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Abstract. This article deals with presenting a new swing-up control approach of a double-inverted pendulum on
a trolley. The dynamic model of the double-inverted pendulum is derived and linearized. Two different lineariza-
tion approaches are used: first, the traditional Taylor’s series approach and, second, using partial linearization.
A state feedback control algorithm has been implemented based on the linearized model from Taylor’s series.
Furthermore, a method for swinging up the pendulum to the inversion position from rest (swing-up) has been
presented. The design and implementation of the swing-up function of the pendulum are implemented using
the partial linearized model. The swing-up control procedure depends on using the feedforward–feedback con-
trollers’ combination to transfer the pendulums from the downward to the upward position. The time-variant
controller gain is used for the sake of the swing-up control procedure. The performances of these algorithms are
shown in this paper through simulations.

1 Introduction

Non-linear, unstable, or underactuated systems are generally
very difficult to control. Therefore, they are considered to be
a challenge and are the subject of many technical reports,
student projects, and academic papers. Their goal is not al-
ways to build a practically useful device but rather to develop
or improve existing control algorithms, either by simulation
or even experimentally to verify their applicability in gen-
eral. The double-inverted pendulum model consists of sev-
eral parts. A cart moves along a linear track, and two pendu-
lums are connected to the carriage and each other by a rota-
tional linkage (Fig. 1). The input to the system is the torque
of a DC motor, which is transmitted by a toothed belt as a
force to the carriage. The system has one challenging equi-
librium position in which the system can be stabilized, the
upper (inverse) (see Fig. 1a–c). Furthermore, three config-
urations of the double-inverted pendulum, which are upper-
lower, lower-upper, and lower, are also considered as equilib-
rium positions. the lower equilibrium is always reached by
the system (with the damping element) in finite time; con-
trol is needed to maintain the upper-lower, lower-upper, and
inverse configurations in real conditions. The stabilization of

the double-inverse pendulum is further understood in this pa-
per as a regulation to maintain its inverse position.

The next task of the control program is to be the so-called
swing-up. This term refers to the realization of such a move-
ment of the carriage that brings the system from the lower
equilibrium position to the inverse position. The situation is
indicated in Fig. 1c. The control requirement is primarily for
the robustness and repeatability of the swing-up. There are
several published articles with different methods addressing
the swing-up problem of a double-inverted pendulum. How-
ever, in the vast majority of cases, these are only simulations
that have not been experimentally verified on a real system.

A mathematical model of this system was derived based on
the Lagrangian mechanics; the dynamic model is discretized,
and then the Laguerre series is implemented in model pre-
dictive control technology to trace the control signal for the
system (Qian et al., 2011). An RNA genetic algorithm with
fuzzy logic is used to control the pendulum system, where
the fuzzy logic controller can improve the performance of
the controller by using the RNA genetic algorithm to find
certain optimal membership functions (Sun et al., 2015).
The technical report compares the linear quadratic regula-
tor, the state-dependent Riccati equation (SDRE), and the
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Figure 1. (a) Lower equilibrium position, (b) swing-up, and (c) up-
per equilibrium position.

use of neural networks (NNs) and concludes that the NNs
have a limited capability to improve the SDRE performance
(Bogdanov et al., 2004). Adaptive sliding-mode control in
combination with a fuzzy neural network is used to control a
double-inverted pendulum. The fuzzy neural network is de-
signed as a system controller, and the adaptive sliding mode
is designed to carry out the disturbance problem (Mon and
Lin, 2014).

In the previous literature, the dynamic model of the
double-inverted pendulum system is linearized around an op-
erating point to design a linear controller. An alternative to
the above dynamic linearization is partial feedback lineariza-
tion – splitting the generalized coordinates into a regular-
ization whose dimensions are given by the number of in-
puts, and variables consider only zero dynamics (Hedrick
and Girard, 2010; Neusser and Valášek, 2013). This path
of linearization is used to design the swing-up function of
the double-inverted pendulum (Hedrick and Girard, 2010). A
more detailed description of the method can be found in the
swing-up control practical example (Neusser and Valášek,
2013). Swing-up control of the double-inverted system was
proposed to separate pendulums and to control each one dis-
tinctly (Henmi et al., 2014). A non-linear model predictive
control is used to build up a control algorithm for swing-
up motion (Jaiwat and Ohtsuka, 2014). A method for con-
trolling the energy of the system with partial linearization is
presented, and passivity-based control is utilized in the work
(Zhong and Rock, 2001). The solution of the boundary value
problem with free parameters is used to generate the control
approach (Graichen et al., 2007)

