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Abstract. This paper presents a topology optimization approach for parameterized lattice structures subjected to
thermomechanical coupled loads. The proposed approach aims to minimize the compliance of lattice structures
while satisfying volume fraction constraints and accurate temperature constraints. A thermomechanical coupled
optimization model containing a heat transfer model and a thermoelastic model is utilized for accurate modeling,
and the distribution of the temperature field is related to design variables. Numerical homogenization is employed
to calculate the effective properties of parameterized lattices, and polynomial interpolation models are used
to replace numerical homogenization methods during optimization iterations to reduce computational costs.
The proposed method is demonstrated through examples involving battery packs, L-brackets, and machine tool
headstocks. Numerical verification results show that the proposed method significantly reduces the compliance
of the designed structures compared to traditional solid designs and precisely meets temperature constraints.

1 Introduction

Many mechanical structures, such as battery packs and tur-
bine blades, operate under both mechanical and thermal
loads, necessitating sufficient stiffness, thermal conductiv-
ity, and other critical properties (Zheng et al., 2022a; Meng
et al., 2022). Lattice structures, known for their exceptional
characteristics – including a high stiffness mass ratio, energy
absorption capability, and negative thermal expansion coef-
ficient – possess qualities that are well-suited to addressing
thermomechanical coupled problems (Banhart and Seeliger,
2008; Zhu et al., 2010; Takezawa et al., 2015). Therefore,
thermomechanical coupled topology optimization utilizing
lattice structures holds great promise for enhancing structural
performance under corresponding working conditions.

Plenty of researchers have studied topology optimization
methods for thermomechanical coupled problems. Thurier
et al. (2019) developed a two-material topology optimiza-
tion to enhance the stiffness of designed structures under heat
flux boundary conditions and several point loads. Zhu et al.

(2019) introduced a temperature-constrained topology op-
timization to address thermomechanical coupled problems.
Kambampati et al. (2020) presented a level set topology opti-
mization technique aimed at minimizing compliance, stress,
or mass under combined mechanical and thermal loads. Yang
et al. (2022) proposed a topology optimization model to im-
prove the heat dissipation and structural stiffness of cages.
However, all of these studies focused solely on optimizing
structures with solid materials, overlooking the potential ben-
efits of lattice materials with their exceptional performance
characteristics.

Topology optimization for lattice structures needs to ad-
dress both the microscopic design of lattice unit cells and
the distribution of the lattice unit cells in the macro de-
sign domain. This approach requires the application of ho-
mogenization theory to obtain effective properties of the
lattice unit cells (Sivapuram et al., 2016). Homogenization
theory has been elaborated on (Bensoussan et al., 2011;
Torquato and Haslach Jr., 2002), and topology optimization
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for lattice structures has been applied successfully (Zhang
et al., 2015; Gao et al., 2019; Rodrigues et al., 2002). How-
ever, the computational cost of performing numerical ho-
mogenization remains high.

Parameterizing lattice unit cells involves defining them
with several parameters, which significantly reduces the
number of design variables, making the computational cost
comparable to that of solid units. Wang et al. (2020) de-
veloped a concurrent design method for hierarchical struc-
tures with parameterized lattice microstructures, demonstrat-
ing excellent effectiveness in verified examples. Imediegwu
et al. (2019) presented a framework for the multiscale design
of lattices and employed a space of polynomials of the 6th
degree to describe the relationship between the lattice param-
eters and effective properties. White et al. (2019) introduced
an accurate method for multiscale topology optimization of
elastic structures, employing a Sobolev norm neural network
to represent the relation between microstructure parameters
and homogenized properties. However, these studies are lim-
ited to a single physical field.

