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Compliant bistable mechanisms are specialized mechanisms that have specific self-locking character-
istics in two positions. They are widely used in aerospace, micro-electromechanical systems, and high-precision
manufacturing. The coupling of kinematic with elastomechanical behaviors of compliant mechanisms, known
as kinetostatics, increases the difficulty of synthesizing compliant mechanisms. Currently, most research relies
on optimization approaches to find compliant mechanisms that meet motion requirements. To address this chal-
lenge, this paper proposes a geometric synthesis method for compliant bistable mechanisms to solve the rigid
guidance problem. The pole similarity transformation characteristics of planar beams and the static equilibrium
characteristic of bistable mechanisms at stable positions are utilized to decouple the kinematic synthesis and
static analysis. The proposed method introduces a task-driven synthesis process, where the critical structural
parameters in compliant mechanisms are determined based on the desired guidance positions of motion tasks.
This approach eliminates the need for a tedious and time-consuming iterative optimization process. The resulting
bistable mechanisms have two stable positions that correspond to the desired guidance positions of the motion
task. To illustrate the effectiveness of the geometric synthesis method, a two-position problem of a compliant

bistable mechanism is provided as an example.

The synthesis of mechanisms has long been a topic of study
in the field of rigid mechanisms. One classic problem in this
area is the rigid guidance problem, which has been exten-
sively researched for hundreds of years. Various efficient and
accurate synthesis methods, such as the geometric method,
analytical method, and atlas method, have been proposed to
address this problem (McCarthy and Soh, 2010). However,
when it comes to compliant mechanisms, the situation is dif-
ferent. The motion transmission in compliant mechanisms
primarily relies on the deformation of compliant components
(usually planar beams) under external forces. This unique
characteristic makes it challenging to independently figure
out kinematic design and static analysis, posing significant
challenges in the synthesis of compliant mechanisms (How-
ell et al., 2013; Lobontiu, 2002).

If the length of the compliant components is similar to
the length of the rigid components, the geometric nonlinear-
ity caused by large deformation must be considered (Kim-
ball and Tsai, 2002). At present, many method have devel-
oped to analyze the large deflection of planar beams, such
as the elliptical integral method, pseudo-rigid-body model
(PRBM) and beam constraint model (BCM). The elliptic in-
tegral method is a classic solution for high-precision large
deformation problems of planar beams. This method origi-
nated from the elastica problem and was introduced into the
analysis of compliant mechanisms to solve the large deflec-
tion problem under different tip loads (Shoup and McLarnan,
1971). Zhang and Chen (2013) have extended this method
and provided a comprehensive solution of elliptic integrals
for large deflection problems, which can solve the problem
of multiple inflection points in compliant beam deforma-
tion. Holst et al. (2011) and others improved the accuracy
of the elliptic integral method by introducing axial deflec-



tion and applying it to fixed-guidance beams. Although the
final results of the elliptic integral method need to be ob-
tained through elliptic integral tables, as an analytical so-
lution for large deflection problems, the method provides
the most accurate results for compliant beam deformation.
Based on the elliptic integral method, Wang and Xu (2017)
conducted an analysis of the kinetostatics of an XY micro-
positioning stage with negative stiffness. Based on the re-
sults of the elliptic integral method, Midha et al. (2000) pro-
posed a pseudo-rigid-body model (PRBM), which approxi-
mates compliant beams as a rigid link mechanism with tor-
sion springs and decouples the kinematics and static analysis
of planar beams. Howell and Midha (1994) created a synthe-
sis approach based on PRBM, which can provide a practi-
cal means for analyzing and designing the compliant mecha-
nisms. PRBM simplifies the geometric nonlinearity problem
of compliant beams down to a very intuitive rigid mecha-
nism model but at the cost of reducing the accuracy of mo-
tion analysis. Furthermore, several improved model, includ-
ing PRBM with axial springs (Saxena and Kramer, 1998),
PRBM with variable parameters (Dado, 2001), 2R PRBM
(Yu et al., 2012), 3R PRBM (Su, 2009; Lin et al., 2021), and
SR PRBM (Yu and Zhu, 2017), were proposed and applied
in the design of compliant mechanisms with large deflection.
Various compliant mechanisms with special characteristics,
including compliant beams with inflection points (Zhu and
Yu, 2017), compliant beams with contact (Jin et al., 2020),
three-dimensional (3D) compliant beam deformation (Chase
et al., 2011), and initially curved compliant beam deforma-
tion (Kalpathy Venkiteswaran and Su, 2017), can be analyzed
and designed using PRBM. Another widely used method for
modeling compliant mechanism is the beam constraint model
(BCM). BCM, proposed by Awtar et al. (2006), provides a
closed-form model of planar beam within an intermediate
deformation range. Ma and Chen (2015) proposed a chain-
beam constraint model (CBCM) to solve large deformation
problems based on the BCM. CBCM can obtain the displace-
ment at each node on the planar beam, making it more suit-
able for general compliant mechanism design problems. Be-
sides, the energy-minimization-based kinetostatic solutions
are also used in the design of compliant mechanism. For ex-
ample, Turkkan and Su (2017), Turkkan et al. (2018), and
Jiang et al. (2023) have all proposed design methods for com-
pliant mechanisms based on the principle of minimum poten-
tial energy combined with optimization methods. Chen et al.
(2017) also proposed a design method for compliant mecha-
nisms based on the Crotti—-Engesser theorem.

