetric. Clearly, Figs. 3 and 4 show
the motions of the target PM in the task space and the joint
space, respectively. They have roughly the same trend, mean-
ing the motions of the mechanism in these two spaces are
synchronous. The numerical values in these two figures are
used as fundamental elements in inverse dynamics. An exper-
imentally measured 3D reacted bite force in {S} on peanuts
by a healthy human subject on a left molar as in Fig. 5 is
exerted onto the end effector as a time-varying payload. It
clearly shows that the chewing force has five bursts and is
dominated by the vertical component, and the lateral compo-
nent has a smallest amplitude around the zero line.

7.1 Inverse dynamics

The symbolic procedures above are implemented in pro-
grams formatted and calculated numerically in MATLAB,
using a personal computer with an Intel® Core™ i7-8700K
CPU at 3.70 GHz and 32 GB of RAM. The time series of
actuating torques from Eq. (54) are shown in the first col-
umn of Fig. 6, from which the bursts over time tightly follow
those in Fig. 5, rather than those in Figs. 3 and 4, indicating
that to output the predefined chewing force via the mech-

Figure 5. Reaction forces to a left molar in frame {S} from chewing
on peanuts.

anism, much more actuating torques are needed than those
to run the mechanism itself; i.e., the inertia of the mecha-
nism is much smaller relatively. Meanwhile, the six actuators
output torques synchronously, and specifically, these three
subplots roughly illustrate a left–right symmetry of output
torques in the mechanism. The differences in the actuating
torques from corresponding actuators over time between the
two methods in Sect. 5.1 and 5.2 are given in the second col-
umn of Fig. 6. These values are very tiny, demonstrating the
correctness and accuracy of the dynamic model. To make a
comparative study about chewing actions, the same chewing
forces from Fig. 5 are exerted on a symmetrically right mo-
lar. The actuating torques via the Hessian matrix method are
exhibited in the third column of Fig. 6. From the comparison
in the first and third columns, the magnitudes of τ1 and τ2
are changed, but their profiles vary little. The amplitudes of
the torques from the fourth and fifth active joints are larger,
while those from the third and sixth active joints are smaller.
This comparison explicitly shows that the actuating torques
are tightly related to the position where the external forces
are acted. What is not changed is that the five bursts still fol-
low those in Fig. 5. In addition, when the right-side chew-
ing is performed, the differences of the actuating torques be-
tween the two methods in Sect. 5.1 and 5.2 are also as tiny as
those in the second column; they are not shown for reasons
of space.

The correctness of the model is important, and the com-
putational cost is also critical, especially in the model-based
motion and/or force control if the model can be computed
in real time using an embedded micro-controller; thus, a
desktop computer which can raise the expenditure is not
needed. After the careful study of the method from Abo-
Shanab (2020), it is not about the Lagrange–D’Alembert
principle; instead it uses the Hessian matrix of the constraint
equations to compute the first time derivatives of the Jacobian
matrices J̇θ and J̇qEE in Sect. 3 and the Hessian matrix of the
kinetic energy to obtain the Coriolis–centrifugal force matrix
C in Eq. (52), respectively. Meanwhile, in Liang et al. (2017),
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Figure 6. (a) Actuating torques with the left-side chewing, (b) their
differences under two dynamic methods from Sect. 5.1 and 5.2, and
(c) actuating torques with the right-side chewing.

there is also classical mathematical access to compute these
matrices. Thus, it is necessary to determine which method
is more computationally economic. To make a fair compari-
son, under the framework of the Lagrange–D’Alembert prin-
ciple, a third inverse dynamic model of the target PM is also
built as the procedure in Sects. 4 and 5.1, except that the
first time derivatives of Jθ , JqEE , and the Coriolis–centrifugal
force matrix C are computed using the method in Liang et
al. (2017), as

J̇θ =
∂Jθ

∂qT
· (q̇⊗ I6)

J̇qEE =
∂JqEE

∂qT
· (q̇⊗ I4)

C=
∂M
∂qT
· (q̇⊗ I10)−

1
2

(I10⊗ q̇)T ·
∂M
∂q

, (61)

where ∂Jθ

∂qT ,
∂JqEE
∂qT , and ∂M

∂qT are the partial derivatives of Jθ ,

JqEE , and M with respect to the row vector qT , respectively,
and ∂M

∂q is the partial derivative of M with respect to the col-
umn vector q. That is to say, a third dynamic model is built
by following the procedures in Sect. 5.1, but J̇θ , J̇qEE , and C
are replaced using the values in Eq. (61).