Due to the excellent properties of the lattice structure,
many researchers have explored their application in thermo-
mechanical coupled topology optimization. Jia et al. (2017)
presented a concurrent optimization method under mass and
thermal conductivity constraints. Wu et al. (2017) developed
a topology optimization scheme with parameterized lattices
to obtain lightweight injection molds (Wu et al., 2017). How-
ever, both studies overlooked thermoelastic forces, which
should not be neglected. Yan et al. (2015) proposed an ap-
proach to minimize the compliance of thermoelastic lattice
structures under mechanical and thermal loads, yet they did
not account for heat conduction. Zhou and Geng (2021) in-
troduced a multiscale and multi-material topology optimiza-
tion method to improve the heat dissipation and load-bearing
capacity of the cellular structures. Zheng et al. (2022b) de-
veloped a concurrent topology optimization method for ther-
moelastic structures with random and interval hybrid uncer-
tainties. Guo et al. (2023) proposed a multiscale concurrent
topology optimization method for thermoelastic structures
under design-dependent varying temperature fields, and their
method had excellent generality and stability. Nevertheless,
the above three methods are unable to impose alternative
maximum temperature constraints.

This paper presents a topology optimization approach for
parameterized lattice structures subjected to mechanical and
thermoelastic loads. The proposed method aims to minimize
the compliance of lattice structures while adhering to volume
fraction constraints and precise temperature constraints. A
thermomechanical coupled optimization model, incorporat-
ing both heat transfer and thermoelastic models, is employed
for accurate modeling. Numerical homogenization and poly-
nomial interpolation schemes are used to obtain the effective
properties of the parameterized lattices.

Section 2 details the homogenization method and the poly-
nomial interpolation scheme for parameterized lattice units.

Figure 1. Lattice material and lattice unit cells.

Figure 2. Lattice unit cells with different parameters x.

Section 3 discusses the optimization model, which includes
both the heat transfer and thermoelastic models. The sensi-
tivity analysis and optimization workflow are presented in
Sect. 4. Section 5 provides numerical examples, including
battery packs, L-brackets, and machine tool headstocks. Con-
clusions are given in the final section.

2 Homogenization of parameterized lattice unit cells

To reduce the computational cost, parameterized lattice unit
cells are used as designed unit cells. As shown in Fig. 1,
the parameterized lattice unit cell used in this paper is com-
posed of two equal-width branches. By varying the width of
these branches, the cruciform lattice can transition from a
completely hollow element to a solid element, enhancing the
versatility and performance of structures manufactured with
this lattice compared to many other types. Assuming that the
size of a lattice unit cell is 1× 1, the parameter x represents
the width of the horizontal and vertical branches. Lattice unit
cells with the uniformly varying parameter x are shown in
Fig. 2. To avoid tedious calculation in every iteration, effec-
tive macro properties of lattice unit cells with the gradient-
varying parameter x are calculated and interpolated with a
polynomial function.

Because of the symmetry of the parameterized lattice unit
cells, the effective properties can be written as

DH =

 D1 D2 0
D2 D1 0
0 0 D3

 , (1)

Mech. Sci., 15, 555–566, 2024 https://doi.org/10.5194/ms-15-555-2024



H. Zhang et al.: Thermomechanical coupled topology optimization 557

DHT =

[
k 0
0 k

]
, (2)

αH =

 α

α

0

 , (3)

where DH is the effective elastic matrix, DHT is the effective
thermal conductivity matrix, and αH is the effective thermal
expansion vector. D1,D2,D3,k and α are the effective pa-
rameters. Aluminum is selected as the base material to con-
struct lattice unit cells in this paper. The effective macro
properties are calculated using the homogenization method
(Andreassen and Andreasen, 2014). In this approach, the lat-
tice unit cell is discretized into ne finite elements. In this ar-
ticle, ne is set to 250 000 (500× 500 finite element mesh)
to ensure sufficient calculation accuracy and appropriate cal-
culation time. The effective properties can be obtained with
Eqs. (4)–(5). The effective elastic matrix DH can be calcu-
lated as

DH =
1∣∣�E∣∣

ne∑
j=1

∫
�j

(
I −Buj

)T
D0
(
I −Buj

)
d�j , (4)

where |�E | is the volume of a lattice unit cell, I is a 3× 3
identity matrix, B is the strain–displacement matrix, uj is
the displacement matrix of the micro element j containing
three displacement vectors resulting from three different unit
strains, and D0 is the elastic matrix of the base material. The
effective thermal conductivity matrix DHT can be obtained as

DHT =
1∣∣�E∣∣

ne∑
j=1

∫
�j

(
IT−BTTj

)T
DT 0

(
IT−BTTj

)
d�j , (5)

where IT is a 2× 2 identity matrix, BT is the gradient of the
shape function matrix, Tj is the temperature vector caused
by the unit thermal load, and DT 0 is the thermal conductiv-
ity matrix of the base material. According to the reference
(Deng et al., 2013), the effective thermal expansion vector of
a lattice unit cell (αH ) is the same as that of the base material
α0 when the lattice unit cell is composed of a single material.

