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Abstract. Suspension faults have a detrimental impact on the safety and handling stability of a vehicle. There-
fore, monitoring the condition of suspension systems is significant to ensuring the safe operation of modern
vehicles. This paper proposes an online monitoring scheme that utilizes binocular vision and kinematic decou-
pling, to fulfill real-time monitoring requirements for suspensions. To implement the proposed method, a system
consisting of a binocular camera and an inertial measurement unit (IMU) is established for acquiring vibration
signals from the vehicle body. Additionally, the vibration signals are analyzed with stochastic subspace identifi-
cation (SSI) method to determine the modal parameters of suspensions. By analyzing the changes in suspension
modal parameters, the types and degrees of faults in the suspension system were identified and evaluated. The
experimental results show that the proposed method can effectively extract the vertical vibration signals of a
vehicle. Moreover, the fault identification method based on modal parameters can identify the changes in vehicle
modal parameters with high reliability under different spring stiffness, damper damping and tire pressure con-
ditions. The proposed method is proven to be effective in identifying suspension faults, paving a way for online
condition monitoring and fault diagnosis of vehicle suspensions.

1 Introduction

Over the years, automobiles have become an essential part
of our lives (Abubakar et al., 2021). With the rapid devel-
opment of the automobile industry, the safety, reliability and
comfort of automobiles have been given much importance
(Luo et al., 2019). As one of the most critical load bearing
components of vehicles, automotive suspension plays a sig-
nificant role in ensuring the vehicle’s safety, smoothness and
handling stability (Jeong et al., 2020). However, the long-
term operation of a vehicle will probably lead to different
faults in suspension components. Eventually, the suspension
will not perform properly. The potential faults would cause
enormous human casualties and economic losses (Alcantara
et al., 2016). Therefore, it is necessary to monitor the sus-
pension system for early faults, which could prevent further
damage.

In the past decade, condition monitoring and fault diagno-
sis methods for suspension systems have become a signifi-
cant research subject (Sai et al., 2023). Under tough driving
conditions, the internal components of the suspension would
break down. Some typical component faults include spring
faults, damper faults, and tire pressure faults. Based on differ-
ent detection techniques and analysis methods, researchers
have conducted several studies on the three types of typical
suspension system faults mentioned above. For spring faults,
Wang and Yin (2014) proposed a clustering-based method.
Accelerator sensors are installed at the four corners of the
vehicle body to acquire acceleration data. The Fisher dis-
criminant analysis is then applied to detect the suspension
spring faults. Simulation and experiment results proved that
the clustering-based method was efficient in detecting and
isolating spring faults of different degrees. Wei et al. (2012)
applied the Kalman filter to spring faults in a railroad vehi-
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cle, and the measurement signals were also collected by ac-
celerator sensors placed on the four corners of a vehicle. The
research results indicated that suspension spring failures can
be detected based on residuals. In addition, Li et al. (2018, b)
introduced fault indicators (FIs) into the diagnosis of bol-
ster spring failures in heavy-haul wagons. Vibration data are
acquired by the accelerator sensors installed on the left front
and right rear of the train. Their findings show that the FIs are
capable of detecting faults in the support springs with high
sensitivity. For damper faults, Białkowski and Krężel (2017)
evaluated the effect of fast Fourier transform (FFT) and
cross-spectrum on damper damping loss through vibration
signals acquired by accelerator pedal sensors. The findings
confirmed that cross-spectrum analysis is better for damper
fault identification. Dumitriu (2019) proposed a method for
fault detection in dampers in railway vehicle suspension
based on cross-correlation analysis of bogie accelerations.
Numerical simulations and experimental results show that
the fault in a damper can be detected by the decrease in
the cross-correlation coefficient of the bogie accelerations.
Hamed et al. (2020) studied the performance of frequency re-
sponse functions (FRFs) to monitor damper damping faults.
The monitoring reliability of FRFs has been demonstrated.
Sorribes-Palmer et al. (2020) proposed a method for fault de-
tection and isolation of bogie suspension components based
on on-board acoustic sensors. The results show that suspen-
sion fault classification can be performed using the normal-
ized Gini coefficient. For tire pressure faults, two detection
methods exist: the direct method and the indirect method.
The direct method uses pressure sensors (Velupillai and Gu-
venc, 2007; Zhang et al., 2009, and Wei et al., 2021) mounted
on the rim of each tire to measure tire pressure directly. This
method can accurately measure the inflation pressure of each
tire, but it is cumbersome and costly to maintain. The indi-
rect method reflects the tire pressure conditions by measur-
ing and analyzing variables such as wheel vibration acceler-
ation (Pardeshi et al., 2022; Jatakar et al., 2023), tire stiffness
(Carlson and Gerdes, 2005; Han et al., 2008), effective radius
(Mayer, 1994) and resonance frequency (Zhao et al., 2023).
This method offers the advantages of a simple structure and
low cost.

