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This paper proposes a path-planning method for 3D information collection on the space station sur-
face via the hyper-redundant space robot (HSR). Firstly, to efficiently acquire information on the space station
surface, the space station is reduced to a cylindrical model for modelling, and the initial mapping of the tem-
perature field is carried out by a popular Gaussian process. Based on the active information collection method,
the collision-free viewpoint trajectory of the space station surface can be planned to improve the efficiency of
surface information collection. Then, the path planning of the space station surface information collection can
be realized by importing the space station model and temperature field data and performing weight initialization,
stochastic search, and continuous optimization. Finally, simulation experiments show that the root-mean-square
errors in the surface information collection process are lower than 1 mm relative to the true value. It proves the

effectiveness of the online information collection path-planning (IP) method.

Micro-meteorite flows, other particles and satellite debris in
space runs the risk of impacting the space stations (Kirchner
et al., 2013). Once the space station module, solar sail pan-
els, etc. suffer object impact, cracks, holes, and other prob-
lems, this may bring about catastrophic consequences (Rein-
hardt and Peck, 2016). Using the space robot for timely and
effective detection of surface cracks or holes can eliminate
hidden problems and reduce the risk of astronaut spacewalk
maintenance (Flores-Abad et al., 2014). The application of
robots in routine structural inspection and damage detection
has become very popular in civil aviation and industrial fields
(Gomes et al., 2019; Zhang et al., 2021). Most international
space stations use multi-joint tandem rigid robots for main-
tenance tasks. The movement is performed through multi-
ple target interfaces outside the space station module. How-
ever, in multi-target environments and non-cooperative struc-

tural spaces, such as truss structures outside space stations
or solar sail areas, the rigid robots are larger, have fewer
degrees of freedom, and are less flexible and operable (Ma
et al., 2023; Jiang et al., 2022). In comparison, the hyper-
redundant space robot (HSR) has a wider working space,
better flexibility, and longer range of motion and can assist
astronauts with damage assessment outside the space station,
screw detection on the module surface, thermal analysis of
pipelines, etc. (Duan et al., 2022; Mu et al., 2022). The Eu-
ropean Space Agency has developed a three-armed HSR that
provides more flexibility in the workspace to accomplish sci-
entific tasks. Each arm is equipped with a camera at the end
to obtain environmental information. The Harbin Institute
of Technology designed a multi-joint flexible robotic arm
based on a microgravity environment and rope drive charac-
teristics, which can complete space station inspection tasks
through vision tools (Peng et al., 2021; Yan et al., 2019).



NASA has designed the flying robotic arm based on HSR and
space vehicles. Through collaborative movements, the space
station structure inspection task can be accomplished with
high mobility and can meet the need for operational flexi-
bility in complex space (Rybus, 2018). The dynamic con-
trol of HSR is very complicated due to the hyper-redundant
degrees of freedom and the strongly coupled dynamic char-
acteristics of the HSR (Peng et al., 2020; Ivanescu et al.,
2010). For HSR motion control problems, scholars have
studied different methods using classical control theory (pro-
portional differential control) and intelligent control theory
(fuzzy control, Xu and Ordéiiez, 2016, and neural network
control, Dong et al., 2021). Marchese et al. (2016) devel-
oped a soft-body HSR dynamic control strategy to achieve
an accurate grasping task through a locally optimized open-
loop control strategy. Peng et al. (2019) proposed a trajec-
tory tracking control method for HSR based on differential
algebraic equations (DAEs). Benzaoui et al. (2016) used a
fuzzy adaptive control approach for the obstacle avoidance
task in the case of model uncertainty. Braganza et al. (2007)
proposed an HSR control method using a neural network
feed-forward component to compensate for dynamic uncer-
tainty. Li et al. (2021) proposed the symplectic instanta-
neous optimal control (IOC) method to realize the dynamic
control of rope-driven HSR obstacle avoidance. Ménager et
al. (2024) proposed a method based on continuum medium
mechanics for trajectory optimization of continuum robots.
For path-planning and information collection problems, Ja-
sour and Farrokhi (2014) designed a nonlinear model neu-
ral network predictive control method to track the expected
path while avoiding static or moving obstacles in the robot
workspace. Bircher et al. (2016) proposed a new 3D cover-
age path-planning (CP) method for autonomous inspection
path planning of space stations. Marcucci et al. (2023) pro-
posed a trajectory planning method to efficiently and reli-
ably plan HSRs around obstacles through convex optimiza-
tion. Wang et al. (2023) proposed a sample search opti-
mization framework for motion planning method for unoc-
cupied aerial vehicles (UAVs) and robots. Neininger and Sz-
panowski (2011) proposed an incremental-sampling-based
inspection planning method — namely, the fast search ran-
dom tree method. With a given model of structural param-
eters, onboard sensors, etc., initializing the robot configu-
ration and constraints can obtain a full-coverage inspection
path (Faghihi et al., 2022). Del Castillo et al. (2015) propose
a Gaussian process for the parametric reconstruction of free-
form surfaces. Surface coordinates are calculated using man-
ifold learning and parametric algorithms to simulate space
station surface data. Obstacle modelling is one of the key
problems of obstacle avoidance algorithms. To reduce com-
putational effort and improve obstacle avoidance efficiency,
simple geometric models and their assemblies are usually
used to characterize the robot and its working environment
(Wu et al., 2016). Guo and Zhang (2012) optimized the joint
trajectory by defining a distance objective function to achieve

