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Computer numerical control (CNC) machine tool drilling is a crucial process in the contemporary
manufacturing sector, facilitating high-precision fabrication of complex components and thus enhancing pro-
duction efficiency and product quality. Surface roughness serves as a principal quality metric in machining
operations. Spindle speed and feed rate are primary determinants influencing the surface roughness during the
CNC drilling process. This study introduces data acquisition software developed on the Syntec CNC system and
MySQL platform to enable real-time data capture and storage, setting a foundational dataset for subsequent anal-
ysis of roughness classification. Additionally, an enhanced roughness classification model using the improved
MobileNet_v3_small model is presented. The model integrates dual time—frequency plot features of short-time
Fourier transform (STFT) and continuous wavelet transform (CWT) to provide novel input features for the Mo-
bileNet_v3_small architecture, the output of which is a workpiece surface roughness classification. Fusing the
time—frequency features of STFT and CWT serves to refine the classification capability of the network struc-
ture. Validation of the network model followed during training, giving training, validation, and test accuracies of
85.2 %, 84 %, and 85.4 %, respectively. Comparative analysis with other lightweight industrial network models
reveals that the improved MobileNet_v3_small model demonstrates average accuracy enhancements of approx-
imately 10 %, 9 %, and 13 % across the training, validation, and test datasets, respectively. Reductions in the
root mean square error averaged 0.15. Experimental results indicate the superior classification accuracy of the

improved MobileNet_v3_small model in drilling surface roughness.

Computer numerical control (CNC) machine tool drilling is a
prevalent machining technique within the modern manufac-
turing industry. It finds extensive application across various
sectors, including metal processing, automobile manufactur-
ing, aerospace, and electronic equipment production. Within
the CNC drilling process, real-time monitoring of process-
ing data assumes a fundamental role in enabling machine
condition monitoring and fault diagnosis (Lee et al., 2018;
Lauro et al., 2014). The classification of the surface rough-
ness of needed products plays a crucial role in identify-
ing and rectifying defects and issues in the manufacturing

process, thereby ensuring product quality and performance
while enhancing productivity and competitiveness. Primar-
ily, research on roughness classification serves to enhance
the machining precision and surface quality of a workpiece
(S. Li et al., 2022; Wang et al., 2023; Otsuki et al., 2022).
Through an analysis of the surface roughness characteristics
of the drilled surface, we can discern the influence of drilling
parameters on surface quality, subsequently optimizing the
drilling process parameters to enhance workpiece machining
precision and surface quality. Additionally, roughness clas-
sification research facilitates fault diagnosis and predictive
maintenance in the drilling process. An analysis of surface
roughness characteristics enables the identification of poten-



tial abnormalities and failures, allowing proactive preven-
tion and maintenance measures. This approach helps pre-
vent equipment damage and production interruptions, lead-
ing to improved productivity. Consequently, investigation
into CNC drilling surface roughness classification holds sig-
nificant importance.

Traditionally, roughness measurements have been con-
ducted manually post production, predominantly employing
contact and non-contact profilometry methods, which can
contribute to decreased factory productivity. To address this
challenge, numerous researchers have explored classification
and prediction methods for surface roughness based on pro-
cess parameters (Kim et al., 2024). Research into the classifi-
cation of surface roughness models primarily includes three
key methods: modeling, traditional machine learning, and
deep learning. First, Liu et al. (2023) established a theoret-
ical model for surface roughness in ball screw spin milling
by considering the combined effects of elastic—plastic defor-
mation and residual height. Song et al. (2022) pioneered the
elucidation of the surface roughness formation mechanism
during high-speed dry milling of a carbon-fiber-reinforced
polymer (CFRP). They developed a precise surface rough-
ness prediction model that incorporates kinematics, dynam-
ics, and carbon fiber distribution. Bhushan (2022) conducted
a study focused on investigating the effect of tool wear on
surface roughness during the dry turning of composites. They
employed a response surface methodology for modeling to
predict surface roughness under varying process parameters,
including cutting speed, feed, depth of cut, and tip radius.

While the aforementioned studies used a modeling ap-
proach to predict and classify surface roughness and yielded
some results, they often considered only selected factors
that influence the roughness model, resulting in relatively
complex and accuracy-limited models. Consequently, some
scholars have utilized the correlation between process data
and roughness to achieve surface roughness prediction and
classification by fitting models through machine learning al-
gorithms. Kong et al. (2020) employed vibration signal fea-
tures as inputs to a Bayesian linear regression model for
roughness prediction. Griffin et al. (2017) investigated the
use of acoustic emission as input to a classification tree
for predicting surface roughness in micromachining. Liu et
al. (2023) introduced a novel method for surface rough-
ness prediction in milling processes, constructing a Bayesian
quantile model to obtain predicted roughness and confidence
intervals using multisource heterogeneous data, which in-
cludes monitoring signals and cutting parameters.

Traditional machine learning methods rely on domain
knowledge and manual experience, which may not effec-
tively extract complex features. Thus, Wang et al. (2019)
developed a combined convolutional and recurrent deep-
learning model to merge spindle power signals with ma-
chined surface images, enabling simultaneous tool wear in-
ference and surface roughness prediction. Wu and Lei (2019)
utilized features extracted from vibration signals as inputs to