The motivation of this work was mainly to demonstrate
the theoretical swing-up control procedures on a model of a
double-inverted pendulum. Indeed, there are not many pub-
lications that deal with the application of the proposed algo-
rithms on a real mechanism. The paper focuses on the theo-
retical basis for the following part. It consists of an expla-
nation of the terms used and a search of the studied area

in terms of stabilization and swing-up. It also includes the
derivation of the equations of motion and the presentation of
the existing double-pendulum model. Furthermore, this study
serves to apply a linear quadratic controller and a Kalman
filter and lastly to implement the swing-up function. The
boundary value problem is solved to generate the trajectory
for the swing-up motion of the pendulums. The partial linear
realization method is used to linearize the system dynam-
ically during the swing-up process. Dynamic input–output
decoupling is used to keep the system in a stable position af-
ter the pendulums reach the upper unstable position (Qian et
al., 2011).

The rest of the paper is organized as follows: in the follow-
ing section, the mathematical model is derived; next, the sta-
bilization control is presented; after that, the swing-up proce-
dure is detailed; later, the simulation of the work is addressed,
and the article conclusions are shown in the last section.

2 Mathematical modeling

Figure 2 schematically shows the double-inverted pendulum
model. The meaning of the individual variables is evident
from the figure. The system has 3 degrees of freedom – the
sliding motion of the carriage and the rotational motions of
the two pendulums. A vector of state variables is constructed
as the displacement of the carriage or the rotation of the pen-
dulums and the velocity of the carriage or the angular veloc-
ity of the pendulums:

θ =
[
θ0,θ1,θ2, θ̇0, θ̇1, θ̇2

]T
. (1)

For input u, the problem of obtaining a mathematical model
is a search for an equation of motion of the following form:

θ̇ = f (θ )+g(θu). (2)

Lagrange’s equations of the second kind were used for this
purpose. The mathematical model of the double-inverse pen-
dulum can be expressed as the sum of or difference between
the partial derivatives of the mechanical energies according
to the respective independent variables and their derivatives:

d
dt

(
∂EK

θ̇ .i

)
−
∂EK

θ i
+
∂D

θ i
+
∂EP

θ i
=
∂W e

θ i
=
∂P e

θ̇ i
.
, (3)

where EK and EP are the kinetic and the potential energy.
D denotes the dissipative component, W e denotes the work
of external forces, and P e denotes their power. For individ-
ual bodies, the kinetic, potential, and dissipative energies and
external forces can be expressed (Bogdanov, 2004).

The velocity energies of the centers of gravity of the pen-
dulums can be obtained from the time derivative of their po-
sition vector.

EK0 =
1
2
m0θ̇

2
0 +

1
2
I0ω

2
0 =

1
2
m0θ̇

2
0 +

1
2
I0

R2
0
θ̇2

0 (4)
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Figure 2. Schematic of the double-inverted pendulum model.

EK1 =
1
2
m1

[(
θ̇0+ l1θ̇1 cosθ1

)2
+
(
l1θ̇1 sinθ1

)2]
+

1
2
l1θ̇

2
1 (5)

EK2 =
1
2
m2

[(
θ̇0+L1θ̇1 cosθ1+ l2θ̇2 cosθ2

)2
+
(
L1θ̇1 sinθ1+ l2θ̇2 sinθ2

)2]
+

1
2
I2θ̇

2
2 (6)

Potential energy is as follows:

EP0 = 0,EP1 =m1gl1 cosθ1,EP2

=m2g (L1 cosθ1+ l2 cosθ2) . (7)

The dissipative component is as follows:

D0 =
1
2
b0θ̇

2
0 ,D1 =

1
2
b1θ̇

2
1 +

1
2
b2
(
θ̇2− θ̇1

)2
,

D2 =
1
2
b2
(
θ̇2− θ̇1

)2
. (8)

In Eqs. (4)–(8), the θj represents the motion variable; mj is
the mass; bj is the viscous friction constant; and j = 0,1,2
stands for cart and first and second pendulum, respectively.
I0 is the inertia of the pulley, and l1,2 are the lengths of the
pendulums.