In the comparative study, on the one hand, the numerical
differences of the actuating torques from these two methods
under the Lagrange–D’Alembert principle are as minor as
those in the second column of Fig. 6. In this regard, these nu-
merical differences are not described for the sake of brevity,
and the correctness of the method in Abo-Shanab (2020) to
compute J̇θ , J̇qEE , and the Coriolis–centrifugal force matrix
C can be verified. On the other hand, the computational time
of the model in Sect. 5.1 and the third model using Eq. (61) to
compute J̇θ , J̇qEE , and the Coriolis–centrifugal force matrix
C is 27.87 and 21.79 s, respectively. The computational re-
sources as mentioned in the first paragraph of this section are
still used for this comparison. The result explicitly shows that
the method proposed in Abo-Shanab (2020) to calculate J̇θ ,

Figure 7. MCIi of six active joints in the target PM and the 6RSS
PM.

J̇qEE , and the Coriolis–centrifugal force matrix C is 21.82 %
slower than the classical method in Liang et al. (2017).

7.2 Inertia coupling property

The evolution of the numerical values of the inertia cou-
pling indices MCIi (i = 1, . . . , 6) in the target PM through
the predefined mandibular motions is plotted in the first col-
umn of Fig. 7. It clearly shows that they fluctuate roughly
with the peaks and valleys of the displacement variables of
the end effector as in Fig. 3, meaning that inertia coupling
is strongly configuration-dependent. Specifically, during the
first second, the mechanism is almost stationary as shown in
Fig. 3, and MCIi varies little at this stage; however, MCIi
is not zero, which indicates that the inertias are coupled
near the initial configuration of the mechanism. Specifically,
MCI1 fluctuates around 0.23 and is larger than MCI2; MCI3
and MCI4 fluctuate around 0.23 and 0.25, respectively, and
clearly MCI4 has a larger amplitude, though MCI6 is larger
than MCI5; both of them are evidently smaller than MCI1–
MCI4. To better evaluate the inertia coupling among different
active joints, their average values are shown as the heights of
the blue bars in Fig. 8. From Figs. 7 and 8, one can observe
that the first, third, and fourth active joints are more strongly
coupled than the other joints, and the coupling effects on the
fifth and sixth joints are the weakest. As such, one may pre-
dict that the actuating torques from the first, third, and fourth
actuators can be reduced if the coupling effects to them are
alleviated, whilst the peak values of the torques from the
sixth actuator can be further raised if these effects to it are en-
hanced. This discovery may be of interest to the biomechan-
ical community to find the relationship between the chewing
forces and coupling effects in the chewing muscles of the
masticatory system of human beings. To reduce the inertia
coupling, the optimal design of the end effector, which has
an intricate shape and large inertias, and the trajectory plan-
ning of the mechanism could be performed in future work.

It is noted that from Sect. 6, the inertia coupling is only
relevant to the inertia matrix of the mechanism itself and
is independent of external forces acting at the end effector.
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Figure 8. Average values of each MCIi in the target PM and the
6RSS PM.

Therefore, no matter where the reaction forces in Fig. 5 act
at the end effector, it does not influence MCIi .

7.3 Inverse dynamics and inertia coupling of the 6RSS
PM

From the viewpoint of theoretical study, how the direct con-
straints from the base influence the dynamic model and in-
ertia coupling is still an unknown problem; thus, it is to be
resolved in this section.