zero-space obstacle avoidance of the robotic arm. Tsardou-
lias et al. (2016) used raster graphics and polygons to con-
struct the HSR workspace and obtained collision-free paths.
For HSR, how to perform trajectory optimization for the 3D
surface information collection process is a challenging and
rarely studied problem.

This paper presents a hyper-redundant space robot (HSR)
path-planning method for space station surface inspection
and 3D information acquisition tasks. The space station sur-
face information field is mapped using a manifold Gaussian
method. Based on the active information collection method,
the objective function is designed to plan the collision-free
viewpoint trajectory of HSR in 3D space. The efficiency of
surface information collection can then be improved by suc-
cessive optimization of viewpoints and collision avoidance.
This paper is divided into five sections. Section 2 presents an
overview of the structural features and kinematic modelling
of the HSR. Section 3 introduces the 3D surface informa-
tion collection path-planning (IP) method. Section 4 com-
pares the experiments to prove the effectiveness of the path-
planning method, and, finally, Sect. 5 gives the conclusion of
this paper.

To further explore the space station surface defect detection
technology as well as to carry out application testing of in-
spection algorithms, performing kinematic modelling and ac-
curate dynamic control of the HSR, which is an important
part of HSR surface information collection, is required. The
HSR designed for the task of space station surface informa-
tion collection is shown in Fig. 1, which mainly includes a
multi-joint arm, a feeding platform, a drive box, and a vision
tool. The multi-joint arm consists of several joint units con-
nected in a series by universal joints, and the motion is con-
trolled by screw modules in the drive box that pull the cables.
Each joint unit is equipped with cable tension sensors so that
all the drive cables of the HSR are always in a tension state
to provide power for the movement of each joint unit and
complete the information collection tasks of the space sta-
tion surface. According to the structure of the HSR, modified
Denavit—-Hartenberg (DH) parameters are used to establish
the kinematic model of the HSR, as shown in Table 1, where
8i4+1 is the rotation angle around the zp;41 axis, d;4 is the
displacement along the z5; 41 axis, y;41 is the rotation angle
around the z5; 4+, axis and the displacement of a; 4 along the
yo; axis, and /; is the total length of the universal joint and
joint unit. If the HSR has #n joint units, it has 2n rotational
degrees of freedom and 1 feed degree of freedom.
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Multi-joint HSR design. (a) HSR prototype. (b) HSR
coordinate system.

HSR kinematic parameters.