The only input to the system is the moment µ on the mo-
tor shaft. However, for better understanding, the equations
were derived for the force on the carriage F . There is a sim-
ple relationship of direct proportionality between these two
quantities:

µ= FR0, (9)

where R0 is the radius of the pulley. Then the external force
output is given by

P e = F θ̇0. (10)

Substituting the above equations into Eq. (2) gives the re-
sulting equation of motion, which can be written in standard
matrix form:

M (q) q̈ +B (q, q̇) q̇ +K (q)=H u , (11)

where the vector q = [θ0,θ1,θ2]; the introduction of matrices
is not listed here for the sake of abbreviation. The equation
of motion in the form of Eq. (5) can be expressed as follows:

θ̇ =

[
0 I
0 −M−1B

]
θ +

[
0

−M−1K

]
+

[
0

M−1H

]
u, (12)

where 0 represents the zero matrix, and I represents the unit
matrix of the corresponding dimensions.

To design a linear controller, the non-linear equation of
motion must first be linearized. It is common to approxi-
mate around the nominal operating point (θn, un) by the first
terms of the Taylor series (Franklin et al., 2002). The result-
ing equation of motion represented by appropriate state vec-
tor and state space matrices is as follow:

1θ̇ (t)= A1θ (t)+B1u (t) . (13)

3 Stabilization control of the system

In this section, attention is paid to the possibilities of stabi-
lizing the double-inverted pendulum. The LQR and feedback
linearization as the theoretical basis for the following system
of the swing-up search have achieved detailed description.

3.1 Linear quadratic regulator (LQR)

The objective of this method is to design the optimal control
of a linear system given the magnitude of the active interven-
tion u and the deviation of the states x from the zero (de-
sired) value in time. Practically, the objective is to minimize
the cost function J , which is given by

J =

T∫
0

(
xT (t)Qcx (t)+ uT (t)Rcu (t)

)
dt. (14)

For the state feedback law, we have the following:

u (t)=−Kcx (t) . (15)

For discrete systems, the integral in Eq. (6) is replaced by
the summation. The matrices Qc and Rc correspond to the
weights of the states and inputs, respectively (Franklin et al.,
2002).Kc is the control matrix that can be subsequently used
for stabilization and is given by the solution of the associated
Riccati equation. LQR is a widely used method, and there
is a wealth of documentation on it. Implementation-wise,
the simplest modification of LQR for non-linear systems is
the state-dependent Riccati equation (SDRE). The principle
of the method is to linearize the model around the current
state for each time instant and then compute the optimal con-
trol matrix. However, this method places greater demands on
computational power.
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3.2 Feedback linearization (FBL)

In contrast to the usual linear function approximation, the
method used does not neglect the non-linear terms and works
even outside the vicinity of the working point. There are two
principles utilized in combination in this work’s input state
and input–output linearization.

The necessary algebraic operations are generally not triv-
ial. For the sake of scope, the system is restricted to the single
input, single output (SISO) described by the following:

ẋ =


ẋ1
. . .

ẋn−1
ẋn

=


x2
. . .

xn
f (x)+ g (x)u

 . (16)

The input state linearization consists of finding a suitable
transformation of the states T and input u such that

z= T (x) ,u= u (x,v) . (17)

The role of regulation is transferred to system control:

ż= Acx+Bcv. (18)

The linearization conditions, detailed description, and exam-
ples are exhaustively explained in Hedrick and Girard (2010)
and Graichen et al. (2007).

We assume that the outputs of the considered system y are
given by the following function:

y = h (x) . (19)

The principle of the input–output linearization is to find the
direct dependence of the outputs on the input by successively
deriving the function hwith regard to time until the following
dependence appears:

y(1)
=
∂h

∂x

dx
dt
=
∂h

∂x

[
f (x)+ g (x)u

]
= Lf (h)

+Lg (h)u,y(2)
= L2

f (h)+Lg (Lf (h))u, (20)

and so on until, for the kth derivative, the input term is non-
zero (Aguiar, 2011). The prescription of the new input u is
given by

u=
1

Lg

(
Lk−1

f (h)
) (−Lkf (h)+ v

)
, (21)

where v is equal to y(k). The transformed systems prescribed
by Eqs. (22, 23) are already completely linear – they can
therefore be controlled by the linear method (LQR, array
placement).

