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Abstract. The spherical parallel mechanism (SPM) offers several advantages such as high stiffness, precision,
a large workspace, immunity to interference, and simple kinematic calculations. Consequently, SPM finds ex-
tensive applications in fields like surgical robots, exoskeleton robots, and others. This paper proposes a design
principle based on the virtual middle-plane constraint method, which integrates the branch constraint of the
mechanism into the intermediate virtual constraint plane. On the one side, a symmetric spherical 3R branch
consisting of two spherical links is provided to offer 3 rotational degrees of freedom (DOFs). On the other
side, a constraint force located on the middle plane constrains 1 rotational DOF, enabling the end effector link
to achieve 2 DOFs. Several symmetrical SPMs are synthesized based on the constraint force provided by the
branches. The mechanism can achieve continuous motion from an initial position to a final position by under-
going a single equivalent rotation around an axis on the virtual symmetric plane passing through the center. The
forward and inverse kinematic solutions and the velocity Jacobian matrix of the symmetrical SPM are deter-
mined. The workspace of the mechanism is obtained by considering inverse kinematics and link interference
conditions. The dexterity and force/torque transfer performance of the mechanism within a certain range are an-
alyzed. The correctness of the kinematics of the symmetrical SPM is demonstrated through simulation analysis
and prototype experiment. This research lays a foundation for motion planning and dynamic analysis of this kind
of mechanism by providing a variety of configurations for practical applications.

1 Introduction

The parallel mechanism has the advantages of high bearing
capacity, high structural stiffness, and compact structure. The
spherical parallel mechanism (SPM) is a special spatial par-
allel mechanism. Its structural feature is that all the axes of
revolute joints intersect at one point, and the end effector can
rotate freely around that point. The SPM plays an indispens-
able role in practical applications and has been widely used
in many fields, such as the azimuth tracking system (Luo et
al., 2014), the bionic robot (Kumar et al., 2017), and medical
devices (Cao et al., 2019; Saafi et al., 2018). When applied
in imaging devices, spherical parallel mechanisms excel in
fulfilling a range of needs, from surveying surrounding envi-
ronments and coarse positioning to subsequent autonomous

fine adjustments for the optimal observation of target ob-
jects. In contrast to traditional imaging setups that are lim-
ited to adjusting angles in horizontal and vertical directions,
spherical parallel mechanisms offer simultaneous 2-degree-
of-freedom (DOF) adjustments on a spherical surface, pro-
viding superior imaging perspectives.

The current research on SPMs mainly focuses on 2-DOF
SPMs and 3-DOF SPMs, and some research results have
been achieved in configuration synthesis, kinematic analysis,
and dynamic analysis. The theoretical research and practical
engineering applications of 3-DOF SPMs are relatively ma-
ture – for example, the typical 3-RRR SPMs. Gosselin and
Hamel (1994) developed the well-known agile eye device.
In addition, various modifications of this mechanism have
been proposed and its applications have been continuously
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expanded. In the field of bionic robots, Liu et al. (2002) used
a spherical 3-RRR mechanism as the shoulder and wrist joint
mechanisms to design a 7-DOF redundant humanoid arm
based on a series–parallel structure. In the field of rehabilita-
tion medicine, Li and Payandeh (2002) applied the spherical
3-RRR mechanism to the laparoscopic surgical robots and
optimized its workspace. French scholar Saafi et al. (2015)
proposed a medical device based on tactile feedback and put
forward an optimal torque distribution method. The perfor-
mance of the SPM was improved by adding redundant actu-
ators, and the geometric parameters were optimized to elim-
inate singularities. Zhang (2016) used a decoupled 3-RRR
spherical parallel mechanism for the design of a launch plat-
form. Zhou and Ge (2017) added a 3R branch as the de-
sign basis and obtained various redundantly actuated spheri-
cal 3-DOF mechanisms for flight simulators. Detailed analy-
ses and comparisons of their DOF properties and workspace
motion properties were conducted. The development of other
types of 3-DOF SPMs has also been very rapid. Enferadi and
Nikrooz (2018) conducted kinematic and workspace analy-
ses on the 3-UPS/S SPM and used genetic algorithms to op-
timize the dimensions of the manipulator for single-objective
and multi-objective optimization. Chang et al. (2022) pro-
posed a novel three-branch spherical parallel mechanism
with semi-decoupled characteristics, which has 3 rotational
DOFs around the X, Y , and Z axes. W. B. Chen et al. (2022)
conducted research on the parameter optimization method
of a prosthetic shoulder joint mechanism based on a 3-RRR
asymmetric SPM, with the goal of achieving the structure
and function of the human shoulder joint. Arredondo-Soto
et al. (2023) presented the compliant version of the 3-RRR
SPM known as agile eye, which achieves motion manipu-
lation through the utilization of compliant joints and rigid
elements. This design offers advantages such as weight re-
duction, friction elimination, miniaturization, and enhanced
precision.

In many fields, the use of a 2-DOF SPM is sufficient to
meet the requirements. Compared to 3-DOF SPMs, 2-DOF
SPMs have lower manufacturing costs and are easier to con-
trol. For instance, pointing mechanisms (Yu et al., 2016)
can be utilized for sphere-based carving machines, satellite-
antenna azimuth tracking, and automatic tracking devices
on the ground for different types of aircraft. The spheri-
cal 5R mechanism serves as a typical representative of a 2-
DOF SPM. Saiki et al. (2021) designed a bidirectional os-
cillating 2-DOF SPM with an active arc slider. Based on
the new design concept of a “linear input–rotational output”
chain, 2-DOF decoupled parallel mechanisms with a spher-
ical working space are designed (Yu et al., 2020). Unlike
existing methods that exploit singularity in parallel mecha-
nisms for synthesizing reconfigurable parallel mechanisms,
we proposed a set of triangular decoupling conditions for
spherical parallel mechanisms. These conditions facilitate
the synthesis of a drivetrain-based reconfigurable parallel
spherical joint (Hu and Liu, 2022) capable of achieving one-