The procedure in Sects. 4 and 5.1 is also applied to obtain
the inverse dynamic model of the 6RSS PM with 6 DOFs as
in Chap. 4 of Xu and Bronlund (2010). This mechanism can
be recovered by deleting the direct constraints from the base
to the end effector of the target mechanism in Fig. 1. The
same modeling process is not listed for the sake of brevity.
The built inverse dynamic model contains six scalar equa-
tions and six unknown actuating torques. The numerical dis-
placements, velocities, and accelerations of its 6 DOFs are
completely identical to XEE, ẊEE, and ẌEE in Fig. 3, and the
reacted bite force from Fig. 5 is also exerted on the same
right molar of its end effector. Its actuating torques experi-
ence similar profiles to those in the first column of Fig. 6
but with a larger magnitude, since it is well-known that re-
dundant actuation(s) can reduce the magnitudes of actuating
torques in PMs. Thus, for the sake of brevity, they are not
described in the paper.

Under the Lagrange–D’Alembert principle, the time con-
sumption by the model in Sect. 5.1 and the third model using
the mathematical method in Eq. (61) to compute J̇θ , J̇qEE ,
and C is 2.64 and 2.44 s, respectively. It can be observed that
from this comparison, the method in Eq. (61) is also clearly
more efficient, even though the rise is not as remarkable as
that in the target PM. Furthermore, one can see that from the
comparison between the target PM and the 6RSS PM, as ex-
pected, the direct constraints from the base at the two HKPs
significantly raise the computational demands. The time cost
in the target PM is 9.56 and 7.93 times larger than that of
the 6RSS PM using the two methods, respectively. Why it

is computationally more intensive in the model of the target
PM can be explicitly explained by two reasons: firstly, the
two parasitic motion variables Z and γ are the complicated
functions of 4 DOFs, as shown in Eq. (5). Secondly, the cal-
culation of Eq. (54) involves the pseudo-inverse of a 4× 6
matrix due to actuation redundancy, which is more complex
than calculating the inverse of a 6× 6 matrix. However, in the
6RSS PM, neither parasitic motions nor redundant actuations
exist, which greatly facilitate the computation.

The inertia coupling property of the 6RSS PM is also in-
vestigated by virtue of the index in Eq. (60), to find the role
of direct constraints from the base to the end effector in this
property. The distributions of the indices over time are given
in the second column of Fig. 7, displaying a similar pro-
file as those in the target PM but with larger magnitudes.
Specifically, MCI1 is much smoother than MCI2; the curves
of MCI3 and MCI4 are approximately identical, owning a
larger amplitude than the other four indices; and MCI5 is
experiencing more drastic changes than MCI6. Additionally,
the average values of MCIi (i = 1, . . . , 6) are displayed in
Fig. 8 as the heights of the red bars. These two figures also
clearly show that the third and the fourth active joints are
mostly coupled by inertias from the other four joints, and the
fifth and sixth joints are least coupled. Moreover, the average
values of MCIi in the target PM are only 50.67 %, 40.60 %,
38.87 %, 40.66 %, 24.89 %, and 30.83 % of those of the 6RSS
PM, respectively. This means the inertia coupling is signifi-
cantly alleviated by the direct constraints from the base, be-
ing rather against intuition.

8 Conclusion

In this work, firstly, under the framework of the Lagrange–
D’Alembert principle, a method from Abo-Shanab (2020)
has been used to build an inverse dynamic model of an
uncommon spatial PM. The modeling procedure is well-
structured and straightforward, and the correctness has been
verified by comparing the numerical results with those from
the classical Lagrange equations. However, the method for
deriving the first time derivatives of the constraint Jaco-
bian matrices and the Coriolis–centrifugal force matrix in
this method is computationally less efficient than the method
from Liang et al. (2017) in both the target PM and the 6RSS
PM. Secondly, through the inertia coupling analysis, one can
find that the first, third, and fourth active joints are more
strongly coupled than the other ones, and the fifth and sixth
active joints are the least coupled. In addition, from the com-
parison between the target PM and the 6RSS PM, as ex-
pected, the direct constraints from the base considerably in-
crease the computational cost in the dynamic model; on the
contrary, interestingly, the inertia couplings are greatly alle-
viated, behaving differently than expected.
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