Lattice unit cells with a uniformly varying parameter x are
shown in Fig. 2, the effective properties of which can be cal-
culated using the homogenization method. Then the effective
properties of lattice unit cells with other parameters x can be
obtained using the interpolation method. In this paper, the
commonly used design variable – element density ρ – is se-
lected as the design variable. The density ρ can be expressed
explicitly by the parameter x as follows:

ρ =−x2
+ 2x. (6)

The effective properties of lattice unit cells with uniformly
varying density ρ (an increase of 0.1 every time from 0.1 to

Figure 3. Effective properties for different densities ρ.

0.9) are calculated, and the effective properties of lattice unit
cells with other densities ρ can be obtained with fourth-order
polynomial interpolation as follows:

par= p1× ρ
4
+p2× ρ

3
+p3× ρ

2
+p4× ρ+p5, (7)

where “par” represents an effective parameter (which can be
D1,D2,D3,k). p1–4 are the interpolation coefficients. The
interpolation model corresponding to the solid base mate-
rial aluminum (used in the design of battery packs and L-
brackets) is shown in Fig. 3, and it is found that fourth-order
polynomials can fit effective parameters well. If a more accu-
rate fitting model is needed, this can be achieved by increas-
ing the order of the polynomial. In addition, the interpolation
model of the base material of the machine tool headstock is
similar to that of the battery pack and L-bracket.

3 Optimization method

3.1 Heat transfer model

The finite element equation of the steady-state heat conduc-
tion for a known heat transfer structure is

KTT = P, (8)

where T is the temperature field, P is the thermal load, and
KT is the global heat conduction matrix given by

KT =

NE∑
i=1

kiT =

NE∑
i=1

∫
�i

BT
TD

H
TiBTd�i, (9)

where kiT is the heat conduction matrix of the macro element
i, NE is the number of macro elements, BT

T is the transpose
of the gradient of the shape function matrix, and DHT i is the
effective thermal conductivity matrix of macro element i.

https://doi.org/10.5194/ms-15-555-2024 Mech. Sci., 15, 555–566, 2024



558 H. Zhang et al.: Thermomechanical coupled topology optimization

3.2 Thermoelastic model

The thermoelastic force Fth caused by inhomogeneous tem-
perature distribution is given by

Fth =

NE∑
i=1

F ith =

NE∑
i=1

∫
�i

BTDHi εthid�i, (10)

where F ith is the thermoelastic force of the macro element i,
DHi is the effective elastic matrix of the macro element i, and
εthi is the thermal strain matrix of the macro element i given
by

εthi =1Tiα
H , (11)

where1Ti is the temperature change of the macro element i,
which can be written as

1Ti =
(
t i1+ t

i
2+ t

i
3+ t

i
4

)
/4− tref, (12)

where t i1, t i2, t i3, and t i4 are the nodal temperature values of a
macro element and tref is the reference temperature value.

After substituting Eq. (11) into Eq. (10), the thermoelastic
force Fth can be written as

Fth =

NE∑
i=1

∫
�i

BTDHi 1Tiα
Hd�i . (13)

It should be remembered here that Eq. (13) will introduce
a calculation error when the temperature gradient within an
element is not zero (Guo et al., 2023). However, as with all
the numerical examples in this article, the calculation error
can be ignored when the temperature gradient within the fi-
nite element is small.

The thermoelastic force Fth and the mechanical load Fm
constitute the total load, and the following equation is used
to compute the displacement field U under mechanical and
thermal loads:

KU = Fm+Fth, (14)

where K is the global stiffness matrix given by

K =

NE∑
i=1

ki =

NE∑
i=1

∫
�i

BTDHi Bd�i, (15)

and ki is the stiffness matrix of the macro element i.