dimensional fixed-axis rotation, one-dimensional variable-
axis rotation, and two-dimensional and three-dimensional ro-
tations. By incorporating a passive US limb into a 3-RPS
parallel mechanism, a novel 3-RPS/US parallel mechanism
with 2 DOFs has been obtained that is composed of one rev-
olute, one prismatic, and one spherical joint limb (Li et al.,
2022) for the 3-RPS portion and universal joints and spher-
ical joints for the US portion. This enhancement increases
the payload capacity of the mechanism, making it suitable
for potential applications such as dual-axis tracking photo-
voltaic supports. A basic design method for a 2-DOF SPM
bending dual-axis oscillating mechanism with a circular arc
slider (Naoto et al., 2021) as input is proposed. The swing
area of the passive link is small, allowing for infinite rotation
around a certain axis without collision or transitioning into
a single posture. Dong et al. (2012) analyzed the kinemat-
ics, singularity, and workspace of a class of 2-DOF mecha-
nisms. Kim and Oh (2014) deformed the spherical 5R mech-
anism; designed the spatial self-adaptive finger clamp; and
conducted a constraint analysis, optimization design of the
structure, and grasping experiment on it. Cao et al. (2019)
obtained a three-rotation-and-one-translation (3R1T) manip-
ulator for minimally invasive surgery by connecting the rev-
olute pair and the prismatic pair to a 2-DOF SPM and ana-
lyzed its kinematics and singularity. Chablat et al. (2021) de-
signed a 2-UPS-U 2-DOF SPM with a predetermined regular
workspace shape to manipulate an endoscope for assisting in
ear surgery.

In summary, many scholars have conducted comprehen-
sive research on two typical SPMs. It can be seen that SPMs
have great potential application value. However, most of the
research on 2-DOF SPMs only analyses the proposed mech-
anisms and does not mention the design principles of their
configurations. Therefore, we proposed a new design prin-
ciple for a symmetrical 2-DOF SPM. Structurally symmet-
ric parallel mechanisms with isotropic symmetry and fewer
DOFs exhibit greater potential in applications. The symmet-
rical SPM can realize continuous rotation around any line on
the middle plane that passes through the rotation center of
the spherical mechanism. The axis of rotation is fixed during
rotation, and the mechanism is symmetric at all times dur-
ing movement, which means that any form of motion of the
mechanism can be transformed into a rotation with a fixed
axis. This study establishes the theoretical foundation for the
design of parallel mechanisms and further enriches the re-
search on parallel mechanism systems.

In this paper, the design principle of a novel 2-DOF SPM
with a symmetrical structure is proposed, a series of SPMs
without over-constrained force/torque are synthesized, and
the kinematic and static characteristics of one of the mecha-
nisms are analyzed in detail. The paper is organized as fol-
lows: Sect. 2 analyzes the design principle and structure de-
sign of the symmetric SPM. In Sect. 3, the models of for-
ward kinematics and inverse kinematics are established and
the Jacobian matrix of the mechanism is obtained. The per-
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formance of the symmetrical SPM is analyzed in Sect. 4.
In Sect. 5, the kinematic simulation and prototype experi-
ment of the SPM are conducted. Conclusions are presented
in Sect. 6.

2 Analysis of the design principle and structure
design of the symmetric SPM

2.1 Analysis of the design principle of the symmetric
SPM

The motion of the spherical mechanism revolves around a
fixed point which is called the rotation center of the mech-
anism. There are two requirements in order for the SPM
to maintain symmetry during motion, as shown in Fig. 1.
Firstly, the overall structure of the mechanism must be sym-
metrical about a plane which is called the middle plane of the
mechanism. Secondly, the rotation axis of the end effector of
the spherical mechanism must be located on the middle plane
and pass through the rotation center of the mechanism.

In order to realize the symmetrical movement of the 2-
DOF spherical mechanism, its design principle is to limit the
end effector’s 3 translational DOFs and 1 rotational DOF
about the axis perpendicular to the middle plane, and the
structure of the mechanism is symmetrical about the middle
plane.

Therefore, the specific design principle of a 2-DOF spheri-
cal parallel mechanism forms a 3R mechanism for one side of
the linkage, providing 3 rotational DOFs. To achieve 2 rota-
tional DOFs, another branch is needed to provide a constraint
force that does not pass through the center of the sphere and
is located on the middle plane. This constraint can be equiv-
alent to a constraint torque relative to the rotation center, O,
and perpendicular to the middle plane. Therefore, the con-
straint force provided by the constraint force branch, com-
bined with the constraint screw provided by the spherical 3R
branch limits the rotation of the end linkage around the axis
perpendicular to the middle plane, resulting in a symmet-
ric spherical mechanism with 2 DOFs. The specific require-
ments are as follows: (1) ensuring that the angle between the
fixed link and the end link with the middle plane remains
constant during the motion of the mechanism and arranging
them symmetrically. (2) The joint axes of the 3R branch on
the left side intersect at the center of the sphere. (3) The con-
straint force provided by the constraint branch on the right
side lies on the middle plane.

2.2 Structural design of the symmetric SPM based on
branch constraints

According to the design principle of the symmetrical SPM
based on the branch constraint, three non-coplanar constraint
forces intersecting at one point and a constraint torque that
is perpendicular to the middle plane are provided by the

branches connecting the end effector and the base, whose
structure is symmetrical.

The simplest branch that can provide three non-coplanar
constraint forces that intersect at one point is the spherical
3R branch. Assuming that one of the branches connecting
the end effector and the base is the spherical 3R branch, its
coordinate system is established as shown in Fig. 2; the B1B2
link and B2B3 link form a 3R branch.