Linki & [°] vi [°] a; [mm] d; [mm]

1 71(81) 2(1) I 0

2 73(82) 74(y2) ) 0

3 75(83) 26(¥3) I3 0
z17(89)  z18(v9) g 0

10 z19(610)  z20(¥10) 10 0

For the ith joint unit of the HSR, the homogeneous trans-
formation matrix is as follows:
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Therefore, the coordinates of the endpoint of the ith joint unit
in the base coordinate system can be obtained as follows:
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where /; denotes the joint unit length, ¢ denotes cos, and s
denotes sin. From the kinematic model, it is obtained that a
single joint unit has 2 degrees of freedom for rotation about
the z; and x; axes. With the increase in the number of joint
units, the HSR degree of freedom gradually increases as well
and the flexibility improves, so the task of collecting infor-
mation on the surface of the space station in any complex
path can be accomplished using encircling and so on.

To verify the correctness of the method of collecting infor-
mation on the surface of the space station, it is first necessary
to perform the construction mapping of the surface informa-
tion of the space station. We assume that the information field
of the space station surface is a continuous function defined
on the Riemannian manifold, f, and such that x € Y C R3
is a location on the space station surface. The information
field, f ~ GP(uk), is mapped using a manifold-constrained
Gaussian process. This information field contains the mean
function, w(x), and the covariance function, k(x, x"), and the
following covariance function is used to model the relevance
of this space:

k(x,x/) — G]% (1 + W) exp (W) , 3

where d,(x, x") is the distance between x and x’ on a con-
tinuous function . We assume that the space station sur-
face is discrete and consists of a mesh of n triangular faces.
We define a set of noise measurements at position ¥ * =
[x1,..,xn]" as y = [yq,..., ym]T and use Gaussian regres-
sion to calculate the posterior distribution of the field:

-1
p=n () + Ky [Ky+02L] G-n@y, @
P =Ky - Kw*w[Kw +021n:|_1K1//*1//’ (5)

where o2 is the noise parameter.

Kyoy = k(x,x’){ ey (©)
Ky+ = k(x,x’){ fc :5* @)
Ky = k(x,x/){ N :J’ ®)

As the HSR continuously collects measurement data, the col-
lected data need to be fused into a field map of the manifold-
constrained Gaussian process. The regression calculation of
Egs. (4) and (5) is very resource-intensive for the system in
the face of such a large space field on the space station in the
process of computing. To address the above problems and
the needs of special application environments, the map up-
date using Bayesian data fusion technology is proposed:

-1
ut=p + P H (HP—HT n R) (y-Hp"), O
-1
p— P_+P_HT(HP_HT+R) HP™, (10)
where + and — denote the variables before and after data

fusion, respectively, and H € R™*" is the observation ma-
trix, which is essentially a selection of the partial positions



Space station surface information collection. (a) Range
and incidence angle of a single surface. (b) Triangular surface visi-
ble to the camera. (¢) Planned path of the camera.

X1, ..., Xy of all the triangular faces observed through the vi-
sual tool.

Since the field of view of the HSR vision tool is relatively
fixed, the following conditions must be satisfied for the sur-
face information to be collected: (1) the centre of the trian-
gular surface must be located within the field of view of the
vision tool. (2) The distance, d, from the centre of this trian-
gular surface to the visual tool must be within the effective
range, i.e. d € [dmin, dmax]- (3) The incident angle, «, of this
triangular face relative to the visual tool should be smaller
than the maximum effective angle, i.e. & < amax. (4) This
triangular face is not obscured by other surface parts of the
space station surface. Ignoring the measurement uncertainty,
the triangular surface of the space station surface visible to
the visual tool is shown as the dark blue area in Fig. 2.

In this section, an online information collection path-
planning method is proposed to plan a continuous feasible
motion trajectory for the HSR of the space station surface,
which has the advantage of being able to use the already ac-
quired rough space station surface information distribution
for path optimization. The target is to carry out as much of
the collection of information from the space station surface
as possible during HSR movement. The objective function
for online information collection path planning is
M* = argmaxl (“:f;?(re(/)\/‘)), time(M) < B,

MeQ an
collision(M) = &,

where M* is the optimization path of the HSR end-effector,
Q is the set of all continuous feasible trajectories of the HSR
end-effector, B is the time budget of the HSR end for struc-
tural inspection at the space station surface, / denotes the
quantized measurement information, and measure(M) con-
tains a finite sequence of optimized trajectories and measure-
ment information. The functions time(M) and collision(M)
return the running time of the HSR and the collision part of
the trajectory, respectively. HSR online information collec-
tion path planning designed in this paper is specifically di-

vided into the following four steps: trajectory parameteriza-
tion, discrete path-point searching, continuous optimization,
and obstacle avoidance, as shown in Fig. 3.