From the above studies in the literature, it can be seen that
most of the research that has been carried out uses vibration
sensors to monitor the condition of specific suspension com-
ponents and identify faults. Vibration-sensor-based methods
have been proven to be highly effective in identifying and
monitoring suspension faults. However, installing special-
ized sensors for data acquisition would destroy the original
structure and make the wiring complicated. It increases the
cost of fault diagnosis. Furthermore, the measured vibration
data are susceptible to interference from component vibra-
tion and complex transmission paths. In recent years, with
the development of low-cost high-quality imaging equip-
ment and significant advances in computer vision (CV) tech-
nology, vision-based vibration measurement techniques have

been receiving increasing attention (Dong and Catbas, 2021).
Vision-based vibration measurement technology is charac-
terized by non-contact full-field measurement and visual
analysis. It is currently most widely applied in the field of
civil engineering structures (Hu et al., 2023; Liu et al., 2023;
Jalendra et al., 2023; Tan et al., 2023; Shao et al., 2023, and
Bai et al., 2023). In the field of mechanical structure vibra-
tion measurement, Tang et al. (2016) first employed machine
vision technology in the measurement of disk vibration dis-
placement. This method has been proven to be featured with
easy operation, simple instruments, low cost and high accu-
racy and can effectively detect the disk vibration signals. A
single high-speed-camera pseudo-stereo system with a four-
mirror adapter was studied by Durand-Texte et al. (2019).
The system is used to measure sub-millimeter displacements
of a flat plate. The measurement results were compared with
those obtained using an accelerometer and a laser vibrome-
ter method. The results indicated that this method can detect
plate displacements with a less measurement error. Spytek et
al. (2023) measured the vibration of an air compressor using
a novel method based on visual data. The mean frequency
map was confirmed to perform excellently in structural vi-
bration measurements. Yang et al. (2020) investigated a com-
puter vision method for modal analysis. The research results
indicate that the method is more efficient, autonomous and
accurate. The research mentioned above has shown that ac-
curate measurement of vibration can be achieved based on
vision. However, most of the present vision-based vibration
measurement technologies are applied to monitor the occur-
rence of events outside the camera carrier. Meanwhile, the
camera and the measured object maintain a non-contact rela-
tionship. However, in the field of contact measurements, and
especially in the area of vibration measurements of the cam-
era carrier itself, few studies have been carried out.

Due to the complex characteristics of vehicle kinematics,
there are currently no on-board camera-based vision mea-
surement techniques for measuring a vehicle’s own posture
and vibration. If the posture and vibration of a vehicle can
be detected by an on-board binocular camera, it is possi-
ble to realize a real-time condition monitoring and fault di-
agnosis technique for vehicle suspension systems. However,
there are two technical difficulties with the above technique.
Firstly, both translational and rotational motions happen as
the camera moves with a vehicle. It is not feasible to dis-
tinguish between these two motion types solely by image
analysis techniques. It is necessary to decouple the camera
carrier’s motion so that its translational and rotational mo-
tions can be solved. Secondly, the acquired raw data are nor-
mally quite large, complex and disorganized. How to accu-
rately and efficiently extract the suspension fault information
from the data is a challenge which needs to be addressed ur-
gently. Therefore, a data processing algorithm with excellent
real-time performance and high reliability is required.

Currently, there are two main types of widely used sus-
pension fault diagnosis algorithms: data-driven methods and
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model-based methods. Data-driven methods can achieve rep-
resentation learning from historical sensory data without
expert knowledge. They have the ability to perform sys-
tem fault diagnosis based solely on response data (Luo et
al., 2018). In addition to the traditional algorithms, the prin-
cipal component analysis (PCA) (Gertler and Cao, 2004;
Choqueuse et al., 2012) and partial least-squares (PLS) re-
gression (Muradore and Fiorini, 2012), a number of novel
methods have been employed in fault diagnosis of different
systems. Arun Balaji and Sugumaran (2021) proposed an ap-
proach based on a Bayes classifier, and two Bayes classifiers
(naive Bayes and Bayesian network classifiers) were investi-
gated for their performance in classifying automotive suspen-
sion faults. The results show that the Bayesian network clas-
sifier has the highest classification accuracy and can effec-
tively identify faulty suspension states. Luo et al. (2018) and
Huet al. (2021) investigated the application of the long short-
term memory (LSTM) network method in the fault identifica-
tion of automotive suspension components. It is proven that
the LSTM method is highly accurate and exhibits better fault
diagnosis performance. Yang et al. (2023) proposed a method
to improve fault diagnosis accuracy by injecting noise. It was
demonstrated that the injection of noise can improve the fault
diagnosis accuracy. The strengths of the data-driven meth-
ods are obvious. However, the detection data on which the
method relies are susceptible to interference from noise and
various other factors, which would lead to biased results.
Because of the complex operating conditions of vehicles,
diverse roadway excitations and strong noise, data-driven
methods are not suitable for fault diagnosis of vehicle sus-
pensions. In contrast to data-driven methods, model-based
methods rely heavily on the fundamental physical knowledge
of dynamic processes. These methods can dive deeper into
the nature of the dynamical systems to explain the root causes
of faults as well as have better robustness and generalization
capabilities (Li et al., 2020). In recent years, the stochastic
subspace identification (SSI) method has been receiving in-
creasing attention in the field of suspension fault diagnosis.
It has the advantages of high immunity to interference, high
accuracy, as well as the ability to perform modal identifica-
tion based solely on response data. An average correlation
signal-based SSI (ACS-SSI) method was presented by Chen
et al. (2015a, b) in order to identify the dynamic character-
istics of the chassis frame in a heavy truck. The results in-
dicated that ACS-SSI performed excellently in identifying
modal parameters of the system undergoing testing. Simi-
larly, Liu et al. (2018) also employed the ACS-SSI method
to identify dump truck suspension faults. Numerical simula-
tions and real-vehicle tests demonstrate that it is practical to
identify suspension faults through the changes in the modal
energy difference (MED). In addition, Liu et al. (2019, 2020)
proposed a correlation signal subset-based stochastic sub-
space identification to identify railway vehicle suspension
faults. It proved that spring stiffness faults in suspension sys-

tems can be accurately identified based on the change in the
pitch mode.