The x0 axis points from pointO to pointQ (the mid-point
of the base), the z0 axis is perpendicular to the plane that
the base is lying on, the positive direction is upward, and the
y0 axis is determined by the right-hand rule. The kinematic
screw system of the spherical 3R branch is

$B1 =
(
o1 p1 0; 0 0 0

)T
$B2 =

(
o2 p2 q2; 0 0 0

)T
$B3 =

(
o3 p3 q3; 0 0 0

)T , (1)

where parameters o1, p1, o2, p2, q2, o3, p3, and q3 are related
to the position and direction of the revolute joints B1, B2, and
B3.

The constraint screw system of the spherical 3R branch is
$r
B1 =

(
1 0 0; 0 0 0

)T
$r
B2 =

(
0 1 0; 0 0 0

)T
$r
B3 =

(
0 0 1; 0 0 0

)T . (2)

Based on screw theory, the constraint screws in Eq. (2)
correspond to the constraint forces which pass throughO and
are coaxial with the x0 axis, y0 axis, and z0 axis, respectively.
The 3 translational DOFs in the directions of the axes are
limited by the three constraints. Moreover, a branch that can
provide a torque perpendicular to the middle plane is needed.

2.3 Design of a symmetric SPM based on the
single-constraint force branch

In order to provide a mechanism without over-constrained
force/torque, the branch providing only one constraint torque
is considered first. However, Zhao et al. (2004) found that
there are few branches suitable for the design of the sym-
metrical SPM, so the branches that provide only one con-
straint force are considered. The design requirement of the
branches with a single constraint force is that the constraint
force provided by the branch is located on the middle plane
and does not pass through the rotation center. The constraint
force can be equivalent to the constraint torque perpendicu-
lar to the middle plane. Chen et al. (2016) synthesizes a se-
ries of branches providing a constraint force, among which
the branches satisfying structural symmetry are shown in Ta-
ble 1.

There exists a well-defined geometric correlation between
the force or torque of the branch constraint and the motion
pairs of said branch (Chen et al., 2016). In branches with
symmetrical structures, the constraint force can effectively be
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Figure 1. Symmetric SPM.

Figure 2. The coordinate system of the mechanism containing the
spherical 3R branch.

Table 1. Branches providing a constraint force and symmetry about
the middle plane.

Classification Contains R and Contains C, U, and
P pairs P pairs

Contains spherical R[RRR]R RSR URU
sub-chains P[RRR]P PSP

Contains planar R[RRR]R URRR URU RRRU
sub-chains R[PRR]R RPRU

R[RPR]R UPRR UPU RRPU
R[RRP]R URPR
R[PPR]R RPPU
R[PRP]R –
R[RPP]R UPPR

Contains cylindrical |PR| ⊥ R⊥ |RP| C⊥ R⊥ C
sub-chains (|PR|R|RP|) CRC

confined to the middle plane by judicious arrangement of the
motion pairs. To comply with design principles, this paper
outlines the structural design of symmetrical SPMs utilizing
the RSR, PSP, URU, and CRC branches, respectively.

The constraint force through the center of rotation of the
spherical joint and the intersection of the axis of rotation is

Figure 3. Symmetrical SPM based on the RSR branch: (a) RSR,
(b) PSS, (c) URU, and (d) CRC.

provided by the RSR branch, as shown in Fig. 3a. Since the
intersection of the axis of rotation and the RSR branch is
symmetric about the center of rotation of the spherical joint
at point O, the constraint force can be regarded as the con-
straint torque perpendicular to the middle plane at point O.
Combined with the constraint force provided by the spherical
3R branch, the mechanism has 2 DOFs. Similarly, the PSP
branch, URU branch, and CRC branch are shown in Fig. 3b,
c, and d, respectively.

3 Kinematic analysis of symmetric SPM

3.1 Degree-of-freedom analysis

The symmetric SPM RSR branch (Fig. 3a) is utilized as an
example, and the DOF property of the mechanism is ana-
lyzed based on screw theory. The coordinate system is estab-
lished as shown in Fig. 1, where the rotation center O serves
as the origin of the coordinate and the positive direction of
the x axis is pointed from O to Q (mid-point of the base).
The y axis is positively directed from Q to B6 within the
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Figure 4. End effector of symmetrical SPM.

plane where the base lies, while the positive direction of the
z axis is determined by the right-hand rule, which is perpen-
dicular to the plane of the base.

The SPM is then analyzed in detail. The specific structure
of the end actuator shown in Fig. 1 is displayed in Fig. 4. The
B3P part is arc-shaped, and PB4 is line-shaped perpendicu-
lar to line OP (P is the mid-point of the end effector).

With the exception of the varying radius, the configuration
of the base and end effector are nearly identical, leading to
a slight disparity in the architecture between rotation joints
B6 and B4. However, the overall symmetry of the mecha-
nism remains intact, as points P and Q exhibit symmetrical
properties relative to the middle plane.

The constraint screw system of the branch of the spherical
3R branch determined by rotation joints B1, B2, and B3 is
the same with Eq. (2). We assume that the coordinates of the
center point of each kinematic pair of the constraint force
branch are

B4 =
[
x4 y4 z4

]T
,

B5 =
[
x5 y5 z5

]T
,

B6 =
[
x6 y6 0

]T
.