3.3 Optimization problem formulation

The optimization model of this study can be written in the
following forms:

Find:ρe(e = 1,2· · ·NE),

Min:c = UTKU =

NE∑
e=1

uT
e keue,

s.t.V =
NE∑
e=1

ρev ≤ fV0,

KU = Fm+Fth,

KTT = P ; tk ≤ t
∗

k ,

0< ρmin ≤ ρe ≤ 1,

where ρe is the design variable of the eth macro element, c is
the objective function, ue is the element displacement vector,
V is the volume of the structure, V0 is the design domain vol-
ume, v is the volume of a macro element, f is the occupied
volume fraction of the material, tk is the temperature of the
kth node, t∗k is the constrained temperature of the kth node,
the constrained nodes are subjected to the same temperature
constraints represented by t∗ in each example of Sect. 5 for
convenience, and ρmin is a small predetermined value that is
set to 0.001 to avoid singularity.

4 Sensitivity analysis and optimization workflow

4.1 Sensitivity analysis

4.1.1 Sensitivity analysis of optimization objectives

Sensitivity information is critical for the optimization solver
using the gradient-based algorithm. It can be computed us-
ing the adjoint method. The following is the sensitivity of
compliance c for the design variable ρe, which also has sev-
eral other completely equal but different forms of expressions
(Fang et al., 2022; Ooms et al., 2023; Guo et al., 2023):

∂c

∂ρe
=
∂FT

∂ρe
U+FT ∂U

∂ρe
=
∂(Fm+Fth)T

∂ρe
U+UTK

∂U
∂ρe

=
∂FT

th
∂ρe

U+UT
(
∂Fth

∂ρe
−
∂K
∂ρe

U
)
= 2UT ∂Fth

∂ρe

−UT ∂K
∂ρe

U, (16)

where the derivative of Fth with respect to ρe can be written
as

∂Fth

∂ρe
=

NE∑
i=1

∫
�i

(
1TiB

T ∂D
H
i

∂ρe
+
∂1Ti

∂ρe
BTDHi

)
αH d�i, (17)

and the derivative of K with respect to ρe is

∂K

∂ρe
=

NE∑
i=1

∂ki

∂ρe
=

NE∑
i=1

∫
�i

BT ∂D
H
i

∂ρe
Bd�i . (18)
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The derivative of DHi with respect to ρe can be written as

∂DHi

∂ρe
=


∂D1
∂ρe

∂D2
∂ρe

0
∂D2
∂ρe

∂D1
∂ρe

0
0 0 ∂D3

∂ρe
.

 (19)

The derivative of 1Ti with respect to ρe can be written as

∂ (1Ti)
∂ρe

=

(
∂t i1
∂ρe
+
∂t i2
∂ρe
+
∂t i3
∂ρe
+
∂t i4
∂ρe

)
/4. (20)

4.1.2 Sensitivity analysis of constraints

The temperature of the kth node tk can be obtained by mul-
tiplying the temperature vector by the transpose matrix (P T

k )
of the unit virtual heat load vector Pk . The kth component
of P T

k is unity, while all the other components are zero (Zhu
et al., 2019; Zuo and Xie, 2014).

tk = P
T
k T (21)

P T
k = {0,0, . . .,1,0, . . .} = {p1,p2, . . .,pk,pk+1, . . .} (22)

The sensitivity of tk for the variable ρe is

∂tk

∂ρe
=−(Tk)T ∂KT

∂ρe
T , (23)

where Tk is the temperature vector under unit virtual heat
load Pk given by

Tk =K
−1
T Pk. (24)

The derivative of KT with respect to ρe can be written as

∂KT

∂ρe
=

NE∑
i=1

∫
�i

BT
T
∂DHT i

∂ρe
BTd�i . (25)

The derivative of DHT i with respect to ρe can be written as

∂DHT i

∂ρe
=

[
∂k
∂ρe

0
0 ∂k

∂ρe

]
. (26)

4.1.3 Sensitivity filtering

Sensitivity filtering is used to solve checkerboards and mesh-
dependence problems. The sensitivity is modified as follows
(Sigmund, 2007):

∂̃c

∂ρe
=

∑
i∈Ne

w (xi)ρi ∂c∂ρi
ρe
∑
i∈Ne

w (xi)
, (27)

where Ne is the neighborhood of element e and consists of
elements whose center distance from element e is less than
the filter radius R, i.e.,