a neural network to predict the roughness of routinely ma-
chined parts. Abebe and Gopal (2023) investigated the influ-
ence of vibration during CNC face-milling machining, ex-
ploring constant spindle speed, feed rate, and varying depths
of cut in simulation experiments. Surface roughness classi-
fication and prediction were achieved by modeling the re-
lationship between vibration and roughness. Deep learning
offers advantages such as not requiring manual feature ex-
traction, capturing deep features from raw data, and enhanc-
ing model training effectiveness compared to traditional ma-
chine learning. Achieving online classification and predic-
tion of workpiece surface roughness necessitates linking ma-
chining process data with actual workpiece surface rough-
ness measurements (Moliner-Heredia et al., 2021; Wang et
al., 2020; Corne et al., 2017). For metal cutting processes,
researchers have employed various methods to predict and
classify surface roughness while optimizing machining pa-
rameters based on classification results. For instance, predic-
tion models for surface roughness have been established us-
ing polynomial models (Parida and Maity, 2019), artificial
neural networks (Tian et al., 2022b; Upadhyay et al., 2013;
Chen et al., 2017), and Gaussian process machine learning
(Liu et al., 2019). These models treat surface roughness as
a function of cutting parameters such as cutting speed, feed
rate, depth of cut, and vibration, as measured by accelerom-
eters (Chen et al., 2021; Yeganefar et al., 2019; Sekulic
et al., 2018). Different process parameter settings result in
variations in process characterization data. Consequently, re-
searchers have conducted studies on surface roughness pre-
diction and classification by leveraging diverse process data
features during machining, such as sound, vibration, force,
and temperature (Tian et al., 2022a; Guleria et al., 2022; Gu
et al., 2023).

Due to the variability of CNC machine tools and the di-
verse types of process data, the effect of different deep-
learning network models varies. To establish a direct rela-
tionship between process data features and surface roughness
as well as an indirect relationship between process param-
eters and surface roughness, this study proposes a classifi-
cation model for surface roughness based on process data
features under various combinations of process parameters.
The CNC drilling roughness classification method presented
in this thesis is realized through data acquisition software
and a deep-learning algorithm. Initially, a data acquisition
system software package is developed using the CNC ma-
chine tool implemented on the Visual Studio platform uti-
lizing the C# language, MySQL database, and .NET frame-
work. This software package collects the necessary data for
model training. Subsequently, a mapping model between
workpiece surface roughness categories and spindle vibra-
tion data during the drilling process is established based on
the MobileNet_v3_small model. Unlike traditional methods
that only rely on a single method to extract time—frequency
features for classification or prediction, this thesis intro-
duces a convolutional layer enhancement technique that uti-



lizes short-time Fourier transform (STFT) and continuous
wavelet transform (CWT) methods to simultaneously extract
the corresponding time—frequency features and perform fea-
ture fusion. This approach enhances the time—frequency do-
main characteristics of the network structure, thus improving
classification performance as verified in subsequent network
model training.

The innovations presented in this thesis can be summa-
rized as follows:

1. The data acquisition system software achieves the fu-
sion of acquisition and storage of multisource data from
CNC machine tools. It collects, displays, and stores in-
ternal CNC machine tool information and external sen-
sor data in real time using a specified format. This foun-
dation is crucial for data analysis and model training.

2. In data processing, each drilling machining process da-
tum undergoes conversion to time—frequency diagrams
based on the STFT and CWT methods. This enables the
simultaneous extraction of different time—domain fea-
tures from the two methods. The feature fusion mod-
ule is added to the MobileNet_v3_small model to com-
bine the two time—frequency map features to enhance
the feature depth extraction and ultimately improve the
performance and efficiency of the classification network
model.

3. Considering the complexity of industrial data from mul-
tiple sources, the magnitude of the data involved, and
the performance of industrial control equipment, exper-
iments are conducted using industrial-grade lightweight
network models. The application of these lightweight
network models to the surface roughness classification
in CNC machine tool drilling has yielded positive re-
sults. Furthermore, this lays the groundwork for training
models that can perform classification prediction and
parameter optimization on industrial control equipment
with lower performance.

The remainder of this thesis is structured as follows: Sect. 2
outlines the fundamental process of drilling surface rough-
ness classification. Section 3 details the design and devel-
opment of the data acquisition system software, including
hardware selection in Sect. 3.1 and software interface de-
velopment in Sect. 3.2. Section 4 covers the data process-
ing process for drilling state data, which facilitates subse-
quent deep-learning model training. Section 5 introduces
the Mobilenet_v3_small_improved roughness classification
prediction model, including the dual-feature extraction fu-
sion method for spectrograms and time—frequency graphs
in Sect. 5.1 and the lightweight industrial network Mo-
bileNet_v3_small model in Sect. 5.2. Section 6 describes the
CNC drilling data acquisition experiments and model train-
ing, with Sect. 6.1 briefly describing the reasons for choos-
ing vibration signals as sample data. Section 6.2 describes the

setup of the experimental bench. Section 6.3 briefly describes
the reasons for using spindle speed and feed rate as pro-
cess parameters for the experiments. Section 6.4 describes
the construction of the experimental model. Section 6.5 de-
scribes the model training parameter settings.

Figure 1 depicts the flowchart illustrating the classification of
surface roughness during CNC machine drilling using Mo-
bilenet_v3_small_improved. The procedural steps entail the
collection of three-axis vibration signals from the spindle
during CNC drilling and machining, along with measure-
ments of the internal hole diameter and surface roughness
at the conclusion of each drilling operation, serving as the
primary dataset.

As can be seen in Fig. 1, to commence, the CNC in-
structions prescribe the machining parameters by employ-
ing a random traversal combination of spindle speed and
feed rate. Subsequently, during each drilling process, dis-
tinct three-axis vibration signals are acquired using four-
channel acquisition cards. These signals undergo noise re-
duction through Kalman filtering. After noise reduction,
the three-axis vibration signals undergo transformation into
time—frequency diagrams using the STFT and CWT meth-
ods. The time—frequency plot features of the two methods
are fused as inputs for model training, while the roughness
category of the workpiece surface following drilling serves
as the output label. Initially, the time—frequency maps ob-
tained using the STFT and CWT methods are processed
for convolution and feature extraction, respectively. Subse-
quently, these two sets of features are amalgamated and
input into the network model for training. Leveraging the
Mobilenet_v3_small_improved network model structure for
training, an indirect mapping model is established for process
parameters such as rotational speed, feed rate, and drilling
surface roughness. This method facilitates the classification
prediction of drilling roughness for varying process parame-
ters (Zhang et al., 2022; Liu et al., 2022; Misaka et al., 2020).