Respectively, l4, m4, n4 are the direction number of the rota-
tion axis of the rotation pair, B4. The kinematic screw system
of the RSR branch formed by the rotation joints, B4 and B6,
and the spherical joint, B5, is

$B4 =
(
l4 m4 n4; pB4 qB4 rB4

)T
$B51 =

(
1 0 0; 0 z5 −y5

)T
$B52 =

(
0 1 0; −z5 0 x5

)T
$B53 =

(
0 0 1; y5 −x5 0

)T
$B6 =

(
0 1 0; 0 0 x6

)T
, (3)

where pB4 = y4n4, qB4 = z4l4− x4n4, and rB4 = x4m4−

y4l4.
The constraint screw system of the RSR branch is

$r
c =

(
l6 m6 n6; p6 q6 r6

)T
, (4)

where l6 = x5+
l4
n
z4−x4,m6 = y5+

m4
n4
z4−y4, n6 = z5, and

r6 =
m4
n4
z4x5− x5y4−

l4
n4
z4y5+ x4y5.

It can be found from the direction number and the coordi-
nate of the center point of rotation joint B4 that the equation
of the line B4C is

x− x4

l4
=
y− y4

m4
=
z− z4

n4
. (5)

As shown in Fig. 1, we assume that the intersection point
of the PB4, and the rotation axis of the rotation jointQB6, is

C =
[
xc yc zc

]T
, (6)

where xc = x6 and zc= 0, the axis of the rotation joint, B6,
is parallel to the y axis and located on the coordinate plane
O(x, y). By substituting Eq. (6) into Eq. (5), we obtain

yc =−
m4

n4
z4+ y4, (7)

x6 =−
l4

n4
z4+ x4. (8)

According to Eq. (4) and Eqs. (6), (7), and (8), it can be
concluded that l6 = x5− xc
m6 = y5− yc
n6 = z5− zc

. (9)

Therefore, the constraint screw of the RSR branch is a con-
straint force along the direction of lineB5C. According to the
symmetrical structure of the spherical mechanism, it can be
found that the points B5 and C are both on the middle plane
of the mechanism. Moreover, the design principle requires
that the intersection point of the revolute axes of the rotation
joints B4 and B6 in the RSR branch and the rotation center
of the spherical joint B5 do not pass through the rotation cen-
ter O of the mechanism, so the constraint force provided by
RSR branch can be equivalent to the constraint torque per-
pendicular to the middle plane. The rotation of the end ef-
fector around the axis perpendicular to the middle plane is
limited. Combined with the constraint force provided by the
spherical 3R branch, it can be found that the mechanism has
2 DOFs, and its structure remains symmetrical about the mid-
dle plane during the moving process.

3.2 The establishment of the coordinate systems

As shown in Fig. 5, the coordinate systems of the sym-
metrical SPM are established. The global coordinate system
O(X0, Y0, Z0) is the same as O(x, y, z) in Fig. 1. The local
coordinate system O(Xi , Yi , Zi) attached to the ith link is
established, and the structural parameters of the mechanism
are expressed based on D–H link parameters. The distance
from the rotation center of each rotation joint to the rotation
center of the mechanism is denoted byRi (i = 1, 2, 3). The
angle between the X1 axis and X2 axis is denoted by α2, and
the angle between the X2 axis and X3 axis is denoted by α3.
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Figure 5. Kinematic model of the symmetrical SPM.

The angles between the planes that the adjacent links are ly-
ing on are θ21, θ32, θ43, θ54, θ65, and θ61, respectively, and
the positive direction is counterclockwise, along the axes of
the rotation joints toward the rotation center, O. Due to the
characteristics of the spherical mechanism, the rotation cen-
ter is intersected by the axes of each rotation joint, the length
of each link is ai = 0 (i = 1, 2, 3), and the distance between
adjacent links is dij = 0 (ij = 21, 32, 43). The ith local coor-
dinate systems are also located at the rotation center O. The
Xi axis is collinear with the revolute axis of Bi and the po-
sition direction points from O to Bi . The Yi axis is located
on the plane where the ith link is lying, the positive direction
points from O to the side where the link is located, and the
zi axis is defined by the right-hand rule. OP coincides with
the X4 axis of the local coordinate system on the end effec-
tor, the Y4 axis is located in the plane where the end effector
is lying on and parallel to the axis of the rotation joint B4,
and the Z4 axis is perpendicular to the plane where the end
effector is located.

The distance between Q and the revolute center of B6 is
denoted by l1, the distance between P and revolute center of
B4 is denoted by l4, the distance between the revolute center
of B4 and B5 is denoted by l5, and the distance between the
revolute center of B5 and B6 is denoted by l6; finally, l1 = l4,
l2 = l3 and l5 = l6.

Because the mechanism has 2 DOFs, the configuration can
be represented by two angles, ϕ and γ , where ϕ is repre-
sented by the angle between OP and the X0 axis and γ
is represented by the angle between the mid-perpendicular
plane of the end effector and the plane O(x0, z0). We desig-
nate point P as the output reference point of the mechanism.
The driving parameters of the mechanism are θ21 and θ61. In
inverse kinematics, the driving parameters θ21 and θ61 can be
solved when the configuration parameters ϕ and γ of the end
effector are given.

3.3 Inverse kinematic solutions

When the output parameters ϕ and γ of the mechanism are
known, the driving angle θ21 of the equivalent spherical 2-
DOF mechanism can be obtained according to the method
of the inverse kinematic solutions introduced in reference
(Z. M. Chen et al., 2022). The driving angle, θ61, is obtained
by solving the coordinates of the center point of the spherical
pair B5 in the base system O(X0, Y0, Z0).

The driving parameters θ21 can be obtained as follows:

θ21 = arcsin
z2

R sinα2
. (10)

When the end effector and the base coincide, the coordi-
nate systems O(X4, Y4, Z4) and O(X0, Y0, Z0) coincide as
well, so the transformation matrix between the two links can
be expressed as

4
0T= Rot(x,−ω)Rot (y,−ϕ)Rot (x,−ω) , (11)

where ω represents the angle between the plane passing
through the lines OP and OQ at the same time and the co-
ordinate plane O.