Ne = {i‖‖xi − xe‖ ≤ R} , (28)

where xi is the location of element i. The weighting function
w (xi) is written as

w (xi)= R−‖xi − xe‖ . (29)

4.2 Optimization workflow

The proposed thermomechanical coupled topology optimiza-
tion problem is solved using the Method of Moving Asymp-
totes (MMA) optimizer (Svanberg, 1987). The flowchart for
the proposed method is shown in Fig. 4. The working steps
are outlined below:

Step 1. Initialize the design variables, boundary condi-
tions, and constraints.

Step 2. Calculate the effective properties of the lat-
tice unit cells with gradient-varying parameters using
Eqs. (4)–(5) and establish the corresponding interpola-
tion function with Eq. (7).

Step 3. Calculate the effective properties of all macro
elements of the designed structure according to the in-
terpolation function (Eq. 7).

Step 4. Solve the temperature field T and displacement
field U with Eqs. (8) and (14).

Step 5. Calculate the objective and constraint functions.

Step 6. Analyze and filter the sensitivity.

Step 7. Update the design variables with the MMA op-
timizer.

Step 8. If the iterative convergence criterion is satisfied,
stop the iteration and output the optimal topology; oth-
erwise, perform step 9.

Step 9. Update the design and then go to step 3.

5 Numerical examples

5.1 Battery pack design

The first example involves designing a battery pack, as de-
picted in Fig. 5. The load and boundary conditions in this ex-
ample are similar to those used in the battery pack example
by Kambampati et al. (2020), facilitating easier comparison
between our method and solid-structure topology optimiza-
tion methods. The optimized structure designed using our
method demonstrates superior performance. The four cor-
ners of the battery pack are fixed, and a uniform mechanical
load is applied around the battery pack. The temperature sur-
rounding the battery pack remains constant, and 25 batteries
are distributed evenly within the pack.

The design aims to minimize the compliance of the battery
pack under volume and temperature constraints. The dimen-
sion of the considered battery pack is 0.2m×0.2m×0.05m.
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Figure 4. Flowchart for thermomechanical coupled topology opti-
mization.

Figure 5. A schematic of a battery pack subject to mechanical and
thermal loads.

Figure 6. Optimal topologies, their partial enlargement, and the
temperature distributions subject to a volume fraction constraint of
40 % and different temperature constraints.

All the batteries have a diameter of 2 cm. One-fourth of the
battery pack is designed because of its symmetry, and the
four-node planar finite element mesh of size 25×25 elements
is used. The uniform mechanical load around the battery pack
is 107 N m−1. All batteries cannot be designed, and they gen-
erate a thermal load of 100 W in their center. The temperature
around the battery pack is constant at 0 °C. Young’s modulus
of the solid base material is 69 GPa, and Poisson’s ratio is
0.3. The thermal conductivity and the thermal expansion co-
efficient of the solid base material are 235 W m−1 °C−1 and
2.32× 10−5 °C−1. The reference temperature used is 0 °C.
The radius of the sensitivity filter is 2.1 finite elements. All
the temperature constraints are set in the center of the batter-
ies.

5.1.1 Comparison of different temperature constraints

In this section, the compliance of a battery pack is minimized
subject to a volume fraction constraint of 40 % and differ-
ent temperature constraints of 30, 35, and 40 °C. The opti-
mal topologies, their partial enlargement, and the tempera-
ture distributions are shown in Fig. 6. The optimal topolo-
gies have been filled with the aforementioned parameterized
lattices according to the optimized density, and the middle
areas of the optimal topologies have been enlarged for better
display. In Fig. 6a, it can be seen that the maximum tempera-
ture occurs in the middle because of the distance farther away
from the boundary of the constant temperature. Since the bat-
tery in the center is farthest from the boundary, most of the
lattice unit cells are distributed on the shortest path between
it and the boundary, i.e., near their four perpendiculars. In
addition, the batteries in the corners are near the boundary,
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so fewer lattice unit cells are distributed around them to limit
the temperature of the batteries.