The development of the CNC drilling data acquisition sys-
tem includes two essential components: hardware selection
and software interface development. The acquisition and pro-
cessing of process machining data play a pivotal role in the
context of deep-learning-based surface roughness classifica-
tion. The dataset utilized in this study comprises internal in-
formation from the CNC machine tool and external sensor
data obtained through the in-house-developed data acquisi-
tion software.
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The internal information sourced from the CNC machine
tool includes critical parameters such as spindle speed and
spindle feed rate. In contrast, the external sensor data include
spindle three-axis vibration measurements, external environ-
mental noise recorded within the machine tool environment,
and various electrical parameters (current, voltage, or power)
related to the spindle motor output.

mechanism |
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The data acquisition system primarily centers around CNC
system MD855 series CNC machine tools. The hardware
design includes several key components, including three-
axis vibration sensors, noise sensors, voltage transmitters (in-
put), current transmitters (input), voltage transmitters (out-
put), current transmitters (output), a data acquisition card,
and a switching power supply. Table 1 provides specific de-
tails regarding the sensor parameters and hardware equip-
ment, including the industrial control computer.



The three-axis vibration sensor is strategically positioned
on the spindle box’s side, enabling precise measurement of
spindle vibration. Simultaneously, the noise sensor is situated
within the machine’s outer casing to facilitate monitoring of
external environmental noise. Voltage and current transmit-
ters are integrated into the control box located at the CNC
machine’s back end, allowing for continuous monitoring of
voltage and current fluctuations at the spindle’s input and
output during machining operations. The hardware config-
uration of the data acquisition system is visually represented
in Fig. 2.

The data acquisition system software utilized in this inves-
tigation was crafted using the C# programming language
and the .NET framework (Folgado et al., 2023; Adigiizel et
al., 2023; Zhang et al., 2023). This software boasts a com-
prehensive interface, including the primary interface, user
management module, data processing module, real-time im-
age rendering module, parameter configuration module, and
high-speed drilling acquisition interface module. The holistic
architectural representation of the data acquisition software
is elucidated in Fig. 3 below.

The communication aspects of the software include Ether-
net communication between the industrial control apparatus
and the CNC machine tool, serial communication between
the industrial control apparatus and the acquisition card, and
serial communication between the acquisition card and the
sensor. Notably, Ethernet communication between the IPC
(Inter Process Communication) and CNC machine tool is
achieved through the utilization of the application program-
ming interface (API) function and the TCP (Transmission
Control Protocol) network communication protocol. Mean-
while, the serial communications between the industrial con-
trol apparatus and the acquisition card and between the ac-
quisition card and the sensor are executed in accordance with
the Modbus communication protocol and the serial hardware.

The interaction between the IPC and the CNC machine
tool is established by configuring the IP addresses of both the
IPC and the CNC machine tool. Additionally, the activation
of the core servo functionality of the CNC machine tool fa-
cilitates Ethernet communication. Subsequently, the retrieval
of internal parameters of the CNC machine tool is achieved
through the utilization of the API function. The interface
function offers access to a plethora of data, including spindle
coordinate information, feed speed, rotational speed, work-
piece count, current alarm details, historical alarm records,
and tool compensation data.

The MySQL database boasts a rigorously optimized query
engine, making it particularly promising in the domain of
CNC machine tool data acquisition. This database system ex-
cels in swiftly executing queries, even when confronted with
substantial data volumes, thus yielding minimal response

times. Furthermore, MySQL incorporates a multi-tier secu-
rity framework, including user authentication, rights man-
agement, and data encryption, fortifying the confidential-
ity and integrity of industrial data. MySQL’s compatibility
with the standard SQL and open database connectivity inter-
faces facilitates seamless integration. Consequently, the stor-
age functionality of the data acquisition software is realized
well through the utilization of the MySQL database.

Following the implementation of the aforementioned com-
munication protocols and the establishment of the back-
ground machining process database, the internal data from
the CNC machine tool and sensor information are systemat-
ically stored in the MySQL database, maintaining their in-
herent format. This experiment culminates in the creation of
a data acquisition system rooted in Syntec technology. This
system adeptly retrieves real-time internal machine tool in-
formation and promptly displays and archives it in real time.
The primary interface of the data acquisition software is il-
lustrated in Fig. 4 below.

The data processing for the CNC drilling status comprises
two essential components.

The initial step involves the reduction of noise by Kalman
filtering in the raw vibration data, which is subsequently
transformed into time-frequency maps using the STFT
method.

The second step is the conversion of the raw vibration data
to time—frequency maps based on the CWT method (Yao et
al., 2023; Y. Li et al., 2022).

Time—frequency maps provide a visual representation of
signal variations across both time and frequency domains.
This aids in discerning signal behavior at different time inter-
vals and frequencies, thus facilitating the extraction of time—
frequency features pertinent to classification. The process of
converting raw data to time—frequency diagrams is elucidated
in Fig. 5 below.

The steps for time—frequency plot conversion using the
STFT method are as follows:

1. The STFT method for three-axis vibration data is shown
in Eq. (1) below:

+00

STFT(r,w):/ x(T)h(r —t)e I dr, (1)

—0oQ

where h(t —t) is the window function. Commonly used
window functions include the rectangular window func-
tion, the triangular window function, and the Hanning
window function.

2. Plot the STFT time—frequency maps using time as the
horizontal coordinate, frequency as the vertical coor-
dinate, and the image color intensity as the magnitude
size.
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Table 1. Hardware device parameters.

Parameter Vibration Noise Current Voltage Electronic ~ Acquisition
sensor sensor transmitter transmitter roughness  card
(mms~1) (db) (A) W) gauge (mA)
Model CRZ-407 JHM-NSO02 JK-A802-25 JK-803 TR200 YB-A604
Range 0-20 30-120 0-20 0-380 / 0-20
Dimension (mm) ¢32 x 70 $25 x 80 60 x 16 x 61 65 x 65 x 99 / 100 x 100 x 45
Installation position  Spindle housing Machine housing  Inverter output  Inverter output / Each sensor
/: null.
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Figure 2. Data acquisition system.
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Figure 4. Main interface of the software.