Bistable mechanisms are a type of compliant mechanism
with special energy characteristics. Within their range of
motion, there are positions or deformed states with local
minima of strain energy, which are referred to as the sta-
ble positions or stable equilibrium positions of the mech-
anism. The mechanism can remain in a stable equilibrium
position without relying on external forces and can return
to the stable equilibrium position after being disturbed by

external forces. This self-sustaining characteristic of com-
pliant bistable mechanisms makes them highly valuable in
specific rigid guidance problems. Currently, the most com-
mon design method for bistable mechanisms is to utilize the
buckling characteristic of planar beams. Sénmez and Tu-
tum (2008) and Zhao et al. (2008) established models of
bistable mechanisms with hinged and fixed connections at
both ends of a buckled beam. To avoid higher-order buck-
ling states during deformation, Qiu et al. (2004), Hussein et
al. (2019), Hussein et al. (2020), and Haddab et al. (2018)
proposed buckling models of curved beams and used them
to create linear bistable mechanisms. In order to provide
more adjustable parameters for the design of bistable mech-
anisms, scholars such as Parkinson et al. (2000), Chen et
al. (2021), Todd et al. (2010), and Tran and Wang (2017)
proposed multi-segment planar beam bistable mechanisms.
Another method to obtain the desired mechanical perfor-
mance of bistable mechanism is using the planar beams with
special shapes based on topology optimization (Chen et al.,
2019) or other optimization method (Chi et al., 2019). Build-
ing upon this, to address the issue of axial stiffness reduc-
tion after buckling of planar beams, Nathan and Howell
(2003), Wilcox and Howell (2005), Han et al. (2017), and
others proposed bending-torsion planar beam configurations
for designing planar bistable mechanisms with linear mo-
tion. Additionally, Jiang et al. (2024) proposed a synthesis
method of series-based bistable compliant mechanisms for
the rigid-body guidance problem based on the geometrical
similarity transformation. Sargent et al. (2020) proposed a
bistable mechanism used in medical support systems based
on origami. Huang et al. (2020) designed a special linear
bistable mechanism which only need one actuator to switch
between two stable positions.

As mentioned above, a large number of compliant mech-
anism design methods have proposed and successfully ap-
plied in the design of various compliant mechanisms. Most
of these methods still start from the analysis of mechanisms
and find the optimal mechanisms that meet the motion task
requirements through numerical optimization, especially in
the field of bistable mechanism design. It is still difficult to
simultaneously consider the accuracy and efficiency in large-
deformation compliant mechanism design, and it is even
more difficult to adjust the structural parameters of the mech-
anism with purpose based on motion tasks. Therefore, this
paper proposes a synthesis method for the compliant bistable
mechanism based on the pole similarity transformation. This
method utilizes the special properties in the geometric trans-
formation process of planar beams and the static equilib-
rium characteristics of stable positions in bistable compli-
ant mechanism to directly select and determine the structural
parameters in compliant mechanisms according to the given
motion tasks. The synthesis of compliant mechanism rigid
guidance problems with two stable positions is completed
through this method.



The organization of paper is as follows: Sect. 2 presents
the basic theories involved in this paper, including the defor-
mation behavior of planar beams, the solution of the poles
of planar beams, and the similarity transformation charac-
teristics of planar beams. Section 3 introduces the synthesis
method for two-position bistable mechanisms, including the
description of motion tasks, the solution of the mechanism’s
structural parameters, and the general process of bistable
mechanism synthesis. Sections 4 and 5 provide a specific
synthesis case, and the design results were validated through
simulations and experiments. In Sect. 6, we discuss the ex-
perimental results and propose future research directions.