In Fig. 6b and c, it can be seen that, for the increasing value
of the temperature constraint, the lattice unit cells are redis-
tributed to a larger area to minimize compliance under the
corresponding temperature constraint. As a result, the com-
pliance of the battery pack is decreased, with the compliance
being 5964 and 5213 for the temperature constraints of 35
and 40 °C, respectively. Clearly, it can be found that temper-
ature constraints that are too strict will significantly increase
the compliance of the designed structure.

5.1.2 Comparison of different volume fraction
constraints

In this section, the compliance of a battery pack is minimized
subject to the same temperature constraints of 30 °C and dif-
ferent volume fraction constraints of 50 %, 55 %, and 60 %.
Optimal topologies and the corresponding temperature dis-
tributions obtained by the proposed approach are shown in
Fig. 7. The maximum temperature constraints are satisfied
under different volume fraction constraints. As the volume
fraction constraint decreases from 60 % to 50 %, the range
that the lattices cover decreases and the compliance of the
battery pack increases from 3370 to 4996, which reveals a
great influence of the volume fraction constraints on the com-
pliance. Interestingly, the temperature distribution of the op-
timal structure of the battery pack obtained under different
temperature constraints is extremely similar. In Fig. 7a, it can
be observed that, when there are few materials, large hollow
areas appear near the corners with low temperatures.

5.1.3 Comparison with solid structures

To illustrate the superior performance of the battery pack
obtained using the proposed method, the optimal topology
of the battery pack obtained using the proposed method is
compared with solid-structure topology optimization. Their
objective functions, constraints, and discretizations are the
same. The volume fraction and temperature constraint are
set to 70 % and 25 °C, respectively. The optimal topology
and the corresponding temperature distribution of the bat-
tery pack obtained using the solid-structure topology opti-
mization and the proposed method are shown in Fig. 8. The
compliance of the battery pack obtained using the proposed
method is 3101, which is 18.8 % lower than that of the solid
optimal topology, while their corresponding temperature dis-
tributions are similar.

5.2 L-bracket design

The second example designs an L-bracket as illustrated in
Fig. 9. The upper end of the L-bracket is fixed, and the L-
bracket is subjected to a uniform mechanical load all around
except for the upper part. The temperature around the L-

Figure 7. Optimal topologies and the corresponding temperature
distributions subject to a temperature constraint of 30 °C and differ-
ent volume fraction constraints.

Figure 8. Optimal topologies and the corresponding temperature
distributions subject to a volume fraction constraint of 70 % and a
temperature constraint of 25 °C.

bracket is kept constant, and the seven batteries are dis-
tributed evenly in the L-bracket.

The design aim of the L-bracket is the same as that of the
battery pack. The dimension of the considered L-bracket is
0.2m× 0.2m× 0.05m, and a 0.06m× 0.06m× 0.05m area
is removed to model the L-bracket. All the batteries have a di-
ameter of 2 cm. The entire domain is discretized into 50×50
four-node planar finite elements. The uniform mechanical
load is 1.25× 107 N m−1. All batteries cannot be designed,
and they generate a thermal load of 300 W in their center.
The temperature of the L-bracket boundary is constant at
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Figure 9. A schematic of an L-bracket subject to mechanical and
thermal loads.

Figure 10. Optimal topologies and the corresponding temperature
distributions subject to a volume fraction constraint of 40 % and
different temperature constraints.

0 °C. Young’s modulus of the solid base material is 69 GPa,
and Poisson’s ratio is 0.3. The thermal conductivity and the
thermal expansion coefficient of the solid base material are
235 W m−1 °C−1 and 2.32× 10−5 °C−1. The reference tem-
perature used is 0 °C. The radius of the sensitivity filter is 2.1
finite elements. All the temperature constraints are set in the
centers of the batteries.