Firstly, the continuous trajectory, M, at the end of the
HSR is represented in polynomial form while parameteriz-
ing the N sequences of control path points to be visited,
C ={cy,...,cn}. The Kth-order spline curves are used to
connect the path control points and are used to calculate the
reference velocity and acceleration of the vision tool at the
end of the HSR. The HSR vision tool then performs infor-
mation collection at a constant frequency.

Secondly, the sequential greedy search is performed in the
predefined viewpoint library, Q. Multiple input parameters
are added by the sequential greedy search method, including
the current space station surface map, L; the viewpoint, ¢,
of the current HSR vision tool; the path point, N; and the
viewpoint library, Q. The output is a series of path points,
C ={c1,...,cn}. After giving the current viewpoint, cprev,
the next best viewpoint, ¢*, is calculated using the viewpoint
library to make it the most efficient information collection.

I(c)

¢* = argmax ————— (12)
ceQ tme(Cprey, €)

We define information gain as follows:
I(c)=tr(P7)—tr(PT), (13)

where tr is the trace of the covariance matrix and P~ and P*
denote the covariance of the space station surface map be-
fore and after the measurement at viewpoint position c. The
process of updating the space station surface map, (L*, c*),
and the covariance, P T, does not require the actual measure-
ments, but it does require the perspective of the visual tool
as shown in Eq. (12). The HSR can successfully simulate the
covariance evolution process of the space station surface map
through the iterative calculation of the collecting viewpoints.

Thirdly, the objective function is calculated by connecting
the set of path points, C, at the end of the HSR using polyno-
mial interpolation. The continuous optimization is performed
by searching for the collection viewpoints along the objective
function to update the map covariance of the space station
surface. The objective to be maximized is defined as the av-
erage time information gain:

I (measure (M))
Uint=—————+—> (14)
time(M)

where the gain function, /, is the same as the covariance of
the space station surface map defined in Eq. (13). Finally, a
3D distance field is created based on the given grid structure.
In the improved space station surface greedy search phase, a
new constraint is added which requires the next viewpoint,
c*, to be consistent with the current viewpoint, cprey. The
current viewpoint can provide the initial phase of obstacle
avoidance requirements for subsequent continuous optimiza-
tion. We add an objective function to penalize collisions in
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The calculation process of the space station surface view-
points. (a) Grid viewpoints. (b) Coverage viewpoints.

the continuous optimization phase:

Uecoll = Weo »_8(P). (15)

peT

where p is the sampling position of the polynomial trajectory
and weey is the weight coefficient of the penalized collision
objective function.

it D(p)=r,

otherwise, (16)

g(p)={ (11

where D(p) denotes the Euclidean distance of the cur-
rent sampling point and r denotes the radius of the robot’s
workspace. Therefore, the final objective function to be max-
imized is

U = Uint + Ucon. a7

The space station module is set to be a cylindrical tank with
a height of 20m and a diameter of 12 m. Before the infor-
mation collection path planning, the map of the space sta-
tion surface needs to be constructed and the input parameters
mainly include x, y, and z coordinates and the correspond-
ing temperature values. The input values are mapped to the
space of the space station surface to complete the modelling
of the manifold-constrained Gaussian process. By reading
the simulated temperature field data from the surface of the
space station for visualization data processing, the temper-
ature distribution of the space station surface can be con-
structed as shown in Fig. 4. In the grid viewpoint calculation,
a set of predefined viewpoints is created as shown in Fig. 5.
The viewpoint of the space station surface is then calculated
based on the prior model. Based on the prior model and the
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Online information collection path-planning simulation. (a) True value. (b) Mean value. (¢) Illustration of the difference between
variance and covariance matrix traces of 164. (d) Information path planning.

grids for parameterization, the position of each adjacent grid
region is calculated to complete the calculation of the final
grid viewpoints.