Planar beams are the primary elements in compliant mech-
anisms that transmit motion and force. This study initially
determines the deformation behavior of planar beams. The
motion of the beam’s tip is then described using the pole and
pole angle. Lastly, the study presents the similarity transfor-
mation characteristics of the pole, which establishes the re-
lationship between the structural parameters of planar beams
and the motion of the beams’ tips.

The deformation of the planar beam in this paper is based on
the Bernoulli—Euler beam theory, in which the relationship
between the sectional bending moment and the beam curva-
ture of the planar beam is as follows:

do
Myp(s)=EI—, (D
ds

where My represents the bending moment of the cross sec-
tion, df/ds represents the angular deformation rate (curva-
ture) along the beam, E represents Young’s modulus of the
material, and / represents the moment of inertia of the beam.
The curvature, k, can be further calculated by the deforma-
tion of a flexible beam as follows:

do d?y/dx?

k== . @)
s [14(dy/de2]?

As shown in Fig. 1, for a planar beam subjected to concen-
trated loads and bending moments at the beam’s tip, the sec-
tional bending moment on the beam can be calculated using
loads and the coordinates of the deformed beam as follows:

My =Fy(a—x)—Fi(b—y)+ M., 3

where F, = F cos(g) represents the component of the load in
the x direction and F, = F sin(¢) represents the component
of the load in the y direction. ¢ is the angle between the load
F and the x direction. (a, b) represents the coordinates of the
end of the beam after deformation. In addition, as shown in
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The deformation and bending moment diagram of the
planar beam under the loads.

Fig. 1, an equivalent action line of force, £, can be found,
which is at distance d, from the end of the beam, where d. =
M./F.

By substituting Eq. (3) into Eq. (1) and differentiating both
sides of the equation, we obtain the following:
de 1 F dx VF dy @
ds  EI Yds  Yds )’

Since dx /ds = cosf and dy/ds = sinf, Eq. (4) can be fur-
ther simplified as follows:

d%e _ Fsing
ds?2  EI

After applying the chain rule of differentiation, the left
side of Eq. (5) can be written as follows:

(cotgsinf — cosb). (®))

d’0  d (do d (do do
— == (Z) == ()= ©6)
ds ds \ ds do \ ds / ds

By substituting df/ds = « into Eq. (6), we obtain
d0  d« d [«?
—=—Kk=—|—=. ™
ds2  do de \ 2

By substituting Eq. (7) into Eq. (5) and integrating both
sides of the equation, we obtain the following:

€ _ ZFSI9 (1 4+ cotpeose) + C @®)
5 = El S COot@ Cos .

At 6 = 0., we can establish the boundary condition — that
is, ke = M /(EI); therefore, we can obtain the following:

2

K F sin
C=—+ Y

2 EI

(sinf + cot g cosBe). )



By substituting Eq. (9) into Eq. (8), we obtain the follow-
ing:

2

Fsin
%: El(p(k—sine—cotgocow), (10)
in which
KIEI .
= 4 (sinfe + cot @ cosbe). (11)
2F sing

We define the first term of Eq. (11) as the load ratio, n, of
the planar beam as follows:

_ kZEI
= 2Fsing

12

When ¢ € [0, 7], with «® = FL?sing/(EI), Eq. (10) can
be rewritten as

do 2
K=—=Q\/)L—sin9—cot<pcose. (13)
ds L
By separating variables and integrating Eq. (13), we can
obtain the relationship between « and the rotational angle,
6., as follows:

O
1 / do
o=— :
V2 /A —=sin@ —cotpcosd
0

(14)

When the angle of loads, ¢ € [0, r]; the rotational angle,
6.; and the load ratio, 7, are provided, the load of the planar
beam, F', can be calculated as follows:

_ a’El
"~ L2sing’

as)

The coordinates of the beam’s tip can be calculated as fol-
lows:

O
L / cosfdeo
a = ,
2a ) /A —sin@ — cotpcosd
0

sin6do

O
P /
"~ V2a ) /*=sinf —cotgcosh
0

(16)

Similarly, when the angle of loads is ¢ € (7, 2n], with
a? = —FL?sing/(EI), we have

[
1 / do
o =— ,
V2 ) =k +Fsinf + cotpcosh
0

_ o’El
L2sing’
Oe
L cos6db
a = ,
2o ) ~/—X+sinf + cotgcos@
0
O
L in6dé
b = a7

- V2a ) =k +sind +cotgcosf
0

As shown in Fig. 2, the relative positional relationship be-
tween the beam’s tip positions, B; and Bj, can be described
by pole P and its corresponding rotation angle, ©. Accord-
ing to the definition of the pole, the position coordinates of
pole P and the rotation angle, ¢, can be calculated by the
following formulas:

A NTAS

¥ = ,
b bt (18)
- sin ’

where B; = L +i0 represents the tip position of the planar
beam in its natural state and By = a + ib represents the tip
position of the planar beam carrying the tip loads F and M.
Expanding this formula yields the coordinates of the pole as
follows:

L+a —b
xp = Hi4 ks
{ _ é2_ L_2alan19 (19)
yrp = 3 2tan? *

Moment M of the planar beam at frame O is
Mo =M+ Fasing — Fbcosg, (20)

where M. = /2FnEIsing. The position of the equivalent
load line, £ r, can be determined by its intersection point with
the x axis, R, as follows:

Mo

ro= .
0 Fsing

ey

The distance, dp, between pole P and the equivalent load
line, £ r can be calculated by the vector product of the vector
R P and equivalent load line, £ r, as follows:

dp =(ro—xp)sing + ypcosg. 22)
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The pole of the deformed planar beam.

Pole P of the planar beam completely describes the relative
position of the beam’s tip. For any planar beam, the rota-
tion direction of the beam’s tip, the position of the pole, the
distance between the pole and equivalent load line, and the
rotation angle of the equivalent load line can be adjusted by
the similarity transformation.

Planar beams can change the rotation direction by mirroring
the load along the x axis. As shown in Fig. 3a, to change the
rotation direction of the planar beam, the equivalent force
line of the planar beam, £, needs to flipped along the x axis.
In this scenario, the load angle is ¢’ = —¢, the pole position
(xp, yp) = (xp, —yp), and the pole angle ¥' = —.

Planar beams can adjust the pole position by translating the
frame, O. As shown in Fig. 3b, when pole P of the beam is
translated along vector 7, its tip position, (a’, b’); equivalent
force line, Z’F; and frame, O’, also undergo the same trans-
lation motion. After translation, the magnitude of the load,
F’; the angle of the equivalent force line, ¢'; and the dis-
tance from pole to the equivalent force line, d’,, all remain
unchanged.

Planar beams can adjust the angle of the equivalent force
line by rotating the frame O. As shown in Fig. 3c, when the
frame O rotates around the pole by an angle, y, its tip posi-
tion, (a’, b’), and the equivalent force line, E/F, also undergo
the same rotational motion. After rotation, the magnitude of
load F’ and the distance from the pole to the equivalent force
line d, remain unchanged. The angle between the equivalent
force line and the positive direction of the x axis changes to

¢ =p+y.

The planar beam can adjust the distance from pole to the
equivalent force line by proportionally changing the beam’s
length, L. As shown in Fig. 3d, when the beam’s length
is scaled by proportion p, according to Egs. (16), (15),
and (19), the scaled beam’s tip position is (@', b') = (ua, ub),
the scaled pole position (xp,yp) = (uxp,uyp), and the
scaled loads F’ = F/u?. On this basis, by substituting scaled
parameters (a’,b’), (x, yp), and F' into Egs. (20), (21), and
(22), it can be concluded that the scaled distance from the
pole to equivalent force line is d}, = pdp.

Through the analysis of the deformation behavior of the pla-
nar beam, the load required for achieving a given beam’s tip
rotation is determined. The relative positional relationship
between the two positions of the beam’s tip is described us-
ing the pole. Through the pole similarity transformation, the
pole position and the equivalent force line of the beam can
be flexibly adjusted within the motion plane. In order to en-
sure that the rigid components of the compliant mechanism
are in a stable state at specified positions, it is necessary to
arrange the planar beams of the compliant mechanism into
suitable positions. This paper utilizes the characteristics of
the similarity transformation to adjust the pole position of
the planar beams, ultimately establishing a synthesis method
for the rigid-body guidance problem of compliant bistable
mechanisms.

Figure 4 shows two stable positions of the bistable mecha-
nism that needs to be designed in this paper, which consists
of three planar beams and two rigid components. In the na-
tural state, the flexible beams are located at O“ By, ol B{’ s
and O°Bf, respectively. The three beams are connected to
the rigid components B{ D{C{ O¢ and BfDi’Cfo. O“Bj,
ObBéJ , and o¢ Bg represent the deformation states of the
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Figure 3. The similarity transformation of deformed planar beam: (a) mirror transformation, (b) translation transformation, (c) rotation

transformation, and (d) scale transformation.