5.2.1 Comparison of different temperature constraints

In this section, the compliance of the L-bracket is minimized
subject to a volume fraction constraint of 40 % and differ-
ent temperature constraints of 35, 40, and 45 °C. The op-
timal topologies and the corresponding temperature distri-

Figure 11. Optimal topologies and the corresponding temperature
distributions subject to a temperature constraint of 35 °C and differ-
ent volume fraction constraints.

bution are shown in Fig. 10. With the enhancement of the
temperature constraints, there are more and more materials
between the battery and the boundary. The color bars of the
three temperature field distribution pictures in Fig. 10 are dif-
ferent. If the three temperature graphs are enlarged, it will be
found that, although their temperature distributions are sim-
ilar, their maximum temperatures are 35, 40, and 45 °C, re-
spectively. In order to achieve the most efficient cooling, ma-
terials are gathered on the shortest path between the battery
and the boundary when the temperature constraint is strong.
As a result, the compliance of the L-bracket increases from
7485 to 9928, with the temperature constraint changing from
45 to 35 °C.

5.2.2 Comparison of different volume fraction
constraints

In this section, the compliance of the L-bracket is minimized
subject to the same temperature constraint of 35 °C and dif-
ferent volume fraction constraints of 50 %, 55 %, and 60 %,
respectively. Optimal topologies and the corresponding tem-
perature distributions obtained using the proposed approach
are shown in Fig. 11. The maximum temperature constraints
are satisfied under different volume fraction constraints. As
the volume fraction constraint decreases from 60 % to 50 %,
the compliance of the L-bracket increases from 4959 to 6373,
which shows the huge effect of volume fraction constraints
on compliance.

Mech. Sci., 15, 555–566, 2024 https://doi.org/10.5194/ms-15-555-2024



H. Zhang et al.: Thermomechanical coupled topology optimization 563

Figure 12. Optimal topologies and the corresponding temperature
distributions subject to a volume fraction constraint of 70 % and a
temperature constraint of 30 °C.

5.2.3 Comparison with solid structures

To display the excellent performance of the L-bracket ob-
tained using the presented approach, the optimal topology of
the L-bracket obtained using the proposed method is com-
pared with that obtained using the solid-structure topology
optimization method. Their objective functions, constraints,
and discretizations are the same. The volume fraction and
temperature constraint are set to 70 % and 30 °C, respec-
tively. The optimal topology and the corresponding temper-
ature distribution of the L-bracket obtained using the solid-
structure topology optimization and the proposed method are
shown in Fig. 12. The compliance of the L-bracket obtained
using the proposed method is 4109, which is 20.7 % lower
than that of the solid optimal topology, while their corre-
sponding temperature distributions are similar.

5.3 Machine tool headstock design

The last example designs a machine tool headstock as illus-
trated in Fig. 13. The middle of the left side of the headstock
is fixed. The headstock contains two holes in which the mo-
tor (left) and the spindle (right) are located. The headstock is
subject to two point loads. The temperature around the head-
stock is kept constant at 0 °C.

The design aim of the machine tool headstock is the same
as the previous examples. The dimension of the considered
headstock is 0.6m×0.4m×0.3m. The finite element mesh of
120× 80 elements is used. The two point loads are 1000 N.
The motor in the left hole (diameter of 6 cm) and the spin-
dle in the right hole (diameter of 7 cm) generate 1000 and
500 W thermal loads at their centers. The solid base ma-
terial of the headstock is HT300. Young’s modulus of the
solid base material is 130 GPa, and Poisson’s ratio is 0.25.
The thermal conductivity and the thermal expansion coef-
ficient of the solid base material are 45 W m−1 °C−1 and
1.12× 10−5 °C−1. The reference temperature used is 0 °C.

Figure 13. A schematic of a machine tool headstock subject to me-
chanical and thermal loads.

Figure 14. Optimal topologies and the corresponding temperature
distributions subject to a volume fraction constraint of 40 % and
different temperature constraints.

The radius of the sensitivity filter is 2.1 finite elements. All
the temperature constraints are set in the centers of the holes.

5.3.1 Comparison of the different temperature
constraints

In this section, the compliance of the machine tool headstock
is minimized subject to a volume fraction constraint of 40 %
and different temperature constraints of 80, 84, and 88 °C.
The optimal topologies and the corresponding temperature
distributions are shown in Fig. 14. Due to the greater ther-
mal load generated by the motor in the left hole compared to
the spindle in the right hole, more materials are distributed
near the left hole. When the temperature constraint is 88 °C,
the temperature at the center of the motor is higher than at
the center of the spindle. Therefore, when the temperature
constraint is enhanced, the materials that were originally dis-
tributed near the spindle are distributed near the motor. How-
ever, the compliance of the headstock has also been greatly
improved at the same time.
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Figure 15. Optimal topologies and the corresponding temperature
distributions subject to a temperature constraint of 80 °C and differ-
ent volume fraction constraints.