ż=


y(1)

. . .

y(k−1)

y(k)

= Acz+Bcv (22)

Figure 3. Block diagram of regulation with input–output feedback
linearization.

Ac =



0 1 0
. . . 0

0 0 1 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0
. . . 0 1

0 0
. . . 0 0


,Bc =


0
0
. . .

0
1

 ,

v =−Kcz (23)

A schematic of the closed-loop control is shown in Fig. 3. For
systems with n inputs andm outputs (MIMO), where n=m,
the procedure is more complicated (we refer to static input–
output decoupling), but the basic principles remain the same
(Hedrick and Girard, 2010; Henson and Seborg, 1997) and
lead to time-invariant feedback control.

Also, A Kalman filter, which is a very useful tool that ex-
tracts the best possible estimate of all the states of the sys-
tem (even if not all of them are measured) from imperfect
knowledge of the model and inaccurate measurements (Nise,
2020), is used in this work. This is a stochastic observer –
it assumes that the quantities are random with a Gaussian
distribution and works with their mean and variance (uncer-
tainty). Tuning of the algorithm consists of an appropriate
choice of the matrices Qo and Ro, which introduce the co-
variance of process and measurement noise into the calcula-
tion. At each stage, the state estimation and covariance ma-
trix Po are adjusted, which carries information about the un-
certainty of the states and their correlation with each other.

4 Swing-up control

The key to planning a swing-up is finding a suitable trajec-
tory for the carriage and pendulums so that the positions and
velocities of the carriage and pendulums are zero when the
swing-up is complete. However, whatever the method of ob-
taining the swing-up trajectory (or the necessary input for
swing-up), in terms of structure, it is possible to divide the
control into forward or backward. Feedforward control can
only be used if the behavior of the double-inverted pendu-
lum is well known. A previously calculated input is applied
to the system, and a certain output is expected. However,
the double-inverse pendulum is extremely sensitive to initial
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Figure 4. Block diagram of feedforward and feedback control for
swing-up.

conditions. Even a small deviation from the calculated tra-
jectory can cause a failed swing-up. A possible solution is to
add feedback control. If we denote by uf the input given by
as the forward control and that given by ub as the backward
control, then the resultant is given by their sum (Fig. 4).

4.1 Boundary value problem (BVP) with free parameters

Finding a trajectory for the swing-up function is a case of
the boundary value problem. The equation of motion (1) is
a system of ordinary differential equations (ODEs), and the
boundary conditions are as follows:

θ0 (t = 0)= [0,π,π,0,0,0]T ,θT (t = T )

= [0,0,0,0,0,0]T , (24)

where t is the time, and T is the duration of the swing. For
the 6 equations and 12 conditions, the associated boundary
value problem is overdetermined. In order to solve it, Qian
et al. (2011) propose defining the cart trajectory Y (t) by the
cosine series (13) and thus adding the necessary number of
free p =

[
p1 p2 p3 p4

]
to the equation of motion.

Y (t,p)= a0+ a1 cos
(
πt

T

)
+

5∑
i=2

pi−1 cos
(
iπt

T

)
(25)

The terms a0 =−(p1+p3) and a1 =−(p2+p4) are obtained
by setting Y (0,p)= Y (T ,p)= 0, which appears by deriving
Eq. (13) by time. The boundary value problem can be solved
by a suitable numerical method. If the deviation of the actual
state values from the nominal trajectory θ∗ and input u∗ is
sufficiently small, the system can be described by a linear
time-dependent state equation (Zhong and Rock, 2001):

1θ̇ (t)= A (t)1θ (t)+B (t)1u (t) , (26)

where the matrices A and B are given by the linearization
of Eq. (12) (see “Feedback linearization” section) along the
nominal trajectory and input. And for such a system, we de-
sign a linear controller at each time instant:

1u (t)=−Kc (t)1θ (t)=−Kc (t)
(
θ (t)− θ∗ (t)

)
, (27)

where the control matrix K is computed forward. Its calcu-
lation therefore does not burden the processor on which the

swing-up and subsequent stabilization program runs. The re-
sulting forward and backward control actions are given by
the following:

u (t)= ua (t)+Kc (t)
(
θ∗ (t)− θ (t)

)
. (28)

4.2 Partial linearization and feedforward

By studying the natural motion of a system (without control),
some useful knowledge can be gained. In order to calculate
a suitable elevation trajectory, the natural frequencies of the
system must be found. This is based on the findings of the
feedback linearization (FBL).