three planar beams when BS D§C5 0°¢ and Bg Dé’ Cé’ Bg are
the rigid components at the second stable position. In this
paper, the two given positions of first rigid component are
D{C{ and D5 C%, while the two given positions of the sec-
ond rigid component are leCf and D'2’ Cé’ , respectively. The
motion task of the rigid guidance problem can be described
by the poles. As shown in Fig. 5, the pole of first component,
P4, can be calculated by

T R— ﬁg_ﬂf
- 2 )
pa i Dge—zﬂa_Dzlzeu?” (23)
2 sin ¢ ’

while the pole of second component, pb , can be calculated
by

BBy

2 (24)

. b —iv? _ b ot
LDze 'V —Dje!
2 sinb

-
pPb =

Mech. Sci., 15, 515-529, 2024

iy

0

Figure 4. The illustration of the stable positions of the compliant
bistable mechanism.
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The pole of the two different positions in the rigid-body
guidance problem.

In the compliant mechanism, two planar beams, O B{ and
ok B{’ , are connected to the frame on one tip and to the rigid
components on the other tip, so their poles should be consis-
tent with the poles of the motion task, P(¢“) and Pb(9h).
The two tips of the third planar beam, O°¢ Blc, are connected to
two rigid components, respectively; thus, there are two poles,
P and P¢, that correspond to two stable equilibrium posi-
tions. As shown in Fig. 6, pole P¢ can be viewed as the result
of rotating P¢ around P? by ¢ or as the result of rotating
P¢ around P’ by 9”. Therefore, P¢ and P are symmetric
in relation to the line P* P”. When we know the poles of two
rigid components, we connect the poles P and P, rotate
P49 PY around P by ¢, and then rotate PP’ around P?
by 9. The intersection of the two lines is the first pole of the
third beam, P€¢. Similarly, when P¢ P? is rotated around P¢
and P? by —9¢ and —9b, respectively, the intersection is the
second pole of the third beam P . The pole of third beam
represents the relative angle between two rigid components,
which is known from the characteristic of the polar triangle,
i.e., the rotation angle 9¢ = —9“ 4 9o,

After determining the poles of each planar beam, it is neces-
sary to determine the dimensional parameters and installation
positions of the planar beams in the compliant mechanism.
The process is as follows:

1y chf\
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The pole of the three planar beams of the compliant
mechanism in the motion generation problem.

1. Determination of the load balance line. The first stable
position of the bistable compliant mechanism is the na-
tural state of the mechanism, in which the planar beams
are not subjected to external forces. When the compliant
mechanism is in the second stable position, the equilib-
rium of the mechanism is achieved through the interac-
tion forces between the beams. Therefore, in order to
ensure that the compliant mechanism maintains balance
in the second stable position, the equivalent instances of
the force line of the three compliant beams, K];-, need to
coincide, and the coinciding position is the load balance
line, ¢p.

As shown in Fig. 7, due to the opposite rotation direc-
tions of the two planar beams connected to the frame,
the directions of their loads, F¢ and F?, are also oppo-
site. In order to ensure the balance of forces on the rigid
components, load F¢ on the third beam has the same
direction as F“. The position and angle of the load bal-
ance line can be arbitrarily given, but it needs to ensure
that the load balance line, £p, passes through two edges,
PP and PPP, of the pole triangle PaPb P Af-
ter the load balance line is selected, the load directions
of each beam in the x Oy coordinate system are already
determined — that is, the directions of F¢ and F¢ are
¢ = ¢° = ¢, and the direction of F? is ¢* =¢ — 7.
Based on this, the distances dp, d{)’B, and dgy between
the poles of planar beams and the load balance line are
also determined.

2. The initial solution of planar beams. The rotation angle
of the beam’s tip, QZ,‘, is determined by the pole angle of
each beam. To avoid negative curvature, a mirror trans-
formation is required for the planar beam with negative



pole rotation. Taking Fig. 6 as an example, beams b and
¢ need to be reversed using a mirror transformation. The
rotation angle of the planar beams can be calculated by

ok =2 9% || kela,b,c). (25)

The elastic modulus, E, of the planar beam needs to be
determined based on the selected material, and the sec-
tion height, hg; section width, bg; beam length, Lg; load
ratio, né; and load angle, (pg , of each planar beam can be
arbitrarily chosen. After parameter selection, as shown
in Fig. 8, the position of the pole, PY, the load mag-
nitude, Fé‘ , and the distance from the equivalent force
line to the pole of the planar beam, dk, can be calcu-
lated according to the procedures in Sect. 2.1 and 2.2.
The calculated result is the initial solution of the planar
beam.