To address the described technical difficulties, this paper
proposes a vibration measurement method based on binocu-
lar vision and camera carrier kinematic decoupling. The ac-
quired vibration data were analyzed with the ACS-SSI al-
gorithm. It effectively achieves the identification and moni-
toring of typical suspension faults. Firstly, a binocular cam-
era is installed on the top of the vehicle body to collect the
changes in reference markers in the image sequence during
operation. Concurrently, the posture response of a vehicle
caused by random road excitation is recorded. The body an-
gle changes are captured using an inertial measurement unit
(IMU). Based on these two measurement signals, decoupling
calculations are performed to obtain the vertical vibration in-
formation on the vehicle body. Moreover, the vehicle sus-
pension’s modal features are identified and analyzed based
on the ACS-SSI method. The effects of different suspension
fault types on the vehicle’s modal parameters are obtained.
Eventually, the feasibility of the proposed method is verified
by real-vehicle road tests.

The rest of this paper is organized as follows. Section 2
describes the technical path of this paper and elaborates the
research methodology of this paper, including the principle
of binocular vision and the kinematic decoupling algorithm.
The results of the modal simulation analysis are presented in
Sect. 3. The real-vehicle tests are conducted in Sect. 4, and
the conclusions are presented in Sect. 5.

2 Background and methodology

As illustrated in Fig. 1, when the vehicle is driving normally
on a straight road (at moment t1), computer vision and im-
age processing techniques enable the binocular camera in-
stalled on the top of the body to recognize the 3D coordi-
nates of the feature point on the reference object. This allows
for the inference of the body posture based on the correspon-
dence between the binocular camera and the 3D coordinates
of the feature point, thus obtaining the spatial posture infor-
mation of the vehicle body. When the vehicle is affected by
road unevenness (e.g., passing a speed bump), the posture
of the vehicle generates both a bounce and a pitch response
with respect to the absolute coordinate system. For instance,
compared with moment t1, as the front wheels of the vehicle
pass over the speed bump (at moment t2), the feature point
on the reference object produces a deflection of angle θ1 in
the camera field of view. Similarly, when the rear wheels of
the vehicle cross the speed bump (at moment t3), a deflec-
tion angle θ2 is also generated in the camera field of view. It
should be noted that it is difficult to distinguish between the
type of body motions using only a binocular camera since
the offset of feature points may be caused by pitch, bounce,
or a combination of the two. For this reason, a device capable
of measuring the body pitch angle, the inertial measurement
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Figure 1. Vehicle motion generated by road excitation.

unit (IMU), was added to the measurement system. By kine-
matic decoupling of the posture information and measuring
the pitch angle, the vertical vibration information of the body
can finally be acquired.

The modal parameters of the vehicle system can be identi-
fied by the ACS-SSI method from the acquired vertical vibra-
tion signals. When a suspension component fails to function,
its corresponding modal parameters will change to certain
degree (Chen et al., 2015a, b). Therefore, by establishing a
mapping between faults and modal parameter variations, the
identification of the type and degree of suspension faults can
be realized (Liu et al., 2018).

Figure 2 illustrates the process of fault identification for
the vehicle suspension system. The data acquisition equip-
ment used in the tests consisted of a binocular camera and
an IMU, both of which operated synchronously during the
tests. Initially, image feature recognition methods are ap-
plied to the image sequence of reference markers acquired
by the binocular camera. Concurrently, the IMU is synchro-
nized with the binocular camera to determine the body pitch
angle. Subsequently, the two types of data are decoupled to
obtain the vertical vibration information of the practical vehi-
cle. In order to ensure the effectiveness of the algorithm, the
body vibration information obtained from real-vehicle tests
and simulations is analyzed. Finally, by adopting SSI to iden-
tify the modal parameters of the practical body vibration re-
sponse, the characteristic information of the whole vehicle
dynamics model can be obtained. Moreover, the fault identi-
fication of the vehicle suspension system is realized by com-
paring the changes in modal parameters under the influence
of different faults.

Figure 2. Flowchart of suspension system fault identification.

2.1 Binocular vision system model

The binocular vision system usually consists of two cameras
of the same specification, the same focal length, the same
aperture and the same sensor area of the camera (Sun et
al., 2019). Ideally, the left and right cameras are parallel to
each other and remain in the same plane; the imaging model
is shown in Fig. 3. In the figure, the distance between the two
cameras is B. Feature point P (Xw,Yw,Zw) in the imaging
images of the left and right cameras are Pleft = (Xleft,Yleft)
and Pright =

(
Xright,Yright

)
. Since the images of the two cam-

eras are on the same plane, the coordinate Y of the feature
point P in the image coordinate system must be the same
– that is, Yleft = Yright = Y . According to the triangular ge-
ometric relationship, the following relationship can be ob-
tained:
Xleft = f Xw

Zw
,

Xright = f
(Xw−B)
Zw

,

Yleft = Yright = f
Yw
Zw
.

(1)

In Eq. (1), f is the camera focal length and parallax d =
Xleft−Xright. From this, it is clear that the 3D coordinates
of the feature point P (Xw,Yw,Zw) in the world coordinate
system can be calculated as follows:
Xw =

B·Xleft
d

,

Yw =
B·Yleft
d
,

Zw =
B·f
d
.