For the sake of partial linearization, the generalized coor-
dinates of the double-inverse pendulum and the variable vec-
tor q are divided into two parts; qx denotes the controlled
part (the carriage), and qθ denotes the rest with zero dy-
namics (the pendulum). With the proposed decomposition,
Eq. (5) is decomposed into the following:

Mxx q̈x +Mxθ q̈θ +Bxx q̇x+Bxθ q̇θ = u, (29)

Mθx q̈x +Mθθ q̈θ +Bθθ q̇θ +Kθ = 0, (30)

and the matrices M , B, and K become

M (q)=
[

Mxx (1,1) Mxθ (1,2)
Mθx (2,1) Mθθ (2,2)

]
,B (q, q̇)

=

[
Bxx (1,1) Bxθ (1,2)

0 (2,1) Bθθ (2,2)

]
,K (q, q̇)

=

[
0

Kθ (2,1)

]
,

where 0 represents the zero vector, and the numbers in paren-
theses indicate the dimension of the matrix – so, for example,
Mxθ = [d2 cosθ1 d3 cosθ2]. From Eq. (30), q̈θ is expressed
and substituted into Eq. (29). If the output of the system is
y = qx, then the feedback linearization of the obtained equa-
tion gives the following:

ÿ = q̈x = v, (31)

u= Bxx q̇x + (Bxθ +WBθθ ) q̇θ +WKθ

+ (WMθx +Mxx)v, (32)

where, to simplify the notation, W=−MxθM−1
θθ .

The principle further consists of finding an input v for
which the boundary conditions in Eq. (24) hold. In general,
it is given by the sum of two parts. The first makes the cart
move a certain distance from the initial state at time T . How-
ever, since the end position of the cart is supposed to be
identical to the initial position, i.e., θ0 (0)= θ0 (T )= 0, the
mentioned component will be zero for this case. The sec-
ond component does not change the final position of the cart,
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Figure 5. Simulation procedure in MATLAB and Simulink.

but due to the entanglement via zero dynamics, it will cause
the pendulums to swing. It is proposed in the following form
(Hedrick and Girard, 2010):

v =
∑
i

Ai sin(2πfi t +ϕi) . (33)

The amplitudes Ai are relative to the change in the potential
energy of the system:

1Ep =m1l1g+m2 (L1+ l2)g. (34)

However, the exact numbers, as well as the phase shifts ϕi ,
are the result of an optimization process to obtain boundary
conditions for the qθ coordinates as well. If there are natural
numbers K i , then the following holds (Neusser and Valášek,
2013):

2πf iT = 2πK i . (35)

5 Simulations

The calculations of the linearized model and the gains of the
controller and observer are shown in Fig. 5. In order to avoid
the errors as much as possible, after deriving Eq. (5), all fur-
ther modifications were performed using the Symbolic Math
Toolbox in MATLAB. In this way, the equation of motion
(12) and its linearized form in the form of state space matri-
cesA and B were obtained. These are complex relations with
a considerable number of terms. The system was further sim-
ulated in Simulink environment with an ode4 (Runge–Kutta)
solver with a constant time step of 0.001 s. The verification
of the equation of motion (12) was successful. It faithfully
describes the model under consideration. This is one of the
basic prerequisites for the design of a successful control al-
gorithm. The parameters used in the simulation are shown in
Table 1.

5.1 Stabilization control simulation

In Sect. 3.1 in this article, the method of obtaining the
linear equations of the system described by the matri-
ces A and B was explained. The optimal control mul-
tipliers K were calculated based on the model and the
given weight matrices Qc and Rc. An extended Kalman
filter was used as an observer to perform the correction

Figure 6. Stabilization control of the system using LQR controller.

based on the measurement of the carriage position and
the pendulum rotation. The Qc and Rc for the LQR con-
troller and QKal and RKal for the Kalman filter are chosen
as follows: Qc = diag[ 10 350 350 0 0 0 ], Rc =

1 , QKal = diag[ 0.1 0.03 0.03 0.15 0.4 0.4 ], and
RKal = diag[ 0.3 0.7 0.7 ]. Sensor noise was simulated
at this stage by random numbers with a Gaussian distribu-
tion around zero mean. Nevertheless, the stabilization task
was very easy compared to the subsequent tuning on the real
system. The main objective of the simulation was to verify
the correctness of the programming and the functionality of
the algorithm. Figure 6 shows the stabilization waveform for
initial conditions θ0 = 0.2 m, θ1 = 10◦, and θ2 =−10◦. The
desired carriage position is indicated in red in the figure. This
is because the positioning of the carriage is relatively easy to
achieve since the stability of the system does not depend on
θ0 as the only one of the states. The control law was given
as u (t)=Nr (t)−Kx(t); r (t) is the desired cart position,
N =−B−1(A−BK)CT , and for this caseC = [0.100 000].