. The similarity transformation of planar beam. To meet
the requirements of the motion task, pole Pé‘ and the
equivalent force line of the planar beams, E"F, need to
be transformed to the suitable positions (Pk and ¢p) in
the compliant mechanism. For each planar beam, four
steps of the pole similarity transformation are required.

a. Translation transformation. Pole P(;‘ of the planar
beam k is moved to the origin, and the translation
vector r{‘ = —Pé‘, where k € {a, b, c}.

b. Scale transformation. In order to ensure that d% =
d’l§B, planar beam £ is subjected to a scale transfor-
mation with a scaling factor, /Lk = d’gB /dk, where
k € {a, b, c}. After the scaling transformation, the
load magnitude of the planar beam also changes to
Ff = Fg /().

c. Rotation transformation. In order to make E’; par-
allel to ¢p, planar beam k needs to undergo a rota-
tion transformation with an angle of y*¥ = ¢k — <p]6,
where k € {a, b, c}.

d. Translation transformation. The rotated planar
beam, k, needs to be translated back to the pole of
the compliant mechanism, and the translation vec-
tor is tf = Pk where k € {a,b,c}.

4. Determination of the beams’ width. After the similarity

transformation, the load position and motion of the pla-
nar beam already satisfy the requirements of the compli-
ant bistable mechanism. In order to ensure that the static
equilibrium condition is satisfied at the second stable
position, it is necessary to adjust the width of the planar
beam b to unify the load magnitude, F¥. According to
the scaled load, F 1", of each planar beam k, the equilib-
rium load at the second stable position of the compliant
mechanism, F", is selected. According to Eq. (15), the
tip load of the planar beam is proportional to the inertia
moment, /. For the rectangular cross section, the inertia

=Y

The loads balanced line of compliant bistable mecha-
nism.

moment, /, is proportional to the width of the cross sec-
tion. Therefore, the cross-section width of each planar
beam k is adjusted in proportion to the load magnitude,
F¥ and equilibrium load F™ —that is, bk =k bé, where
ot = /FF.

Based on the pole similarity transformation, the synthesis
process of the bistable compliant mechanism is shown in
Fig. 9. First, the poles and corresponding pole angles of the
rigid components and planar beams in the compliant mecha-
nism are determined based on the given positions of the mo-
tion task. Second, the load balance line and the magnitude
of the equilibrium load for the compliant mechanism are se-
lected. Then, the initial solution of the planar beams based
on the geometric and mechanical features is obtained, and
so are the compliant mechanism solution that satisfies the
motion task requirements and static equilibrium conditions
through similarity transformation. Finally, output the rele-
vant parameters of the planar beams and rigid components
in the compliant mechanism for the specific design of the
compliant mechanism. After defining the input and output
of the program, this synthesis process can be automatically
completed using MATLAB software.

This section takes the planar two-position rigid-body guid-
ance mechanism as an example and designs a bistable com-
pliant mechanism based on the proposed synthesis process.
The guidance positions of the rigid components are D{CY,
D5C4 and D%’ C {’ s Dg Cé’ . Table 1 shows the motion task pa-
rameters.
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The initial solutions of three planar beams in compliant
bistable mechanism.

According to the proposed synthesis process, the geomet-
ric features of the motion task and the compliant mechanism
are first extracted. Poles P® and P? are determined according
to Egs. (23) and (24). Poles P¢ and P¢ are obtained by ro-
tation and pole angle of 9 = —9% 4+ 9”. The specific results
are shown in Table 2.

The position of the load balance line is selected accord-
ing to the position of the poles. The load balance line
passes through points (0.5 cm, 2.5 cm) and (8.5 cm, 4.5 cm),

1z Motion task

| a a b b b
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|
|
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Mechanism synthesis y————

Motion parameters of planar beams || Poles distle’lnce
a c a C
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Initial solution of planar beams

I B lﬁ\’(p{f\ FF. d*. P

Parameters of similarity transformation
Kok Kk
TN [N YN T,

]

Parameters of beams’ width

| 1T Structural parameters of beams
I W B
| Y
: Positions of frame
I NN
} )
| Critical parameters of rigid components
S BLOL GO B G DB
General synthesis process of compliant bistable mecha-
nism.
Parameters of motion task.
(x,y) [em] (x,y) [em]
D¢ 2.2 Db (8.4)
D§ (187,25 Db (8.23,4.64)
cd 3.15 ¢ (1.3.5)
Cc§  (2.98,2.57) Cé’ (7.15, 4.90)
Geometric features of the motion task and the compliant
mechanism.