The steps for time—frequency plot conversion using the CWT
method are as follows:

1. Perform a wavelet transform on the three-axis vibration
data, as shown in Eq. (2) below:

| —b
Wﬂmm=;§/ fmx¢x<%7>m, )

https://doi.org/10.5194/ms-15-567-2024

N

where Wy(a,b) is a complex function in the time-
frequency domain, f(¢) is a three-axis vibration data
function, ¢ is a db4 wavelet basis function, the num-
ber of wavelet transform layers is six, a is a telescoping
parameter, and b is a translational parameter.

Calculate the energy spectrum of a vibration signal at
different times and frequencies, as shown in Eq. (3) be-

Mech. Sci., 15, 567-586, 2024



low:
E(a,b) = |W(a,b)?, A3

where E(a,b) is the energy spectrum in the time—
frequency domain.

3. Plot the wavelet time—frequency diagrams by taking
time as the horizontal coordinate, frequency F = % as
the vertical coordinate, and energy magnitude E(a,b)

as the color intensity.

This section includes two primary components.

The STFT-CWT feature fusion methods include the orig-
inal Mobilenet_v3_small network model. In detail, the fea-
ture fusion module is employed to concatenate the features
obtained after convolution of STFI-CWT. This integration
ensures that the resulting feature map possesses both the
time—frequency features of the STFT method and the time—
frequency features of the CWT method. Subsequently, the
Mobilenet_v3_small architecture is utilized to extract com-
plex features from the feature map post fusion. Through
model training, a mapping model between these features and
the surface roughness is established.

The specific flow of STFT-CWT feature fusion is as follows:
firstly, the spectral features and time—frequency features of
the three-axis vibration signal are extracted based on the
STFT and CWT methods and converted to time—frequency
maps. Then, the STFT time—frequency map and the CWT
time—frequency map are simultaneously input into the convo-
lution module, the corresponding time—frequency map fea-
tures are extracted through the operations of convolution
layer, activation function, and pooling layer; and the features
of the time—frequency map are spliced together according to
the channel to form the fused feature map. The fused features
continue to be input into the Mobilenet_v3_small_improved
model to extract complex features fused with different time—
frequency map time—domain features and finally classify the
surface roughness of the workpiece through the fully con-
nected layer. The STFT-CWT time—frequency feature fusion
method is shown in Fig. 6.

It can be seen in Fig. 1 that the feature fusion module
is utilized to channel-splice the features of the STFT time—
frequency map after convolution and the features of the CWT
time—frequency map after convolution, so as to make the
feature map have multiple time—frequency features at the
same time. The original lightweight network structure of Mo-
bileNet_v3_small is used to extract complex features with
dual time—domain maps at the same time from the feature

map after feature fusion, and the mapping model between the
fused features and the surface roughness of the workpiece is
established through model training.

MobileNet_v3 represents a lightweight neural network ar-
chitecture tailored to industrial applications. It effectively
reduces the hardware requirements of the utilized equip-
ment, presenting promising prospects in practical factory
scenarios. Notably, MobileNet_v3_small enhances network
performance through the incorporation of two significant
technological enhancements: the mobile inverted bottleneck
and network slimming. Mobile inverted bottlenecks enrich
network expressiveness by introducing learnable activation
functions, while network slimming optimizes the network by
reducing parameters and computational complexity through
sparsity and layer pruning. The network structure of Mo-
bileNet_v3_small is shown in Table 2 below.
MobileNet_v3_small consists of 3 x 3 and 1 x 1 convo-
lutional layers, 3 x 3 and 5 x 5 bneck layers, a 7 x 7 pooling
layer, and a fully connected layer. The primary distinguishing
feature within the MobileNet family, as illustrated in Fig. 7,
is the utilization of channel-separable convolution, which is
pivotal in its lightweight design. This channel-separable con-
volution can be delineated into two distinct processes:

1. channel direction channel-separable convolution; and

2. conventional 1 x 1 convolution generating the desig-
nated number of channels.

The SE (squeeze-and-excitation) channel attention mech-
anism, shown in Fig. 8 below, utilizes the FC (filter concate-
nation) operation implemented by 1* 1 convolution, which is
essentially the same as FC.

The MobileNet_v3_small model simulates the sigmoid
operation using h-sigmoid. Simulate swish using h-swish as
shown in Eq. (4). The sigmoid function is simulated using
h-sigmoid.
h-swish[x] = x w @

The central module within the MobileNet_v3_ small
model is the bneck module. This module primarily incorpo-
rates channel-separable convolution, the SE channel atten-
tion mechanism, and a residual connection. The structural
representation of the bneck module is depicted in Fig. 9 be-
low.

Based on modern data acquisition technology, the prediction
of surface roughness of parts based on external sensor sig-
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MobileNet_v3_small network structure.

Input Operator Exponentsize No.out SE NL s
2242 x3  Conv2d,3 x 3 - 16 - HS 2
1122 x 16  bneck,3 x 3 16 16 J RE 2
56% x 16 bneck,3 x 3 72 24 - RE 2
282 x24  bneck,3 x 3 88 24 - RE 1
282 x 24  bneck,5 x5 96 4  HS 2
142 x40 bneck,5 x 5 240 40  HS 1
142 x40 bneck,5 x 5 240 4  HS 1
142 x40  bneck,5 x 5 120 48  HS 1
142 x 48 bneck,5 x 5 144 48 / HS 1
142 x 48 bneck,5 x 5 288 9%  HS 2
72 % 96 bneck,5 x 5 576 9%  HS 1
72%x96  bneck,5 x5 576 9%  HS 1
72 % 96 Conv2d,1 x 1 - 576  HS 1
72 %576 Pool,7x7 - - - - 1
12x 576  Conv2d,1 x 1,NBN - 1024 - HS 1
12 x 1024 Conv2d,1 x 1,NBN - k- - 1
33 1*1
\ J
[ [

Deep convolution

Channel-separable convolution.

nals of CNC machine tools has become one of the focus is-
sues of industrial intelligence application. A large number of
scientific studies have shown that the effects of different sen-
sor signals applied to different targets and scenes also have
differences. The advantages and disadvantages of different
sensor signals for surface roughness prediction are shown in
Table 3.