(2)

From Eqs. (1) and (2), after obtaining the internal parame-
ters of the binocular camera, baseline distanceB and parallax
d , the 3D coordinates of space point P can be calculated in-
dividually. However, it should be noted that if the position
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Figure 3. Binocular vision system model.

and posture of the camera change, the corresponding imag-
ing plane will also undergo a projection transformation with
the camera optical axis. Meanwhile, the 3D coordinates of
the space point will change in this projection plane.

2.2 Principle of vehicle vibration measurement

2.2.1 Image feature point extraction

With the binocular vision technique, image feature informa-
tion can be effectively extracted. Figure 4 illustrates the pro-
cess of image feature point extraction. Initially, the internal
and external parameters as well as the distortion coefficients
of the binocular camera are used for stereo correction and
stereo matching of the images. The process continues by
splitting video frames to generate sequence images and ap-
plying binocular stereo matching algorithm to obtain a par-
allax map. Consequently, the 3D coordinates information of
each pixel point of images can be obtained. Additionally, the
left camera undergoes image morphology processing to cal-
culate the pixel-connected domain in the image. By calculat-
ing the image connectivity domain properties, it can obtain
the pixel coordinates of the reference markers. Eventually,
the 3D coordinate information on the reference markers is
obtained by searching the parallax map at the corresponding
pixel coordinates.

As depicted in Fig. 5, the image identification process
consists of two identification frames: the main identification
frame (Frame 1) and the sub-identification frame (Frame 2).
Frame 1 is used to identify the 3D coordinates of the current
marker feature points, while Frame 2 is used as a prepara-
tory frame to identify the marker simultaneously. However,
Frame 2 does not extract the 3D coordinates of the marker.
Only if the marker in Frame 1 is about to leave the field of
view does Frame 2 start to play the role of Frame 1. The iden-
tification process repeats until the last marker leaves the field
of view.

Figure 4. Flowchart of image feature point extraction.

2.2.2 Kinematic decoupling method

Taking a rectangular cross-section speed bump as an exam-
ple, the dynamic response of the vehicle and the change in
camera field of view, which are caused by low-frequency
longwave road unevenness excitation, are analyzed. To fig-
ure out the vibration response of the vehicle during operation,
two specific cases were designed. The two cases are shown
vividly in Fig. 6. In the first case, when the front wheels of
the vehicle are fully lifted, the body will undergo a coupled
motion consisting of the translation of the front wheels and
rotation around the rear wheels. Due to the camera being
firmly connected to the vehicle body, this coupled motion
is also contained in the movement of the camera. Similarly,
in the second case, when the rear wheels of the vehicle are
fully lifted, the camera contains a coupled motion consisting
of the translation of the rear wheels and rotation around the
front wheels during the operation. Therefore, the body vibra-
tion and camera motion caused by the low-frequency long-
wave unevenness excitation are consistently coupled with the
bounce and pitch responses.

With this in mind, the vehicle can be simplified to a rigid
body model, as shown in Fig. 7, when the front wheels are
lifted, whereOF

1 is the center of the front wheels at the initial
state of the vehicle and OF

2 is the center of the front wheels
as they are fully moving above the speed bump. Before the
front wheels touch the speed bump, according to the binocu-
lar measurement principle, the vertical distance (normal pro-
jection distance) between the reference mark and the camera
optical axis is Y F

w1. In addition, when the front wheels are
above the speed bump, the reference mark moves below the
camera optical axis. At this moment, the vertical distance be-
tween the reference mark and the camera optical axis is Y F

w2.
θF is the camera rotation angle, 1F

1 is the camera’s vertical
displacement,1F

2 is the camera’s pitch displacement and DF
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Figure 5. Image feature point recognition effect diagram.

Figure 6. Kinematic rigid body model for body vibration.

is the corresponding depth of the reference mark at moment
t1. Defining the camera rotation counterclockwise as positive
and clockwise as negative, the body vibration is decoupled
as follows:{
1F

2 = DF tanθF ,

1F
1 =

(
Y F

w2−1
F
2
)

cosθF
+Y F

w1 .
(3)

In Eq. (3), θF is measured by the IMU and Y F
w1, Y F

w2 and
DF are calculated by the binocular measurement principle.
Solving this system of equations, the vertical displacement
1F

1 of the camera can be obtained for each moment.
Similarly, when the rear wheels of the vehicle are lifted,

the vehicle is simplified to a rigid body model as shown in
Fig. 8, whereOR

1 is the center of the rear wheels at the initial
state of the vehicle andOR

2 is the center of the rear wheels as
the rear wheels are fully moving above the speed bump. The
body vibration is decoupled as follows:{
1R

2 = DR tanθR,

1R
1 =

(
1R

2 −Y
R
w2
)

cosθR
+YR

w1.
(4)

In Eq. (4), YR
w1 is the vertical distance between the refer-

ence mark and the camera optical axis before the rear wheels

Figure 7. Simplified model of the front wheels over the speed
bump.

of the vehicle touch the speed bump and YR
w2 is the vertical

distance between the reference mark and the camera opti-
cal axis when the rear wheels of the vehicle are completely
above the speed bump. θR is the camera rotation angle. 1R

1
is the vertical displacement of the camera. 1R

2 is the cam-
era’s pitch displacement. DR is the corresponding depth of
the reference mark at moment t2. Consequently, the system
of equations can be solved to obtain the vertical displacement
1R

1 of the camera for each moment.
During the process of the camera moving with the vehi-

cle, the field of view of the camera changes with the dis-
tance, as shown clearly in Fig. 9. The position of the cam-
era moves with the vehicle from C1 to C2 and the distance
from the camera to the reference changes from l1 to l2. Corre-
spondingly, the height (H1 andH2) occupied by the reference
within the camera’s field of view also changes. Therefore, the
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Figure 8. Simplified model of the rear wheels over the speed bump.

camera’s field of view angle (α1 and α2) can be expressed as{H1
l1
= α1,

H2
l2
= α2.