k Pk [em] % [9]
a 1,2) 15
b 9,4  —-20
¢ (5.92,192) 35
¢ (5.30,439) =35




Parameters for the initial solution of compliant mecha-

nism.
kb ef 01 F§INI  df [em] Pt [em)
a 0 135 0.0245 0.6304 (0.338, 0.035)
b 0 —130 0.0311 0.6643 (0.336, —0.470)
¢c 0 =210 0.1356 0.3118 (0.413, —0.086)
Similarity transformation parameters of compliant mecha-
nism.
k tflem]  pk YR o lem] o
a (—0.338,-0.035) 0.96 59.03 (1.0,2.0) 18.862
b (—=0.336,0.470) 091 1440 (9.0,4.0) 16.842
c (—0.413,0.086) 2.14 44.04 (5.30,4.39) 13.416

and ¢ =194.04°. The magnitude of equilibrium load is
F™ =0.5N. The distance from poles P¢, PY. and P< to the
load balance line, £g, is determined to be ng =0.606 cm,
dbs =0.606 cm, and dSg = 0.666 cm, respectively. The ma-
terial selected for the planar beams is 65Mn spring steel, with
an elastic modulus of E =210 000 MPa.

The initial parameters of the planar beams need to be se-
lected, including the initial length, Lg =1 cm; initial width,
bk =0.1cm; and initial height, 2§ =0.005 cm. The load ra-
tio, ng, and angle of equivalent force line, ¢g , are shown in
Table 3. Based on these parameters, the initial solutions of
the planar beams are determined. As shown in Table 4, the
similarity transformation parameters of the three beams are
calculated according to Sect. 3.2.2. After transforming the
planar beams to the corresponding pole positions, all param-
eters of the compliant mechanism can be determined. The
specific result can be found in Table 5 and Fig. 10.

The synthesis process of bistable compliant mechanism for
the rigid-body guidance problem is completed. The designed
compliant mechanism is modeled in finite-element analysis
(FEA) software to verify the motion accuracy and bistable
characteristics. As shown in Fig. 11a, the models of planar
beams are imported into the FEA software and establish rigid
constraints between the beams to simulate the connection of
rigid components in the compliant mechanism. Two refer-
ence points are established at D{ and le, and they are fixed
to the tips of slender beams a and b. The rotation constraint is
applied at the reference points of DY, and the first rigid com-
ponent is driven to rotate counterclockwise by Ag% =35°,
indicating that the mechanism will reach and surpass the sec-
ond stable position. The deformation of the mechanism at
the initial position and the second stable position is shown in
Fig. 11b. The strain energy of the mechanism and the second
rigid component’s motion during the movement are shown in

Parameters of final solution of compliant mechanism.

ko Lkiem] AK[em]  bF[em]  OF [em] Bf [cm]
a 09619 0005 188  (0.862,1.704) (1.357,2.529)
b 09128 0005  1.684 (9.223,3785) (7.089,2.399)

¢ 2.1368 0.005 1.342 (5.016, 1.881)  (8.484,4.321)

iy
— Synthesis Result: Initial Position
— Synthesis Result: Second Stable Position
+ FEA Result: Second Stable Position
o =x

The synthesis results of compliant bistable mechanism
and their comparison with finite-element analysis (FEA).

Fig. 12. It can be observed that in the simulation, the strain
energy of the mechanism reaches a local minimum when the
rotation angle of the first rigid component reaches 30°. At
this point, the rotation angle of the second rigid component is
—40°, and the coordinates of reference points D? and D%’ are
(1.87 cm, 2.50 cm) and (8.23 cm, 4.64 cm), respectively, indi-
cating that the designed mechanism meets the requirement of
stable positions in the motion task. The beam’s shape of the
second stable position in the simulation is shown in Fig. 10.

The prototype is manufactured according to the synthesis
results. As shown in Fig. 13, the frame and rigid components
in the mechanism are manufactured through 3D printing. The
planar beams are made of spring steel (65Mn). The planar
beams and rigid components are securely fastened together
using bolted connections. Three yellow markers are added
to the frame and rigid components using 3D printing. The
second stable position of the prototype is shown in Fig. 13.
The red markers in the figure represent the results from the
finite-element analysis at the second stable position, and it
can be observed that the deformation of the planar beams in
the prototype is consistent with the simulation results.