Feed is a key process parameter that affects the surface
roughness, and it will cause the tool and workpiece con-
tact force to become larger during cutting, which leads to
fluctuations in the cutting vibration and directly affects the
surface roughness of the workpiece. CNC drilling vibration
caused in part by surface ripples fluctuates in the relative dis-
placement between the tool and the workpiece, which in turn
leads to the variability of the surface roughness. According
to the above formula for surface roughness and the analysis
of factors affecting surface roughness, feed, and tip radius,
spindle speed is the main factor affecting surface roughness.
The above parameter changes will directly cause significant
changes in the three-axis vibration data, while the temper-
ature, power, noise, and other signals for the indirect effect

‘ Point-by-point convolution

exist in the change in high latency, sensitivity, and other weak
characteristics. Therefore, this experiment adopts the three-
axis vibration signal as the main data sample.

The experimental setup features a CNC machine tool
equipped with the CNC system, model MD855. This plat-
form comprises various components, including a tool mag-
azine, machining platform, drill, cutting fluid system, CNC
control system, noise sensor, three-axis vibration sensor, and
current and voltage transmitters. A visual representation of
the experimental platform can be seen in Fig. 10.

The roughness of the surface of the inner hole of the work-
piece after drilling experiments using the TR200 model’s
portable roughness meter to measure the surface roughness
of the workpiece and the roughness-instrument-specific pa-
rameters is shown in Table 4. From the table the following
can be seen: the roughness instrument’s small shape, measur-
ing range, and sampling length to factory workpiece-certified
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inspection standard Ral.6. The resolution of 0.001 um can be
a more accurate measurement of the surface roughness value.

The specific parameters of the roughness measurement
sensor equipped with the roughness meter are shown in Ta-
ble 5, from which it can be seen that the matching sensor of
the roughness meter is made of diamond material, the stylus
force is 4 mN, and the angle of the stylus is 90°. The radius
of the guide head is 45 mm, which can measure the surface
roughness of the drilled bore completely.

In the current field of CNC drilling processing, there is no
specific formula for surface roughness and drilling process-
ing parameters. Feng et al. (2023), based on the spindle speed
and feed rate of deep-hole drilling in chip morphology re-
search, had a greater impact on the surface roughness and
the chip shape. With reference to the theoretical formulas of
surface roughness in turning and milling, according to the
influencing factors of surface roughness in drilling machin-
ing and the actual machining experience of enterprises, the
spindle speed and feed rate are taken as variables to conduct
drilling experiments. When the turning depths of the cut and
feed are large, the surface roughness of the workpiece is de-
termined by the straight part of the cutting edge, and the sur-
face roughness can be calculated using the following Eq. (5):

f

“7 ctank, + ctank!’

&)

where f is the tool feed (mmr~!), k; and k| are the primary

and secondary deflection angles of the tool, and R, is the
surface roughness value.

The turning depth of the cut and feed is small, the surface
roughness of the workpiece is determined by the arc part of
the cutting edge, and the surface roughness can be calculated
using the following Eq. (6):

o 12

Ra_r<1 c052>_8r, (6)
where f is the tool feed (mmr~!), R, is the surface rough-
ness value, r is the radius of the tool tip arc, and « is the tool
center angle.

The theoretical roughness of flat-end milling can be calcu-
lated using the following Egs. (7) and (8) (Eq. 7 for forward
milling, Eq. 8 for reverse milling):

__f?
Ra_32<r+%)’ @
Ra L (®)

32(r— &)
where f is the feed amount per tooth, n is the spindle speed,
and r is the radius of the tool tip arc.

According to the above turning and milling roughness the-
oretical formula, the feed for the two cutting modes in the
surface roughness has an important impact on the parame-
ters, and the feed is a part of the feed rate. The size of the feed
affects the height of the metal residue on the cutting surface
of the workpiece, and a large feed leads to a higher height
of the metal residue on the surface and a higher peak height
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Table 3. Advantages and disadvantages of different sensor signals.

Signal type Advantages and disadvantages

Vibration Good characterization of changes in surface roughness, easy installation, fast response

Sound Easy to install, high sensitivity, low immunity to environmental noise

Power/voltage/current ~ Characterization of changes in the cutting force is good, but installation is cumbersome and response is slow.
Temperature Easy to install. However, the response is slow and is affected by the cutting fluid.

Experimental platform
-

N

control
system

s 4

Current and Voltage
Sensors(Output)

Switching Power
ly (DC)

Current and Voltage
Sensors(Input)

Figure 10. Experimental platform.

in the R, roughness calculation, which ultimately affects the
surface quality of the workpiece. Therefore, this study uses
the feed rate and spindle speed as the control variables for
the process parameter combination drilling experiment.

The spindle three-axis vibration data are used in this exper-
iment in Hangzhou, a CNC machine tool company MD855
model three-axis composite machining CNC machine for
collection.

Mech. Sci., 15, 567-586, 2024

iaxial Vibration
Sensors

1. Experimental equipment and instruments: MD855 Syn-
tec CNC system three-axis composite machining CNC
machine tools, 26 mm diameter U-type drilling, the
workpiece material for the 45 Steel, the workpiece
size of 400 mm x 500 mm x 50 mm, three-axis vibra-
tion sensors, an eight-channel data acquisition card, and
an industrial control computer. The vibration sensor is
installed in the column on the inner side of the spindle
box for collecting the vibration signals generated by the

https://doi.org/10.5194/ms-15-567-2024



Parameters of the roughness gauge.