(5)

During the vehicle operation, since the camera lens param-
eters do not change, the field-of-view angles of the camera
maintain an equal relationship – that is, α1 = α2 – then the
following applies:

H1

l1
=
H2

l2
= k, (6)

where k is the proportionality coefficient between the camera
field of view and distance, which is expressed as the ratio of
the objects in front of the camera to the whole field of view of
the camera. The camera’s vertical displacement,1F

1 and1R
1 ,

also contain the proportional relationship, so the real vertical
vibration displacement (1F and 1R) of the body should be{
1F = 1F

1 × k,

1R = 1R
1 × k.

(7)

3 Modal simulation analysis

In order to find out what the relationship between the modal
parameters of the suspension system and the faults is, a 7-
degree-of-freedom (DOF) dynamics model of the whole ve-
hicle was established. Subsequently, the time domain re-
sponse signal of road unevenness was simulated using MAT-
LAB software. This simulated signal was then input into both
normal and faulty dynamics models to obtain the vibration
response signals of the body. Finally, these vibration signals
were analyzed by SSI to obtain the correlation between the
modal parameters and suspension faults. The flowchart of the
simulation analysis is presented in Fig. 10.

Figure 9. Schematic diagram of the field of view and distance.

Figure 10. Schematic diagram of simulation analysis.

3.1 7-DOF vehicle model and its modal parameters

The whole vehicle is simplified to a 7-DOF model, includ-
ing 3 DOFs for the body – bounce (z), pitch (θ ) and roll (ϕ)
– and 4 DOFs for the wheels (z1, z2, z3, z4). The details of
the model are shown in Fig. 11. The model is mainly com-
posed of body mass, under-spring mass, suspension springs
and dampers. The body mass is simplified to m0; the un-
sprung mass is simplified to m1, m2, m3 and m4; the sus-
pension spring stiffness and damper damping coefficients are
represented by k1, k2, k3 and k4 and c1, c2, c3 and c4, respec-
tively; and the tire stiffness is represented by kt1, kt2, kt3 and
kt4. The damping value of the wheels is not considered to
have a negligible effect on the results (Hrovat, 1988). The
vehicle’s parameters are shown in Table 1.

Figure 12 shows the simulation results of road surface
unevenness. The data are prepared according to a recent
International Organization for Standardization (ISO) report
on measurement data of mechanical vibration road surface
profiles (GB/T 7031-2005/ISO 8608:2016). In particular,
Fig. 12a shows the standard class B road surface unevenness
signal, Fig. 12b shows the simulated pulse signal and Fig. 12c
shows the superimposed road surface unevenness simulation
signal. The solid line in the figure represents the road surface
unevenness signal of the left front wheel, and the dashed line
indicates surface unevenness signal of the left rear wheel. Af-
ter inputting the superimposed constructed road surface un-

https://doi.org/10.5194/ms-15-445-2024 Mech. Sci., 15, 445–460, 2024



452 H. Wei et al.: Fault identification of the VSS based on BV and KD

Figure 11. 7-DOF model of the whole vehicle.

Table 1. Vehicle component parameters.

Component name Unit Value

Body mass kg m= 1050

Wheel distance m l3+ l4= 1.46

Axle distance m l1+ l2= 2.46

Suspension spring N m−1 k1= k2= 22 741
stiffness k3= k4= 26 144

Damper damping N s m−1 c1= c2= 1228
c3= c4= 1210

Unsprung mass kg m1=m2= 41
m3=m4= 41.5

Tire stiffness N m−1 kt1= kt2= kt3= kt4= 23 200

evenness signal into the 7-DOF model, the vertical vibration
signal of the body can be obtained through simulation.

Stochastic subspace identification (SSI) is a method of
identifying structural modal parameters based on environ-
mental excitations. The changes in modal parameters iden-
tified by SSI can be used for type identification and level de-
termination of the fault caused by suspension failures. The
accuracy of the SSI-based diagnostic method relies only on
the accurate identification of abnormal changes in modal
parameters compared to the baseline. This method offers
excellent portability that only requires baseline parameter
modifications and recalibrations for different vehicles. At
present, there are two primary stochastic subspace meth-
ods: data-driven subspace-based methods and covariance-

Figure 12. Simulation results of road surface unevenness: (a) stan-
dard class B road surface unevenness signal, (b) simulated pulse
signal and (c) simulated road surface unevenness signal.

based subspace methods. In this paper, an average correla-
tion signal-based SSI (ACS-SSI) method is applied, which
is an improvement on the covariance-based methods (Chen
et al., 2015b). The ACS-SSI method has the particular ad-
vantage of combining high computational robustness and ef-
ficiency. The identified modal parameters primarily include
natural frequency, mode shape and damping ratio. By es-
tablishing the SSI modal feature identification algorithm in
MATLAB, the modal parameters of the whole vehicle system
were successfully identified. The information on the charac-
teristics of the whole vehicle dynamics model is detailed in
Table 2.