The coordinates of P and the rotation center of B4 in the
local coordinate system, O(X4, Y4, Z4), can be expressed as
follows:

P 4 =
[
R 0 0

]T
, (12)

B44 =
[
R l4 0

]T
. (13)

The coordinates of P and the rotation center of B4 in
the global coordinate system, O(x0, y0, z0), can be obtained
from Eq. (11):

P 0 =

 R cosϕ
R sinϕ sinω
R sinϕ cosω

= [ xP 0 yP0 zP0
]T
, (14)

b40 =

 R cosϕ+ l4 sinϕ sinω
l4
(
cos2ω− cosϕsin2ω

)
+R sinϕ sinω

R sinϕ cosω− l4 cosω sinω (1+ cosϕ)


=
[
x4 y4 z4

]T
. (15)

The coordinates of the rotation center of B6 in the global
coordinate system, O(x0, y0, z0), can be expressed as fol-
lows:

b60 =
[
R l1 0

]T
=
[
x6 y6 z6

]T
. (16)

The coordinate of the rotation center of spherical joint B5
in the global coordinate system, O(x0, y0, z0), can be ob-
tained by determining the intersection point of two circles.
One is determined by a spherical surface, whose radius is l5
and the center is B4, and a plane, which is vertical to vec-
tor PB4 and passes through the line B4B5. The other is de-
termined by a spherical surface, whose radius is l6 and the
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Figure 6. Four initial configurations of the symmetrical SPM.

center is B6, and a plane, which is vertical to vector QB6
and passes through the line B5B6. Therefore, the coordinate
b50 = (x5 y5 z5)T in the global coordinate system, O(x0, y0,
z0), can be expressed by the following equation:{
lBP (x5− x4)+mBP (y5− y4)+ nBP (z5− z4)= 0
(x5−R)2

+ z2
5 = l

2
6

y5 = l4

, (17)

where lBP = xP 0− x4, mBP = yP0− y4, and nBP = zP 0−

z4, representing the direction number of line PB4 along the
coordinate axes in the global coordinate system.

The driving parameter, θ61, can be derived from the struc-
ture of the mechanism and Eq. (15):

θ61 = arcsin
z5

l6
. (18)

The paraments z2 in Eq. (10) and z5 in Eq. (18) both
have two solutions, which means that four sets of solutions
correspond to one position. The four initial configurations
with different arrangements of the driving links (θ21 < π/2,
θ21 > π/2, θ61 < π/2, and θ61 > π/2) are shown in Fig. 6.
The initial configurations in Fig. 6a are selected for the fol-
lowing analysis.

3.4 Forward kinematic solutions

Given the driving parameters θ21 and θ61, the solution of the
configuration parameters, ϕ and γ – that is, the forward kine-
matic solution of the spherical mechanism – can be figured
out. The coordinate of the rotation center of spherical joint
B5 in the global coordinate system, O(X0, Y0, Z0), can be
expressed with a given value of the driving parameter θ61:

B50 =

 R− l6 cosθ61
l1

l6 sinθ61

= [ x5 y5 z5
]T
. (19)

According to a reference (Zhang et al., 2006), the config-
uration parameters can be obtained as follows:{
ϕ = arccos x

R

γ = 180°− 2arccos
(

sin
(

arctan y
z

)
cos

(
1
2 arccos x

R

))
. (20)

3.5 Equivalent rotation characteristics of the SPM

The end effector of the 2-DOF SPM has the ability to con-
tinuously rotate around the axis passing through the rotation
center and lying on the middle plane throughout the entire

Figure 7. Equivalent rotation characteristics of the SPM:
(a) schematic diagram of initial and final configuration and
(b) equivalent rotation diagram.

motion. In addition, this mechanism possesses other note-
worthy motion properties. Specifically, starting from the ini-
tial position and ending at the target position, the end link can
achieve a pose transformation through a fixed-axis rotation,
known as the equivalent rotation of the mechanism.

In Fig. 7a, the end effector travels from position I to posi-
tion II, with middle planes s1 and s2 at the starting and ending
points, respectively. Points P1 and P2 are the reflections ofQ
across the middle plane, and line l represents the intersection
between the two middle planes. It is proven below that line l
is the axis of equivalent rotation of the mechanism.

Based on the structural characteristics of the mechanism,
the fixed link and the end link remain symmetric about the
middle plane during the motion process. Thus, we can obtain
the following:

QP1 ⊥ l,

QP2 ⊥ l.
(21)

To provide a clearer illustration, a plane s3 passing through
line OP1 and perpendicular to line l is introduced in Fig. 7b.
Point S is the intersection of line l and plane s3, while points
I and J correspond to the intersections of line OP1 with
plane s1 and line OP2 with plane s2, respectively.

The point Q is on the plane, according to Eq. (19):

QP2 ⊆ s3. (22)

That is, if line l is on the plane, and the mechanism remains
symmetric during the motion, then

SP1 = SQ,

SP2 = SQ.
(23)

Therefore, point P1 can rotate around line l by a distance
of θ to reach point P2, as long as point P is the symmetrical
point to point Q about the middle plane. Point Q can be ar-
bitrarily selected on the fixed link, indicating that line l is the
equivalent rotational axis of the mechanism.
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4 Performance analysis of the symmetric SPM

4.1 Establishment of the complete Jacobian matrix

In the global coordinate system,O(X0, Y0, Z0), the instanta-
neous motion screw of the end effector link can be denoted as
$p = [ωTvT

o ], where ω represents the instantaneous angular
velocity of the moving link and vo represents the instanta-
neous velocity at the point where it is firmly connected to the
moving link and coincides with O.