5.2 Swing-up control simulation

In this section, the simulation results of swing-up trajecto-
ries and the subsequent application of forward and reverse
control are addressed. The MATLAB numerical solver bvp4c
was used to find suitable swing-up trajectories according to
the method described in Sect. 4.1. For the double-pendulum
model, where the input is the acceleration of the trolley,
boundary conditions (24) were considered, except for defin-
ing the end position of the cart and its velocity, for which
the boundary value is guaranteed by choosing the input as
a cosine series (13). A time-dependent linear controller was
designed along the nominal swing-up trajectory (with a time
step of 10 ms and subsequent linear interpolation between the
calculated points). It turned out that, over a certain time in-
terval, the control multiples undergo abrupt changes in mag-
nitude and sign. Since the linear controller was derived from
a double-pendulum model where the input is directly the ac-
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Table 1. Parameters values used in the simulation.

l1 [m] 0.13 I1 [kgm2] 1.186× 10−3 b1 [m.N.s rad−1] 0.155 m1 [kg] 0.1345
l2 [m] 0.12 I2 [kgm2] 0.469× 10−3 b2 [m.N.s rad−1] 0.106 m2[kg] 0.0715
L1 [m] 0.23 m0 [kg] 1.3

Figure 7. Feedforward and LQR feedback swing-up and stabiliza-
tion.

celeration of the carriage, its proposed intervention also has
an acceleration dimension. Therefore, it has to be converted
to a force based on the current states according to Eq. (32). In
view of this and the fact that the system is often at the limit
of drivability or loses it completely at these moments, it was
decided to take the reverse steering out of action for a while.

In Fig. 7, the swing-up state behavior is shown. It is clear
that the control approach successfully followed the derived
trajectory and moved the system from the downward to up-
ward position in a short amount of time. All the states of
the system are stable and follow the desired values. The ac-
tual and the estimated states of the system converge per-
fectly, which proves the effectiveness of the dynamic input–
output decoupling approach. The abrupt disengagement and
engagement of the reverse control caused a disproportion-
ately large impulse response with the eventual consequence
of loss of stability and a failed swing-up. Therefore, around
the critical interval, the multiples Kc are linearly decreased
or increased, as presented in Fig. 8. For the simulation, it is
useful to set the duration of the linear region to 0.1 s. If the
pendulum rotation approaches the inverse position during the
swing-up, it is switched to LQG stabilization.

Trajectories with a duration of 1.85 s were selected for
simulation purposes. The progress of such a swing-up is il-
lustrated by the video sequence at the following link: https:
//youtu.be/zr0fzmVc9Ao (last access: 18 January 2024). In
Fig. 9, the process of swing-up control is illustrated by fol-
lowing the pendulums during the motion. The animation
shows that the swing-up process effectively finished based
on the designed controller.

Figure 8. Controller gain for swing-up control action.

Figure 9. Simplified graphic display of the swing-up process.

6 Conclusions

A model of the double-inverted pendulum was obtained, in-
cluding the assumption of all necessary parameters. Also,
thanks to this, a robust and long-lasting stabilization of both
pendulums in the inverted position was implemented. This
is implemented by the LQR method. The system states are
estimated by a non-linear extended Kalman filter.

By solving the boundary value problem with the numerical
proper solver, nominal trajectories for the swing-up function
have been obtained. The required cart acceleration was im-
plemented by a controller with 2 degrees of freedom – a for-
ward PID control of the cart speed and a feedback LQR con-
troller, whose controller gains were calculated off-line along
the nominal trajectories and input. Fortunately, the planned
swing-up was achieved despite the chaotic behavior of the
real system. The algorithm proved its worth in simulation; a
complete swing-up was still realized several times.
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