The mode shape diagrams of the body in the bounce, pitch
and roll modes are shown in Fig. 13. During regular opera-
tion of the vehicle, the mode shapes of its left and right sides
are always the same. Moreover, the characterization of the
roll mode shape is not obvious. Therefore, fault diagnosis
can be achieved by analyzing the changes in mode shapes of
two types: bounce and pitch.

3.2 Influence of suspension faults on modal parameters

During the long-term operation of a vehicle, various load
conditions and environmental factors can lead to suspension
faults. Therefore, the modal parameters (natural frequency,
damping ratio and mode shape) of the suspension system
under the influence of different fault types are simulated in
MATLAB. Subsequently, the effects of different suspension
faults on the modal parameters can be obtained.
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Table 2. Information on the characteristics of vehicle dynamics model.

Bounce Pitch Roll Left front Right front Left rear Right back

f 1.16 3.10 1.29 14.39 14.97 14.98 15.09
ξ 23.97 % 64.05 % 26.67 % 16.92 % 16.19 % 16.34 % 16.07 %

Figure 13. Mode shapes of the body.

3.2.1 Influence of spring stiffness changes on modal
parameters

To investigate the influence of spring stiffness on the modal
parameters, the stiffness of the right rear spring was changed
from 0 % to 50 % in MATLAB to simulate the spring failure.
The simulation results are presented in Fig. 14. The blue line
represents the bounce mode, the brown line represents the
pitch mode, and the orange line represents the roll mode.

It can be seen from Fig. 14a that as the spring stiffness
decreases, the natural frequencies of all three modes decrease
to different degrees. The pitch mode decreases by 0.25 Hz
and changes the most as the amplitude changes in the bounce
mode and roll mode are lower. In Fig. 14b, the damping ratios
of the three modes increase significantly, in which the pitch
mode changes the most, followed by bounce mode and roll
mode. Compared to the first two modal parameters, the mode
shapes vary more significantly, with the rate of change in the
bounce mode reaching 3 %.

Figure 15 presents the simulation results of Hamed (2016)
regarding the effect of spring stiffness variation on modal pa-
rameters. The spring stiffness was reduced from 100 % of the
original value to 80 % to simulate suspension failure. Despite
the differences in vehicle suspension parameters between the
two studies, the trend of modal parameters for both simula-
tions is consistent, confirming the reasonability of the mod-
eling in this paper.

3.2.2 Influence of damping changes on modal
parameters

The damping value of the right rear suspension is changed
from 0 % to 50 % in MATLAB to analyze the trend of the
modal parameters at each order. Figure 16 demonstrates the
changes in modal parameters when the right rear damper
damping is faulty. With the damping value of the damper

decreasing, the natural frequency and damping ratio of the
three modes show a decreasing trend, while the mode shape
shows an increasing trend.

3.2.3 Influence of tire pressure changes on modal
parameters

In MATLAB, the stiffness of the right rear tire is changed
from 0 % to 50 % to indirectly simulate tire pressure faults.
From Fig. 17, it can be seen that as the tire pressure drops,
the natural frequency and damping ratio in all three modes
decrease, especially in the pitch mode, where the natural fre-
quency and damping ratio decrease the most. The rate of
change in the mode shape increases as the tire pressure de-
creases.

In summary, when some typical components of a suspen-
sion system fail, all three modal parameters of the system
change to varying degrees. However, since the vehicle sus-
pension system is a damped vibration system with a high
damping value, accurately measuring it with existing test-
ing methods can be challenging. As a result, the practical
damping ratio of the system is more difficult to accurately
reflect on. On the other hand, the mode shape is consid-
ered an eigenvector, with a dimensionless value that varies
more noticeably. Therefore, among the three modal parame-
ters, much attention needs to be paid to the changes in mode
shape, which is used as a detection indicator for suspension
system fault diagnosis.

4 Experiment study

4.1 Test design and test program

The test system comprises a measurement module, road ex-
citation, markers and vehicle, as shown in Fig. 18. The mea-
surement module consists of a binocular camera and an IMU.
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Figure 14. Changes in modal parameters caused by a right rear suspension spring fault: (a) natural frequency, (b) damping ratio and (c) mode
shape.

Figure 15. Changes in modal parameters caused by a right rear suspension spring fault: (a) natural frequency, (b) damping ratio and (c) mode
shape (adapted from Hamed, 2016).

To acquire the vehicle vibration response caused by road ex-
citation in the frequency interval of 0.5–30 Hz, the image res-
olution of the binocular camera was set to 1280× 480 pix-
els, and the acquisition frame rate was set to 90 fps. It is
equipped with an 8 mm focal-length lens, and the baseline
is set to 130 mm in the test. The pitch angle is acquired syn-
chronously using an IMU with a sampling frequency set to
400 Hz. The road excitation used in the test is a rectangu-
lar speed bump with a height of 70 mm. Standard road pile
barrels are used as markers. The test vehicle is an ordinary
passenger car. The binocular camera is fixed horizontally in
the middle of the body, and the IMU is fixed at the center
of the camera pitch axis. First of all, it is important to se-
lect a straight and less disturbed road, set up road excitation
and markers at a distance of 10 m from the vehicle. The ve-
hicle then passes through the road excitation at three speeds,
i.e., 5, 10 and 20 km h−1, respectively. When the rear wheels
of the vehicle leave the road excitation, a rapid braking op-
eration is performed to ensure safety of the test system and
experimental personnel.