The 3R branch has 3 DOFs; thus, the instantaneous mo-
tion screw of the moving link can be represented as a linear
combination of the three screws as follows:

$p1 = θ̇11$̂B1+ θ̇12$̂B2+ θ̇13$̂B3, (24)

where $̂Bi and θ̇1i , respectively, denote the unit motion screw
and angular velocity for the ith joint in the RRR branch, with

$̂B1 =

[
sB1
0

]
, $̂B2 =

[
sB2
0

]
, $̂B3 =

[
sB3
0

]
.

sBi signifies the unit directional vector along the axis of the
ith joint in the RRR branch. B1, B2, and B3 represent the
coordinates of their corresponding points expressed in the
O(X0, Y0, Z0) coordinate system.

According to screw theory, within the branch, there are
three screws that reciprocally commute with all the motion
screws in that branch, denoted as $̂r1i . Subsequently, by tak-
ing the dot product $̂r1i of both sides of Eq. (24), we obtain

$̂T
r1i$p1 = 0, (25)

where
$̂r11 =

(
1 0 0; 0 0 0

)T
$̂r12 =

(
0 1 0; 0 0 0

)T
$̂r13 =

(
0 0 1; 0 0 0

)T .

In matrix form, this can be expressed as

JC1$p1 = 0. (26)

The RSR branch has 5 DOFs; thus, the instantaneous mo-
tion screw of the moving link can be represented as a linear
combination of the five screws as follows:

$p2 = θ̇21$̂B4+ θ̇22$̂B51+ θ̇23$̂B52+ θ̇24$̂B53+ θ̇25$̂B6, (27)

where $̂Bi and θ̇2i , respectively, denote the unit motion screw
and angular velocity for the ith joint in the RSR branch, with

$̂B4 =

[
sB4

B4× sB4

]
, $̂B51 =

[
sB51

B5× sB51

]
,

$̂B52 =

[
sB52

B5× sB52

]
, $̂B53 =

[
sB53

B5× sB53

]
,

$̂B6 =

[
sB6

B6× sB6

]
.

sBi represents the unit directional vector along the axis of
the ith joint in the RSR branch. B4, B5, and B6 represent

the coordinates of their corresponding points expressed in the
O(X0, Y0, Z0) coordinate system.

In the same way, we obtain

$̂T
r14$p2 = 0, (28)

where

$̂r14 =

[
sB5C

B5× sB5C

]
.

In matrix form, this can be expressed as

JC2$p2 = 0. (29)

The constraint screw of the mechanism is obtained by
combining the constraint screws from the two branches:

JC$p = 0, (30)

where JC =
[

JC1 JC2
]

represents the constraint Jaco-
bian matrix, $p =

[
$p1 $p2

]
.

The drivers of the mechanism are θ21 and θ61; when these
drivers are locked, the rank of the constrained screw in-
creases, and the additional constrained screw added by the
ith branch is denoted as $̂r2i . By taking the dot product of
Eqs. (24) and (27), $̂r21 and $̂r22, respectively, we obtain

$̂T
r2i$p3 = ω̇i . (31)

The newly added constrained screw of the 3R branch is
denoted as

$̂T
r21 =

[
0T

(
OB2×OB3
|OB2×OB3|

)T
]
.

The newly added constrained screw of the RSR branch is
denoted as

$̂T
r22 =

[ (
B4B5
|B4B5|

)T (
B5×

B4B5
|B4B5|

)T
]
.

Expressing this in matrix form, we have

Jx$p3 = ω̇i, (32)

where

Jx =

 0T
(
OB2×OB3
|OB2×OB3|

)T(
B4B5
|B4B5|

)T (
B5×

B4B5
|B4B5|

)T


denotes the driving Jacobian matrix and ω̇i =[
ω̇1 ω̇2 0

]T represents the input velocity of the
revolute joints.

By combining Eq. (30) and Eq. (32), we obtain

ω̇ = J$p, (33)

where J=
[

Jx
Jc

]
and ω̇ =

[
ω̇1 ω̇2 0 0 0 0

]T.

The J in Eq. (33) represents the comprehensive Jacobian
matrix of the mechanism.
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Figure 8. Workspace of the spherical mechanism.

Table 2. Limited configuration parameters of the spherical mecha-
nism.

Limited ϕ λ

configuration [°] [°]

1 49.5519 −64.0085
2 49.5519 63.9915
3 95.5519 0
4 12.0519 0

4.2 Workspace analysis

Due to mechanical interference, reference point P of the ef-
fector cannot reach every point on the spherical surface. As
shown in Fig. 8, suppose the width of each link of the mecha-
nism is 8 mm; the effective radius is then R= 200 mm – that
is, l1 = l4= 36 mm, l5 = l6= 50 mm,OP =OQ= 200 mm,
and αi = 30° (i= 1–4).

The following conclusion can be drawn from Fig. 8: (1) as
the angle ϕ betweenOP and the x0 axis varies, the rotational
ability of the end link 4 also varies (range of orientation pa-
rameter γ ). The closer the orientation parameters ϕ and γ
are to their extreme values, the smaller the working space
of the mechanism. When the orientation parameters ϕ and γ
are set to their mid-range values, the working space of the
mechanism is relatively large. (2) When the end link reaches
the left or right extreme position at γ =±67.5085°, driving
links 2 and 6 also reach their respective limit positions. When
γ = 0°, the end link reaches the upper or lower extreme po-
sition at ϕ = 95.8430° and ϕ = 11.5519°; the specific mech-
anism orientation and corresponding orientation parameters
are described in Table 2.

4.3 Dexterity analysis

The dexterity primarily reflects the transmission accuracy of
motion between input and output; Salisbury and Craig (1982)
proposed using the condition number of the Jacobian matrix
of a mechanism as a performance metric for the dexterity of
the mechanism. The condition number of its inverse matrix,
J−1, is chosen as the performance metric for the dexterity
of the mechanism. This metric reflects the ability of the end
effector to rotate in a certain direction, and the spectral norm
of the matrix is used to compute the condition number.