Parameter Measuring range  Overall dimension ~ Weight Display Resolution  Sampling length
(Rg, pm) (mm) (& error (um) (mm)
Numerical value 0.025-12.5 140 x 52 x 48 440 +10% 0.001 0.8
Roughness gauge sensors.
Parameter Measuring range  Tip radius ~ Tip material ~ Stylus force ~ Stylus angle  Tip radius
(um) (m) (mN) ®) (mm)
Numerical value 160 5 Diamond 4 90 45

spindle on the x, y, and z axes during the machining
process.

2. Experimental process parameter settings: the spindle
speed interval is 1500 to 1900 rpm, the data interval is
set to 10 rpm, the number of groups is 40, the feed speed
interval is 80 to 170 mm min—!, the data interval is set
to 3mmmin~!, and the number of groups is 30. The
above parameters were randomly combined to obtain
1200 different combinations of processing parameters.
The drilling parameters are shown in Table 6.

The drilling surface roughness classification prediction
model proposed in this paper consists of two parts: (1) the
Mobilenet_v3 network model and (2) the multichannel
feature-splicing and fusion method based on multiple time—
frequency diagrams (STFT and CWT). The specific network
model construction process is as follows:

1. Based on the data acquisition system to collect the
three-axis vibration signals of the CNC spindle, the
original vibration signals are filtered and processed
based on the Kalman filtering method, and the original
vibration signals can be expressed by Eq. (9):

X = {Xpmn X X € R‘“ﬁ} , ©)]

where X is a matrix of o rows and 8 columns, m is the
matrix row position, n is the matrix column position,
« is the number of spindle vibration signals, B is the
number of sampling points, and each row of the matrix
represents the vibration time series signal.

2. Construct a discrete linear system model based on the
above vibration time series signals. The specific filter-
ing recursive update equation can be calculated using
Egs. (10), (11) and (12):

fn,n =(1 _Kn))?n,n—l + Knzp, (10)

where z,, is the current vibration value (any vibration
value in the time series), x;, , and X, ,—1 are the vibra-
tion estimates at the previous moment, and %, , is the
current optimal vibration estimate.

Pn,n :(1_Kn)pn,n—ls (11)

where K, is the Kalman gain, p, ,—1 is the estimated
uncertainty calculated during the previous filter estima-
tion, and p, , is the uncertainty of the current state esti-
mation.

Kn — Pn,n—1 (12)

Pnn—1+Tn

In order to simplify the calculation, the system dynamic
model of the vibration signal is approximated as a linear
constant model in this experiment, so the state extrapo-
lation equation can be calculated using Eq. (13):

Xn+1,n = Xn,n» (13)

where x,1 , is the predicted value.

Similarly, the covariance extrapolation equation can be
calculated using Eq. (14):

Pn+1,n = Pn,n» (14)

where pj,41 ., is the predicted uncertainty.

. Based on STFT and CWT, the three-axis vibration sig-

nals are converted to uniaxial time—frequency maps
Tstrr and Tcewr, respectively. STFT can be calculated
using Eq. (15):

+00 ,
STFT (r,w) = / x(Dh(t —1)e /¥"dr. (15)

—00

CWT can be calculated using Eq. (16):

| —b
Wf(a,b)zﬁ/ f(t)x<px<t7>dt. (16)



Machining cutting parameters.

Data reference Machine speed  Workpiece  Tool diameter Feed speed RPM  Drilling depth
ratio material (mm) (mm min™ 1 ) (rpm) (mm)

Empirical data 1:2 Steel 45 26 125 1690 30

Experimental data 1:2 Steel 45 26 80-170  1500-1900 30

4. The three-axis vibration time—frequency maps are con-
verted to RGB image matrices, and the image matrix
conversion can be calculated using Eq. (17):
Smn € RV, (17)

where « is the number of pixel points of the image in

the width direction, 8 is the number of pixel points of

the image in the height direction, and y is the number
of channels in the image.

5. The RGB image matrix S,, , is spliced and merged
based on the following Eq. (10) to obtain the fused im-
age matrix Try, of the multi-axis vibration signal of each
sample, and the matrix Try, is converted to an image
to obtain the fused time—frequency image of the multi-
vibration axial signal ATry. The conversion of the fused
time—frequency image can be calculated using Eq. (18):
Trn = connection [Ty, T1, T, - -+, T, ], (18)

where “connection” is the matrix splicing operation, 7,

is the three-channel matrix of the axial vibration signal,

and # is the number of vibration signals.

6. Tstrr and Tcwt are convolved and normalized by BN
layer, Relu activation function, and maximum pooling
layer to obtain 7sT and Tcw feature maps, respectively.
The multiple time—frequency features are fused based
on the Add operation, and the feature fusion method can
be calculated using Eqs. (19), (20), and (21):

Tst = Relu {BN [Conv (TFrT)]}, (19)
Tcw = Relu{BN[Conv (ATrn)1}, (20)
Trr = Add [Maxpool (Tx1, Tr2)], @1

where Conv is the convolution operation, BN is the nor-
malization operation, Relu is the activation operation,
and Maxpool is the maximum pooling operation. The
Add operation can be calculated using Eq. (22):

C C
Zaaa =) Xi*Ki+ Y YiKi,

i=1 i=1

(22)

where c is the number of channels and * is the convolu-
tion operation.

7. The fused feature maps are fed into the Mobilenet_v3
network model as input; the surface roughness cate-
gories are used as output to construct the drilling surface
roughness classification prediction model.

(23)

Output = Model (Inputz,_) ,

roughness
where roughness is the surface roughness category,
Model is the Mobilenet_v3 network model, and Trt is
the fused feature map.

The experiments were programmed using Python as the pri-
mary language, with the PyTorch 1.7.0 framework, Cuda
10.1, and an RTX1050Ti graphics card. The chosen opti-
mizer is the Adam optimizer, and the learning rate is dynam-
ically adjusted using the LambdalLR function.