In order to verify the effectiveness of the suspension fault
identification algorithm, tests were conducted under various
suspension faults. The suspension faults were identified by
analyzing the body vibration response caused by random
road unevenness excitation. Therefore, real test programs
were designed for spring failure (reduced stiffness), damper
failure (reduced damping) and tire failure (reduced pressure)
condition, respectively. The test cases are detailed as follows:

In the first test case, named Case 1, the spring failures
were simulated by changing the effective number of turns

Table 3. Spring failure test.

Test group Spring stiffness Speed
ratio [%] [km h−1]

1 100 5, 10, 20
2 80 5, 10, 20
3 60 5, 10, 20

Table 4. Damper failure test.

Test group Damper state Speed
[km h−1]

1 State 1 5, 10, 20
2 State 2 5, 10, 20
3 State 3 5, 10, 20

of the right rear suspension spring. The original spring was
replaced by springs with 80 % and 60 % of their stiffness,
respectively. In addition, the vehicle passes through the rect-
angular speed bump at 5, 10 and 20 km h−1, respectively. The
grouping situations are presented in Table 3.

In the second case (Case 2), the right rear suspension
damper was replaced with an adjustable damping damper.
The adjustable damping damper is set to the three states, with
State 3 being the baseline state. The damping values from
State 3 to State 1 are 100 %, 80 % and 60 %, respectively.
The test groups are shown in Table 4.
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Figure 16. Changes in modal parameters caused by damping failure of a right rear suspension: (a) natural frequency, (b) damping ratio and
(c) mode shape.

Figure 17. Changes in modal parameters caused by the reduction in tire pressure of a right rear tire: (a) natural frequency, (b) damping ratio
and (c) mode shape.

Figure 18. Diagram of the test system.

Table 5. Tire pressure failure test.

Test group Tire pressure Speed
[kPa] [km h−1]

1 250 5, 10, 20
2 200 5, 10, 20
3 150 5, 10, 20

In the third test case (Case 3), tire failures were simulated
by deflating the right rear tire. The reduced tire pressure was
divided into two levels, as shown in Table 5, which are 80 %
and 60 % of the standard tire pressure.

4.2 Verification of body vibration response

When the vehicle passes through the rectangular speed bump
at different speeds, the body will generate various degrees of
vertical vibration. As shown in Fig. 19, the solid blue line
represents the vertical displacement measured by the binoc-
ular camera and the dashed red line represents the vertical
displacement measured by the IMU. Moreover, the first and
second wave peaks in the figure correspond to the displace-
ments caused by the front and rear wheels being completely
above the rectangular speed bump, respectively.

It can be seen from Fig. 19 that the impulse responses of
the binocular vision and IMU measurement curves are well
synchronized. Comparing the curves at different speeds, the
impulse response time becomes shorter and the peak ampli-
tude increases as the vehicle speed increases, which is consis-
tent with the reality that higher travel speeds cause increased
vibration.

When the front wheels are above the speed bump, the ver-
tical displacement of the reference mark measured by the
binocular camera contains two components: the deflection
displacement (12) and the vertical jump displacement (11).
In order to facilitate the comparison of the amplitudes of
the two displacements, the vertical displacement Yw mea-
sured by the binocular camera is inverted. Since the direction
of camera deflection is consistent with the direction of the
vertical jump, the amplitude of the binocular measurement
data, max(Yw), is larger than that of the IMU measurement
data, max(12). However, when the rear wheels are above
the speed bump, the deflection of the camera is in the oppo-
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Figure 19. Vertical displacement-time curves at different speeds: (a) 5 km h−1 vehicle speed, (b) 10 km h−1 vehicle speed and (c) 20 km h−1

vehicle speed.

site direction to the vertical jump, resulting in the absolute
value of the valley, min(Yw), of the binocular measurement
data being smaller than that of the valley, min(12), of the
IMU measurement data. Based on the principle of kinematic
decoupling of the body, the vertical displacement of the ve-
hicle across the speed bump is calculated as the cosine of the
difference between the displacements measured by the two
devices. Furthermore, the calculated results are all positive.

As shown in Fig. 20, the solid line is the body vertical vi-
bration curve measured based on binocular vision and kine-
matic decoupling, while the dashed line represents the ver-
tical vibration obtained by simulation. It can be clearly seen
that the impulse responses of the two curves are well syn-
chronized. Since the camera is installed in the middle of the
front and rear axles of the vehicle, the peak vertical vibration
of the body should be half of the height of the rectangular
speed bump, according to the similar triangle theory. As a re-
sult, when the front and rear wheels of the vehicle drive over
the speed bump, both the measured data and the simulated
data show a vertical vibration amplitude of about 35 mm,
which confirms the validity of the proposed algorithm.

However, it should be noted that after the second wave
peak in Fig. 20, the measured vibration displacement curve
shows a sharp decline. Limited to the length of the test road,
emergency braking was applied to the vehicle when the rear
wheels left the speed bump. Hence, the data after the second
peak show a large deviation. This can be optimized in the
future by improving the test program.

4.3 Test and result analysis

Due to the requirement for random excitation data in the SSI
modal identification method, the vibration signals of a vehi-
cle traveling on a normal road without road excitation were
used as the data source for the analysis of the results. Ad-
ditionally, since there were only minor differences between
the test data at various speed conditions, the 20 km h−1 speed
condition was chosen for the analysis of the results.