The grids of the space station surface are triangulated to
obtain 1097 nodes and 2190 triangular surfaces. By grid di-
vision, different heat sources are added at the centre of each
node, and the temperature distribution of the space station
surface is simulated by the thermal simulation tool as shown
in Fig. 6a. The HSR vision tool camera noise parameters
are set to a = 0.04 and b = 0.15, respectively, and the data
are fused by simulating Gaussian measurement noise. The
number of controlling HSR trajectory points is N =5, and
the running time of the whole trajectory is set to 130s. The
manifold-constrained Gaussian process is used for online in-
formation collection path planning on the space station sur-
face, and the results are shown in Fig. 6b—d. The results show
that the final mean map based on the information collection
path-planning method is very close to the real map. The dif-
ference in trace between the variance and covariance ma-
trix is 164. The colour of the whole map shows a dark-blue
colour, which proves that the information collection path-
planning method is more effective.

To verify the effectiveness of the online information col-
lection path planning designed in this paper, it is compared
with the traditional coverage path-planning and random path-
planning (RP) techniques for experiments. One of the cover-
age path-planning techniques focuses on providing a com-
plete coverage path of the space station surface through a set
of viewpoints, presenting a spiral scanning inspection route.
The random path planning mainly selects random viewpoints
from the viewpoint library and generates polynomial routes
for information collection, as shown in Figs. 7-8. It can
be obtained that the final mean maps of both path-planning
methods are different compared to the real maps on the sur-
face of the space station, but the coverage path planning is
relatively better. Figures 7c and 8c show that the difference
in trace between the final mean map and the real map vari-
ance and the covariance matrix is 926 and 1694, respectively,
and that the calculated variance value of the coverage path is
smaller and the path planning is better. Comparing this with
the information collection path planning results in Fig. 9; the
difference in the trace between the variance and covariance

matrices is 164, and the final mean map is also closer to the
space station surface map in the real situation, which proves
the effectiveness of the information collection path-planning
method.

The online information collection path-planning results
are compared with the results of coverage path planning and
random path planning. The difference between the traces of
the matrix and the root-mean-square error in the collective
results relative to the true value is calculated, respectively,
and the results achieved after multiple averaging are shown
in Fig. 9. It can be obtained that random path planning (RP)
can achieve reasonable space station surface information col-
lection in the initial stage, but the performance gradually de-
teriorates with time, and the final error is 7.5 mm. The cov-
erage path planning (CP) is performed in a uniform way to
reduce the uncertainty and error in the map, with a final error
of 3.4 mm. In comparison, the online information collection
path planning (IP) can quickly reduce the uncertainty and er-
ror, with a final error of 0.95 mm, further proving the effec-
tiveness of the information collection path-planning method.

Space robots are playing an increasingly important role in the
exploration of space resources, daily structural inspection of
space stations, and damage detection. This paper proposes a
hyper-redundant space robot (HSR) online information col-
lection path-planning method for the space station surface
information collection task. Firstly, a multi-joint HSR is de-
signed, and a kinematic model is established. For the engi-
neering task of space station surface information collection,
an HSR online information collection path-planning method
is proposed. The space station is simplified to a cylindrical
model and modelled with a randomly simulated temperature
field. The information field is mapped using the manifold-
constrained Gaussian process. The active information col-
lection method is used to plan collision-free viewpoint tra-
jectories on the space station surface to improve information
collection efficiency. By importing the space station model
and simulated temperature field data and starting the initial-
ization of weight information, stochastic search, and contin-
uous optimization, in that order, the 3D path planning of the
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HSR can be realized. Finally, the effectiveness of different
path-planning methods is compared and calculated by simu-
lation experiments. The information collection results show
that online information collection path planning can quickly
reduce uncertainty and error and improve information col-
lection efficiency compared with coverage path planning and
random path planning.

In the future, we will continue to develop the HSR and
the vision tools for prototype testing. More space station
surface information (temperature, stress, light, different sur-
faces, etc.) will be integrated for online information collec-

tion path planning to further improve the efficiency of surface
information collection.

All the data used in this paper can be obtained
from the corresponding author upon request.
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