The LambdaL.R function adapts the learning rate based on
the current epoch value, following a specified lambda func-
tion. The adjustment process involves calculating the cosine
function value, mapping it to the range of [Irf, 1], and ulti-
mately multiplying it by the initial learning rate (Ir) to obtain
the learning rate for the current epoch. The Ir is 1 x 1073,
and the Irf is 1 x 107>, Additionally, the input images un-
dergo normalization to 224 x 224, with a batch size set to 16
and the total number of epochs set to 80.

All five models adhere to the same training parameters
throughout the training process. This paper focuses on train-
ing Mobilenet_v3_small_improved in comparison to other
lightweight networks. The specific model training parame-
ters are detailed in Table 7.

The roughness grade holds significant importance as a
classification label for evaluating product quality, control-
ling manufacturing processes, optimizing product design,
and enhancing market competitiveness. Its practical applica-
tion value extends to both the manufacturing industry and
product development.

As a pivotal quality control indicator in the manufacturing
process, roughness grade plays a crucial role. By classify-
ing different roughness grades, it becomes possible to assess
the stability and consistency of the production line, promptly
identify potential issues in the manufacturing process, and
make necessary adjustments to enhance product consistency
and reliability. In the context of this experiment, the rough-
ness grade for the inner surface of machined holes is catego-
rized into two classes.



Model training parameters.

Parameter ResNet  ShuffleNet  Densenet

Mobilenet_v3_small

Mobilenet_v3_small_improved Mobilenet_v3_large

Learning rate (start)
Learning rate (end)
Epoch

Batch size
Optimization

1x1073
1x1073
80
16
Adam

Ra0.05-Ral.6 comprise a total of 844 samples, and
Ral.6-Ra6.3 comprise a total of 356 samples. The calcula-
tion of roughness is presented in Eq. (24) below:

1 1
R, = 7/ lyldx, (24)
0

where [ is the sampling length and y is the distance from each
point to the center line.

The root mean square error (RMSE) loss function plays a
pivotal role in assessing the prediction accuracy of the net-
work model during training. In this experiment, RMSE loss
and the correctness of the test set classifications serve as key
indicators for evaluating the model’s performance.

Considering the five model structures described previ-
ously, we monitor the correctness and loss values for the
training set, validation set, and test set throughout the train-
ing process. Additionally, the RMSE loss curve is presented
in Fig. 1 below. The calculation of the RMSE is outlined in
Eq. (25).

1
RMSE= /=% || (¥; — )%, (25)

where n is the number of predictions, Y; is the predicted
value, and y; is the true value.

Based on Fig. 11, Fig. 12, and the data presented
in Table 8, a comparative analysis of the training re-
sults for various industrial lightweight network models
(ResNet, ShuffleNet, Densenet, Mobilenet_v3_small, and
Mobilenet_v3_large) was conducted using identical training
hyperparameters against the Mobilenet_v3_small_improved
network model. Several conclusions can be drawn from this
multidimensional comparison:

1. The Mobilenet_v3_small_improved network model
demonstrates superior stability in terms of training ac-
curacy, validation accuracy, and testing accuracy, con-
sistently achieving approximately 85%. In contrast,
other network models exhibit significant fluctuations
in accuracy. Notably, the Mobilenet_v3_large model
shows a training accuracy of 76.5 % and a testing ac-
curacy of 67 %, with substantial accuracy fluctuations.

2. The Mobilenet_v3_small_improved network model ex-
hibits faster accuracy convergence, reaching conver-
gence at 50 training steps. Of the other industrial

lightweight models, the ShuffleNet network model
achieves the fastest accuracy convergence, converging
at 60 steps.

3. The Mobilenet_v3_small_improved network model
stands out as the optimal performer across various met-
rics, including training accuracy, validation accuracy,
testing accuracy, training loss, and RMSE. It achieves
a training accuracy, validation accuracy, and testing ac-
curacy of 85.2 %, 84 %, and 85.4 %, respectively, with
a training loss of 0.43 and an RMSE of 0.61. Among
the other network models, the best-trained model is
the Mobilenet_v3_small network model, with a train-
ing accuracy, validation accuracy, and testing accuracy
of 75.1 %, 75 %, and 72 %, respectively, accompanied
by a training loss of 0.496 and an RMSE of 0.78.

Based on the confusion matrix, a variety of classification
index parameters can be calculated to assist in determining
the correctness of the model’s classification prediction re-
sults, e.g., total number of samples, precision, correctness,
recall, and Fieasure. The confusion matrix is shown schemat-
ically below.

The total number of samples (“Total”) is the sum of all
samples in the test set, and the total number of samples can
be calculated using Eq. (26):

Total = TP+ FP+ TN +FN, (26)

where Total is the total number of samples, TP is true, FP is
false positive, TN is true negative, and FN is false negative.

Accuracy characterizes the classification prediction accu-
racy of the model, i.e., the number correctly identified by the
model or the total number of samples, and the accuracy can
be calculated using Eq. (27):

(TP +TN)

A - .
Y = P FP+ TN+ FN

@7

“Precision” indicates the proportion of true classes among
the samples predicted by the model to be positive classes,
and correctness can be calculated using Eq. (29):
. TP
Precision = ———. (28)
TP +FP
“Recall” indicates the ratio of the number of positive class
samples correctly predicted by the model to the total number



Comparison of model training accuracy. The models in bold are the models proposed in this paper, and the values are the training

result data corresponding to the models.

Network model

Training accuracy  Validation accuracy ~ Testing accuracy  Training loss RMSE loss

ResNet 76 % 70 % 72.3 % 0.48 0.7
ShuffleNet 74.5 % 73 % 72 % 0.485 0.695
Densenet 75 % 70.5 % 70 % 0.51 0.71
Mobilenet_v3_small 75.1% 75 % 72 % 0.496 0.78
Mobilenet_v3_large 76.5 % 70 % 67 % 0.472 0.685
Mobilenet_v3_small_improved 85.2 % 84 % 85.4 % 0.43 0.61
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Confusion matrix classification result graph.

of actual positive class samples, and the recall can be calcu-
lated using Eq. (30):
TP
TP+FN’
Fineasure 1S the reconciled mean of correctness and recall,
which is used to balance the concern of correctness and re-

call in model evaluation. Fueasure can be calculated using
Eq. (31):

Recall = 29)

2 x Precision x Recall

F, = . 30
measure Precision + Recall (30)

Based on the confusion matrix, a variety of model classifica-
tion prediction performance evaluation index parameters can
be obtained, e.g., precision, recall, correctness, and Fiyeasure-
The model evaluation parameters are shown in the following
Table 9.