4.3.1 Spring failure

First, the mode shapes of non-failed and failed springs were
analyzed. Moreover, comparing the mode shapes for each
condition in Case 1. The results are shown in Fig. 21. Fig-
ure 21a and b show the mode shapes of bounce and pitch
modes for the baseline condition, Fig. 21c and d show the
mode shapes of bounce and pitch modes for 80 % spring stiff-
ness, and Fig. 21e and f show the mode shapes of bounce and
pitch modes for 60 % spring stiffness. It can be seen from the
figures that as the spring stiffness decreases, the natural fre-
quencies in both bounce and pitch modes show a decreasing
trend, but the natural frequency changes more obviously in
the pitch mode. Besides, the change rate of the mode shape
in the bounce mode is larger than that of pitch mode. These
changes verify the results obtained from the simulation.

Figure 22 shows the diagnostic results for the suspen-
sion spring failure based on the vibration sensor data (Li et
al., 2017). Figure 22a and b show the mode shapes of bounce
and pitch modes for the baseline condition. Figure 22c and d
show the mode shapes of bounce and pitch modes for 80 %
spring stiffness. It can be seen from Fig. 22 that as the spring
stiffness decreases, the natural frequencies of the bounce and
pitch modes show the same decreasing trend as in this pa-
per. This confirms the validity of the diagnostic results of the
proposed method regarding suspension stiffness failure.

4.3.2 Damper failure

Figure 23 shows the mode shapes of the damper damping
failures. It can be seen from the figure that as the damp-
ing value of the damper decreases, the natural frequencies in
both bounce and pitch modes decrease, with the pitch mode
showing a larger decrease. The mode shape changes little in
the bounce mode, while the mode shape changes more obvi-
ous in the pitch mode. In addition, the damping ratio in the
bounce and pitch modes changes more significantly, which
means that this signal can be used as an indicator for the
identification of the damper damping faults.

Mech. Sci., 15, 445–460, 2024 https://doi.org/10.5194/ms-15-445-2024



H. Wei et al.: Fault identification of the VSS based on BV and KD 457

Figure 20. Simulated and measured body vertical vibration-time curves: (a) 5 km h−1 vehicle speed, (b) 10 km h−1 vehicle speed and
(c) 20 km h−1 vehicle speed.

Figure 21. Mode shapes for different spring stiffness:
(a, c, e) bounce mode and (b, d, f) pitch mode.

Figure 22. Modal parameters for baseline and fault states:
(a, c) bounce mode and (b, d) pitch mode (adapted from Li et
al., 2017).

Figure 23. Mode shape for different damping: (a, c, e) bounce
mode and (b, d, f) pitch mode.

4.3.3 Tire failure

The test results of the vehicle tire pressure failures are shown
in Fig. 24. Similar to the results of the spring failure test
groups, as the right rear tire pressure decreases, the natural
frequencies in both the bounce and the pitch modes show a
decreasing trend, and the mode shape in the bounce mode
undergoes the most significant changes.

4.3.4 Result discussion

The above analysis indicates that the suspension failures
would lead to obvious changes in a vehicle’s modal parame-
ters (mainly the natural frequencies and mode shapes). Dif-
ferent types of failures will lead to different changes in the
modal parameters. By establishing a mapping between faults
and modal parameter variations, the identification of the type
and degree of suspension faults can be realized. Decreases in
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Figure 24. Mode shape diagrams at different tire pressures:
(a, c, e) bounce mode and (b, d, f) pitch mode.

spring stiffness, damper damping and tire pressure all lead to
a decrease in the natural frequency of the bounce and pitch
modes. Compared to the other two types of suspension fail-
ure, the damping ratio is more sensitive to damper damping
failures. The magnitude of change in modal parameters can
characterize the severity of the failures.

The results of real-vehicle experiments and simulation
analyses show that the vertical vibration signals of the ve-
hicle can be effectively acquired using binocular vision tech-
nology and a kinematic decoupling algorithm. Moreover, the
measured vibration signals are highly accurate to reflect the
real vibration condition of the vehicle. In combination with
the SSI method, it is effective to identify different types and
degrees of suspension faults.

5 Conclusions

The main aim of this paper is to develop a real-time moni-
toring scheme for vehicle suspension systems. For this pur-
pose, a method based on binocular vision and kinematic
decoupling was carried out to measure the vehicle’s vibra-
tion signals. Moreover, these vibration signals were analyzed
in combination with the SSI method to monitor suspension
faults. By analyzing the changes in suspension modal param-
eters, the types and degrees of faults in the suspension sys-
tem were identified and evaluated. Both the simulation analy-
sis and the experimental results provide compelling evidence
that this method is effective in vehicle suspension fault diag-
nosis. The main conclusions can be drawn as follows: visual
vibration measurement technology is a novel method that has
the ability to effectively extract a vehicle’s vertical vibration
signals. Moreover, this method has the advantages of real-
time measurement and low costs, which overcomes the limi-

tations of traditional measurement methods in terms of error
accumulation. In addition, by integrating this functionality
using existing cameras, intelligent vehicles can realize the
online condition monitoring of suspension and cost-saving in
a further step. The proposed method provides an innovative
idea for improving the active safety performance of vehicles.

It should be noted that the suspension fault diagnosis
method proposed in this paper has some limitations. Firstly,
the accuracy of fault diagnosis may be affected by the im-
age quality and camera resolution. Using a high-resolution
camera can improve the accuracy of fault diagnosis. Sec-
ondly, complex environmental conditions (e.g., light varia-
tions, shadows and occlusion) may lead to unstable diagnos-
tic results. It is possible to make the method more adaptable
by introducing additional sensors. Thirdly, for more complex
suspension faults, it is necessary to combine other fault di-
agnosis techniques to improve the accuracy and efficiency of
fault diagnosis.
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