The matrix norm, ‖A‖, also known as the spectral norm of
a matrix, can be redefined in geometric terms as follows:

‖A‖ =max
x 6=0

‖Ax‖
‖x‖

. (34)

The condition number of the Jacobian matrix of the insti-
tution considered in this paper can be defined as follows:

c
(

J−1
)
=

∥∥∥J−1
∥∥∥ · ‖J‖ . (35)

As defined by Eq. (34), the spectral norm of a matrix can
be expressed as follows:

‖J‖ = max
‖x‖=1

‖Jx‖ . (36)

Since JTJ is a positive definite or positive semidefinite ma-
trix, its eigenvalues are non-negative, and we obtain

‖J‖ = max
‖x‖=1

(
λi
(
JTJ

))1/2
, (37)

where λi(JTJ) represents the eigenvalues of matrix JTJ.
Thus, the spectral norm of matrix J is represented by the
square root of the largest eigenvalue of JTJ, denoted as δmax,
while the spectral norm of matrix J−1 is represented by the
reciprocal of the square root of the largest eigenvalue of JTJ,
denoted as 1/δmin. Therefore, the condition number of the
Jacobian matrix J−1 can be expressed as

c
(

J−1
)
=
δmax

δmin
. (38)

In accordance with the structural parameters of the mech-
anism outlined in Sect. 4.2, the dexterity of the 2-DOF SPM
presented in this article is expressed in Fig. 9.

When the condition number is large, the precision of the
inverse matrix of the Jacobian matrix is relatively low, lead-
ing to significant distortion in the relationship between input
and output velocities. Therefore, it is crucial to ensure a low
condition number of the Jacobian matrix within the opera-
tional range of the mechanism during its design. The condi-
tion number of the Jacobian matrix is a value greater than or
equal to 1. A condition number of 1 indicates optimal motion
transmission performance, while an infinite condition num-
ber signifies a singular configuration.
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Figure 9. Dexterity of the spherical mechanism.

Fang et al. (2014) introduced the dexterity index of the
mechanism as 1/c, where the index is determined by angle
γ and is not influenced by angle α. A higher value of γ indi-
cates a greater dexterity index. Analyzing this index indicates
that the mechanism performs optimally within a workspace
where γ ≥ 0.7 rad.

According to Fig. 9, it can be observed that the mecha-
nism exhibits better transmission performance when 20°≤
ϕ ≤ 60°. Hence, in the design of this spherical mechanism, it
is recommended to select a structure with a lower condition
number for the Jacobian matrix. Figure 9 provides valuable
visual insights for the design process.

4.4 Force/torque transfer performance analysis

The condition number of the mechanism Jacobian is used
as the analysis index of torque transmission performance, re-
flecting the driving capacity of the spherical mechanism. The
matrix spectral norm is used to calculate the condition num-
ber of the Jacobian matrix.

According to the kinematic principles, this can be ex-
pressed as τ = J ·F , where τ and F are the output and input
force vectors, respectively. The Euclidean norm of the output
force vector, τ , can be expressed as

‖τ‖ =
√
τTτ =

√
F TJTJF . (39)

According to the properties of matrix norms, we have

δmin ‖F‖ ≤ ‖τ‖ ≤ δmax ‖F‖ , (40)

where δmin and δmax are solved using a method similar to that
in Eq. (34) and can be obtained by taking the square root of
the minimum and maximum eigenvalues of matrix J.

The condition number of the Jacobian matrix can be de-
fined as follows:

ε =
δmax

δmin
. (41)

As the value of Eq. (42), ε, is greater than or equal to 1,
for convenience, we describe the local torque transmission

Figure 10. Transfer performance of the spherical mechanism.

performance of the mechanism using the reciprocal of the
condition number η = 1/ε, as shown in Fig. 10. The value of
this parameter varies between 0 and 1, and the structural pa-
rameters of the mechanism are the same as those in Sect. 4.3.

From Fig. 10, we can see that the η parameter changes
relatively smoothly within a certain range and that the
torque transmission performance of the mechanism is good.
However, when the mechanism approaches the edge of
the workspace, the parameter changes significantly and the
torque transmission performance becomes unstable. There-
fore, in the structural design of this spherical mechanism, the
actual needs and the analysis of the workspace and torque
transmission performance of the mechanism should be com-
bined and compared.

4.5 Verification of the kinematic analysis

After inputting two tiny input variables, θ21 and θ61, the
validation of the correctness of Jacobian matrix and for-
ward kinematics was carried out by comparing the numer-
ical solution obtained using Eqs. (32) and (33) with the mea-
surement results obtained using the computer-aided design
(CAD) model. The model is verified using four sets of data
under different conditions as shown in Table 3. It is assumed
that the measured values of the three-dimensional model are
accurate and that the relative error in the Jacobian matrix is
within 3 %.

The correctness of the kinematic and velocity analyses of
the 2-DOF SPM studied in this paper is verified using this
numerical validation method to validate the inverse model of
the mechanism.

5 Kinematic simulation and prototype experiment

5.1 Kinematic simulation based on RecurDyn

The kinematic simulation verification of the 2-DOF SPM
mechanism was conducted using SolidWorks and Recur-
Dyn software. In SolidWorks, the various components of
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Table 3. Verification of the Jacobian matrix.