1. In the results of the comparison experiments of each
network model, the Mobilenet _v3_small_improved

model has a more obvious superiority in each model
evaluation parameter, in which the precision rate,
recall rate, correct rate, and Fpeasure are 85.8 %,
85.7%, 87.1 %, and 0.864, respectively. Compared
with the other models, the evaluation parameters have
an improvement of approximately 10% or more,
which indirectly shows the correctness of the Mo-
bilenet_v3_small_improved network model in the ap-
plication of classification prediction for the drilling
dataset.

. Among the compared network models, the highest pre-

cision and recall are in the Mobilenet_v3_small model,
but the highest correctness is in the ResNet model. Of
the above two network models, the better Fieasure 1S
in the ResNet model. According to the analysis of the
above results, it can be seen that performance strengths
and weaknesses are not convincing enough when us-
ing only the correct rate and recall rate to model clas-
sification prediction. Combined with the Fipeasure index,
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the overall performance evaluation of the model is more
convincing.

. According to Table 9, the Mo-
bilenet_v3_small_improved model has better smooth-
ness in the evaluation parameters of each model,
and the value fluctuation of each parameter is within
1.5 %; the evaluation parameters of the other network
models have greater instability, of which the parameter
fluctuation of the Mobilenet_v3_small model reaches
about 13 %. The stability of the model in actual engi-
neering application is quite important, and enterprise
production application pays more attention to the stable
and better performance compared with the unstable and
excellent performance.

This paper’s primary research content and its associated lim-
itations can be summarized as follows:

1. Design and development of a multisource data acquisi-

tion system, incorporating CNC machine tool internal
information data and external sensor data: the software
architecture was tailored to actual production needs,
with the software interface and MySQL database table
structure designed to accommodate multisource data.
This component enables real-time monitoring and stor-
age of drilling process data, serving as the foundation
for subsequent data analysis and deep-learning model
training.



Model evaluation parameters.

Model Accuracy Recall Precision  Fmeasure
(%) (%) (%)
ResNet 71.7 75.4 72 0.737
ShuffleNet 68.3 72.2 68.9 0.705
Densenet 67.1 68.2 68.8 0.685
Mobilenet_v3_small 66.7 79.4 65.8 0.72
Mobilenet_v3_large 65.8 65.9 68 0.669
Mobilenet_v3_small_improved 85.8 85.7 87.1 0.864
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Positive Negative
2
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8 g (TP) (FN)
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Confusion matrix.

. Enhancing the Mobilenet_v3_small network model by
incorporating a feature fusion module that fuses dif-
ferent time—domain features of the time—frequency
maps of the STFT and CWT methods: this aug-
mentation improves the accuracy of the model’s
surface roughness classification. Notably, the Mo-
bilenet_v3_small_improved network model exhibits
exceptional stability, with training accuracy, valida-
tion accuracy, and testing accuracy consistently be-
ing approximately 85 %, while other network mod-
els experience larger accuracy fluctuations. The Mo-
bilenet_v3_large model, for instance, has a training ac-
curacy of 76.5 % and a testing accuracy of 67 %. The
Mobilenet_v3_small_improved network model also
demonstrates faster accuracy convergence, reaching
convergence at just 50 training steps, outperforming
other industrial lightweight models such as ShuffleNet,
which converges at 60 steps.

. The Mobilenet_v3_small_improved network model
outperforms the other models in terms of training ac-
curacy, validation accuracy, testing accuracy, training
loss, and RMSE. Specifically, it achieves a training
accuracy, validation accuracy, and testing accuracy of
85.2%, 84 %, and 85.4 %, respectively, with a train-

ing loss of 0.43 and an RMSE of 0.61. In compar-
ison, the best-performing model of the others is the
Mobilenet_v3_small network model, with a training
accuracy, validation accuracy, and testing accuracy of
75.1 %, 75 %, and 72 %, respectively, accompanied by a
training loss of 0.496 and an RMSE of 0.78.

. The Mobilenet_v3_small_improved network model

shows average improvements of 10% in correctness
on the training set, 9% on the validation set, and
13% on the test set when compared to the ResNet,
ShuffleNet, Densenet, Mobilenet_v3_small, and Mo-
bilenet_v3_large models. Additionally, it reduces the
average training loss and RMSE loss by 0.05 and 0.15,
respectively.

. Acknowledging the significance of the dataset in deep-

learning model training, it is important to note that
noise can significantly impact the experimental results.
In this experiment, only basic noise reduction process-
ing was applied to the dataset. Future studies will ex-
plore more advanced noise reduction techniques. More-
over, enhancing the sampling rate by improving the per-
formance of the acquisition equipment is considered
for subsequent work. While this experiment primarily
used three-axis vibration data as the primary parameter
for drilling surface roughness classification, future work
may involve combining electrical and vibration signals
for more robust model feature extraction, thereby im-
proving correctness and reliability during model train-
ing.

. Building on the research conducted, the trained model’s

practical utility will be assessed in actual production set-
tings. By configuring different machining process pa-
rameters for drilling, the actual roughness category of
the final workpiece will be determined. The machin-
ing process data will then be input into the trained
model to obtain predicted classification results. These
predicted results will be compared with actual measured
roughness categories to validate the correctness of the
trained model. Additionally, based on the trained net-
work model, it will be possible to deduce appropriate



drilling process parameters based on the specific rough-
ness requirements of workpieces in actual production,
thus minimizing material waste and enhancing factory
production efficiency.
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