5.3.2 Comparison of different volume fraction
constraints

In this section, the compliance of a machine tool headstock
is minimized subject to the same temperature constraints
of 80 °C and different volume fraction constraints of 50 %,
55 %, and 60 %, respectively. Optimal topologies and the cor-
responding temperature distributions obtained using the pro-
posed approach are shown in Fig. 15. When the volume frac-
tion constraint becomes weaker, the newly added material
is distributed near the shortest heat dissipation path and the
temperature and thermoelastic load of the headstock are thus
reduced to the greatest extent, and finally the compliance is
minimized under the corresponding design conditions.

5.3.3 Comparison with solid structures

The headstock designed according to this paper is com-
pared with the solid headstock in this part. Their objec-
tive functions, constraints, and discretizations are identical.
The volume fraction and temperature constraint are 70 %
and 80 °C, respectively. The optimal topology and the cor-
responding temperature distribution of the headstock ob-
tained using solid-structure topology optimization and the
proposed method are shown in Fig. 16. The compliance of
the headstock obtained using the presented scheme is 9.0 %
lower than that of the solid optimal topology, while their cor-
responding temperature distributions are similar. Since the
thermal load generated in the left hole is much greater than
that generated in the right hole, the temperature near the left
hole is higher in both cases.

Figure 16. Optimal topologies and the corresponding temperature
distributions subject to a volume fraction constraint of 70 % and a
temperature constraint of 80 °C.

6 Conclusions

A thermomechanical coupled topology optimization for pa-
rameterized lattice structures is developed. The proposed ap-
proach integrates heat transfer and thermoelastic models and,
unlike commonly used approximation methods, imposes pre-
cise temperature constraints on the structure. This frame-
work enables the limitation of the maximum temperature of
the structure and accounts for the influence of design vari-
ables on the temperature field distribution, bringing the op-
timized model more in line with the real world. By employ-
ing polynomial interpolation models, the method avoids the
need for numerical homogenization during optimization iter-
ations, thereby reducing computational costs. Numerical val-
idation results for a battery pack, L-bracket, and machine tool
headstock demonstrate that the proposed method accurately
limits the temperature of structures and reduces their com-
pliance by about 10 %–20 % compared to traditional solid-
structure topology optimization. The examples show that,
as temperature constraints become stricter, the material in-
creases along the shortest path between the heat source and
the constant temperature boundary, effectively reducing the
maximum temperature while minimizing the structural com-
pliance. If the proposed framework is extended from 2D
to 3D, it can be applied in a wide range of fields in the
real world, such as aircraft-bearing brackets, automotive bat-
tery brackets, and machine tool headstocks. These complex
structures simultaneously bear mechanical and thermoelas-
tic loads, and applying this framework will greatly enhance
their performance. Additionally, considering the convection
of these structures with external gases during optimization
will yield even better results.

However, the computational cost of the proposed method
is expensive because of the sensitivity calculation required
for thermomechanical problems under design-dependent
varying temperature field conditions. In this scenario, the
sensitivity of compliance for the design variables includes
the sensitivity of the temperature of each finite element to the
design variables. It is a time-consuming process to determine
the sensitivity of the temperature of each finite element to
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the design variables. Deep learning has been applied in vari-
ous fields, such as hand gesture recognition for tele-operated
robot and aircraft control (Qi et al., 2021; Zhao et al., 2022),
and it may offer an effective solution to the aforementioned
problem. In fact, deep learning has already had some appli-
cations in topology optimization (Yu et al., 2019; Deng et al.,
2022), and it may help accelerate finite element analysis and
sensitivity analysis. Additionally, incorporating lattices with
different shapes into the topology optimization of structures
may enhance their thermomechanical properties (Wang et al.,
2021). When introducing different shapes of lattices during
optimization, it may be a challenge to comprehensively com-
pare the various types of properties of lattices with different
shapes.
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