We utilize monocular ranging algorithm to calculate the
stable position of the rigid components in the prototype. As
shown in Fig. 14, image-processing techniques are employed
to identify the markers on the frame and rigid components.
The three markers on the frame are used to determine the
origin and orientation of the coordinate system for the pro-
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Figure 11. The FEA results regarding the strain energy of the compliant mechanism.
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Figure 12. The FEA results regarding the strain energy of the com-
pliant mechanism and second rigid component’s motion.

https://doi.org/10.5194/ms-15-515-2024

totype. The positions of the markers on the rigid compo-
nents can be calculated through coordinate transformation.
The pole angles and the location of the poles are calculated
by the markers. Any two markers on the same rigid compo-
nent can form a directed line segment. By utilizing the posi-
tional relationship of directed line segments between two sta-
ble positions, a pole and its corresponding pole angle can be
determined. The results are presented in Table 6. The max-
imum error for the location of the pole is 3.82 %, and the
maximum error for the pole angle is 4.92 %.

Due to the self-holding characteristic of the bistable mech-
anism, the driving force or torque of the mechanism has
significant features. There are three states with zero driving
force between the two stable positions, which corresponds
to the positions of minimum and maximum strain energy. To
measure the driving torque of the prototype, an experimental
platform is set up as shown in Fig. 15. The first rigid compo-
nent is made to rotate using a servo motor in position mode.

Mech. Sci., 15, 515-529, 2024



The pole angles and location of poles of the prototype.

Markers Xpk [ecm]  Errorxpr  ypk [cm]  Error ypk ok [°]  Error vk
mark4, mark5 0.9894 1.06 % 2.0537 2.68 % 157379  4.92%
mark5, mark6 0.9615 3.82% 2.0235 1.18 % 15.5833 3.90 %
mark4, mark6 0.9810 1.91 % 2.0326 1.62 % 15.6060  4.05 %
mark7, mark8 9.0990 1.10% 4.0412 1.03 % —20.5318  2.66 %
mark8, mark9 9.0886 0.98 % 4.0574 1.44 % —20.7610  3.81%
mark7, mark9 9.1014 1.13% 4.0406 1.02 % —-20.549 2.72%

b

eams

Frames

o

The marker detection results of the two stable positions.

Second Stable P

The prototype and the comparison of the beams’ shape
at the second stable position with FEA results.

The driving torque is recorded using a torque sensor. The
experiment is repeated three times, and the comparison be-
tween the experimental results and the simulation is shown
in Fig. 16. It can be seen that the results of the three ex-
periments show good consistency. Throughout the motion The platform of the driving torque experiment.
process, the driving torque has three intersections with the

x axis, verifying the bistable characteristic of the mechanism.

The first intersection is located at the initial position with a

driving angle of AB% =0°, and the third intersection is lo-

cated at the second stable position with a driving angle of ap- AB?% =26° which is greater than the simulated result of 25°.
proximately AB% =30°, which is consistent with the design This is mainly caused by manufacturing and assembly errors
goal. The second intersection is located at a driving angle of in the prototype.
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The comparison of the driving torque between experiments and simulation.

Poles are a geometric tool that can accurately describe multi-
ple planar positions, and they can reveal the relationship be-
tween guidance mechanisms and given design tasks. Based
on the similarity transformation of poles, this paper proposes
anovel synthesis method for compliant bistable mechanisms.
The synthesis example and results of simulation and proto-
type experiments have demonstrated the effectiveness of the
proposed method. Regarding the proposed design method,
future research can focus on the following two aspects:

1. Study on the energy and mechanical characteristics of
the intermediate states in bistable mechanisms. The pro-
posed method can design the stable positions of the
mechanism based on the motion task. However, the
maximum strain energy and maximum driving force be-
tween the two stable positions of the mechanism also
have important research value. How to incorporate the
calculations of these intermediate characteristics into
the overall process of mechanism synthesis will be a key
issue for future research.

2. Research on integrated manufacturing methods for
mechanisms. One important advantage of compliant
mechanisms is their ability to be manufactured in an in-
tegrated manner, eliminating the assembly process. In
the proposed method, the planar beams have different
widths, which requires us to manufacture and assemble
the components separately. The assembly process not
only limits the size of the prototype but also introduces
significant assembly errors. Exploring miniaturized in-
tegrated manufacturing methods is also one of the im-
portant research topics for future studies.

This paper proposes a novel geometrical approach to bistable
compliant mechanism synthesis based on the similarity trans-
formation of poles. The study demonstrates the feasibility
of decoupling the kinematic design and static analysis pro-
cesses in the synthesis of bistable compliant mechanisms.
At the method level, a general synthesis process for bistable
compliant mechanisms is provided, simplifying the iterative
process in the design of compliant mechanisms and offer-
ing an efficient synthesis tool for general compliant bistable
mechanisms. In addition, this study illustrates the synthesis
approach with an example, and a prototype was made.

All the code and data used in this pa-
per can be obtained from the corresponding author upon request.
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