Institutional Tiny The theoretical The value of The error The
parameters of the input θ21, value of Jacobian ϕ̇, CAD model ϕ̇, absolute value of 1ϕ̇, relative
initial configuration θ61 [°] γ̇ [×10−3° s−1] γ̇ [×10−3° s−1] 1γ̇ [×10−3° s−1] error

θ21 = 14° 0.001 3.4397 3.4417 0.0020 −0.58 %
θ61 = 23° 0.002 −0.3657 −0.3605 0.0052 1.44 %
ϕ = 59.0786° −0.003 0.9701 0.9857 0.0156 −1.58 %
γ =−4.7420° 0.004 −3.6240 −3.6368 0.0128 −0.35 %
θ21 = 31° 0.001 −1.1911 −1.1617 0.0294 2.53 %
θ61 = 12° −0.002 1.5686 1.6108 0.0422 −2.61 %
ϕ = 64.9472° −0.003 1.5643 1.6035 0.0392 −2.44 %
λ= 9.2984° 0.004 −3.5059 −3.5913 0.0854 −2.38 %

Figure 11. Importing to RecurDyn to add constraints and drivers.

the motion simulator were built and assembled into a three-
dimensional model. After simplifying the model, it was im-
ported into the RecurDyn software, where motion pairs and
drivers were added to obtain a virtual prototype model, as
shown in Fig. 11. During the RecurDyn simulation, the fixed
link is kept stationary. Driving 1 is applied at the revolute
joint R1 to drive the motion of other linkages, while driving
2 is applied at the revolute joint R6 to drive the motion of
other linkages. This results in continuous movement of the
end linkage from its initial pose to the final pose, achieving
a single equivalent rotation about an axis on the virtual sym-
metric plane situated along a certain axis.

The mathematical expression for the output motion of the
moving link can be represented as follows:{
R1 = 0.1× cos(t)
R6 = 0.2× cos(t) , (42)

where R1 represents the angular displacement function for
the rotational motion of θ21 and R6 represents the angular
displacement function for the rotational motion of θ61.

Therefore, the simulation results of the 2-DOF SPM mech-
anism were obtained. The input angular displacement–time

Figure 12. Displacement–time curve.

curves for each driving link are shown in Fig. 12, while the
driving force–time curves are depicted in Fig. 13. From the
figures, it can be observed that the required driving curves
for each branch are remarkably smooth, indicating excellent
kinematic performance.

We observed that, when provided with a set of continu-
ously varying driving forces, the motion of the end effec-
tor obtained through simulation remains continuous, with no
sudden changes in torque occurring during the motion pro-
cess. This demonstrates the continuity and stability of the
mechanism’s motion.

5.2 Prototype and experiment

After the kinematic simulation, the kinematic performance
of 2-DOF SPM is further verified. In this section, a proto-
type 2-DOF SPM is built, and its motion capability is verified
by experiments. The four initial configurations with differ-
ent arrangements of the driving links (θ21 < π/2, θ21 > π/2,
θ61 < π/2, and θ61 > π/2) are shown in Fig. 14. After the
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Figure 13. Driving–time curve.

Figure 14. Four initial configurations.

mechanism is rotated at a certain angle, the configuration is
shown in Fig. 15. The prototype experiment results show that
the design and kinematic analysis of the novel 2-DOF SPM
are correct and reasonable.

6 Conclusion

This paper proposes a design principle based on the vir-
tual middle plane constraint method, which integrates the
branch constraint of the mechanism into the middle virtual
constraint plane. On the one side, two spherical 3R branches
symmetrically provide 3 rotational DOFs, while on the other
side, a constraint force located on the middle plane restricts
one rotational DOF, allowing the end effector to achieve 2-
rotational-DOF spherical motion. Specific requirements in-
clude (1) ensuring that the angle between the fixed link and
the end effector remains constant with respect to the middle
plane throughout the motion of the mechanism and symmet-
rically arranged. (2) The joint axes of the 3R branch on the
left intersect at the center of the sphere. (3) The constraint
force provided by the right constraint branch is located on
the middle plane. Based on these principles, a series of sym-
metric SPMs is designed. The SPM can realize continuous
rotation around any line on the middle plane which passes
through the rotation center of the spherical mechanism, and
the rotational axis can be fixed during the rotation process,

Figure 15. Motion of the mechanism.

which means that any form of motion of the mechanism can
be transformed to a rotation with a fixed axis.

The kinematic solutions of the symmetrical SPM based on
the RSR branch are given. The inverse and forward kinematic
mechanisms are determined using screw theory. To obtain the
inverse Jacobian matrix of the 2-DOF SPM, the constraint
equation is differentiated. The workspace of the mechanism
is obtained by considering inverse kinematics and link inter-
ference conditions. We find that when the orientation param-
eters ϕ and γ are closer to the extreme values, the working
space of the mechanism is smaller, and when the orientation
parameters ϕ and γ are set to the middle values, the working
space of the mechanism is larger. The dexterity and force/-
torque transfer performance of the mechanism are analyzed
within a specific range along with the condition number of
the Jacobian matrix. In the design of SPM, it is concluded
that structures with lower condition numbers of Jacobian ma-
trices are preferred, while practical requirements and analyz-
ing the mechanism workspace and torque transmission per-
formance are still considered. Through the combined simu-
lation of SolidWorks and RecurDyn, this study successfully
verified the excellent kinematic performance of the investi-
gated mechanism. The successful verification confirms that
there is no abrupt change in torque during motion, demon-
strating the excellent performance of the research institution
in motion. The correctness and rationality of the kinematic
model are verified by the prototype experiment. These re-
sults provide a useful reference for the structural design of
the mechanism. The 2-DOF SPM holds significant potential
for applications in ankle and shoulder rehabilitation robots.
Its unique characteristics, including its compactness and pre-
cise motion control, make it particularly suitable for these
domains.

In the future, we will continue to carry out research work
on 2-DOF SPMs. This will include research into the statics
and dynamics of such mechanisms, and further research and
development efforts should focus on fully harnessing the po-
tential of this mechanism to advance the field of rehabilita-
tion robots, ultimately benefiting patients in their recovery
processes.
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