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Abstract. Friction is a complex nonlinear behavior and a significant factor that limits the performance im-
provement of servo systems. Drawing inspiration from the particular prestiction friction phenomenon exhibited
by direct-drive systems upon sudden emergency stops, this paper introduces a dynamic and continuous friction
model that includes pre-sliding and gross-sliding regimes. By analyzing the friction dynamics when the system
velocity briefly reaches zero, a concave function related to the previous state of the system is used to describe the
transition of friction in the pre-sliding regime. The Stribeck model is employed to represent the friction behav-
ior in the gross-sliding regime, ensuring stationarity during friction regime switching. Based on the established
friction model, a friction compensation method is developed in velocity control mode. The superior performance
of this proposed friction compensation method is confirmed through sine-tracking experiments. Compared with
the proportional integral controller and the Stribeck friction compensation method, the peak-to-peak value of the
proposed method is reduced by up to 61.1 %, and the root-mean-square (rms) value is reduced by up to 81 %,
with the smallest rms value reaching 0.13 mrad, significantly improving the dynamic tracking performance of
the system.

1 Introduction

Friction is a complex, nonlinear phenomenon, and its behav-
ior is influenced by various factors, including the relative ve-
locity and position of the contacting surfaces, material prop-
erties, lubrication, and temperature. Due to the complexity
of the influencing factors, there are significant differences in
friction characteristics, which makes it difficult to provide an
accurate description of friction behavior. In applications such
as electro-optical targeting systems and high-precision stable
platforms, friction can introduce discontinuities and nonlin-
earities near low and zero velocities, leading to dead zones
and creeping phenomena that severely impact the velocity-
tracking accuracy of the system. In order to overcome the
influence of friction on the control accuracy of the system,
current research focuses on how to accurately describe the
friction transition behavior of the system in the very low-
velocity stage and design a compensation scheme based on a
friction model to reduce or eliminate the influence of friction
(Yin et al., 2023).

In the study of friction behavior characterization, numer-
ous scholars have proposed various friction models through
observations of frictional phenomena (Marton and Lantos,
2007). As research on friction has deepened, the friction
model has undergone a transition from static to dynamic
models (Marques et al., 2016; Pennestrì et al., 2016). Among
these, the more practical friction models include the Stribeck
model (Makkar et al., 2005) and the LuGre model (Li et al.,
2017; Marques et al., 2021). In the static friction model rep-
resented by the Stribeck model, there is uncertainty in de-
scribing friction at zero velocity. In practical applications,
due to the influence of velocity measurement noise, friction
often fluctuates between forward and reverse static friction,
which is seriously inconsistent with the friction in the ac-
tual system. For this reason, Feng et al. (2019) introduced
the Karnopp theory into the Stribeck model when estab-
lishing an electro-hydraulic system. They proposed the con-
cept of a zero-velocity threshold and expressed the friction
within this threshold as a straight line. Wang et al. (2023) in-
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troduced the concept of cascading the Stribeck model with
a first-order low-pass filter, aiming to mitigate the abrupt
changes in friction that occur when the velocity passes zero.
Liu et al. (2023) employed the hyperbolic tangent function
with varying coefficients to approximate the Stribeck model,
offering an alternative representation. Furthermore, Wan et
al. (2022), Yao et al. (2015), Wu et al. (2014), Márton et
al. (2009), and Thenozhi et al. (2022) addressed the discon-
tinuity issues inherent in the Stribeck model by modifying
its structure. Their goal is to develop a smooth and continu-
ously distinguishable friction model, eliminate the influence
of friction through friction compensation, and improve con-
trol accuracy.

The LuGre model, based on the Stribeck model, improves
the discontinuity of friction at zero velocity by introduc-
ing a nonlinear differential equation (Marques et al., 2021).
This enhancement enables the LuGre model to not only de-
scribe friction behavior at exceedingly low velocities, but
also to capture nuanced characteristics such as sticky-slip os-
cillations and zero-slip displacement (Huang et al., 2019).
These capabilities lay a foundation for comprehensively de-
scribing and analyzing the microscopic state of friction, ulti-
mately enabling the effective suppression of friction. There-
fore, scholars have developed high-precision compensation
methods using the LuGre model in various application fields,
including the two-axis optoelectronic stabilized platform (Hu
et al., 2023), electro-hydraulic servo system (Feng et al.,
2022), wheeled planetary rover (Yu et al., 2022), dual-drive
hydraulic lead screw micro–nano feed system (Liu et al.,
2022), and permanent-magnet synchronous motor (Zhang et
al., 2022). These methods have achieved excellent results.
However, in the gross-sliding regime of friction, the Lu-
Gre model exhibits the same behavior as the Stribeck model
and is still influenced by velocity measurement noise. In the
stage of extremely low velocity, near zero velocity, there will
still be instability in the friction torque. To better describe
the friction behavior in the low-velocity stage, Bazaei and
Moallem (2009) divided the friction model into three phases,
the stiction phase, kinetic phase, and prestiction phase, and
the friction phase is determined by identifying that the veloc-
ity decreases to a certain desired velocity and duration. Sim-
ilarly, to describe friction within the zero-velocity threshold,
a two-state dynamic friction model (Ruderman and Bertram,
2013; Ruderman, 2014) is proposed, and this model includes
the pre-sliding and sliding stages of friction. However, the
above model is limited by the resolution of the velocity sen-
sor, and the velocity threshold is set at more than 2° s−1,
which fails to accurately describe friction behavior at ex-
tremely low velocities from a more microscopic perspective.

Due to the strong correlation between friction and the mo-
tion state prior to the system velocity briefly reaching zero,
the current friction models that have been proposed are un-
able to accurately describe this microscopic characteristic of
friction. This article introduces a dynamic continuous fric-
tion model composed of the pre-sliding and gross-sliding

Figure 1. Angular position response of DDS under slope command
in the forward direction (a) and the reverse direction (b).

regimes, and this model is based on the particular prestic-
tion friction phenomenon observed in the direct-drive system
(DDS) after a sudden emergency stop. The main highlight of
this model lies in its utilization of both the current and previ-
ous states of the system to effectively describe the friction be-
havior at zero velocity, thereby achieving a more precise de-
scription of friction. Building upon this friction model, a fric-
tion compensation method for the DDS is constructed within
the velocity control mode, and the primary objective of this
method is to achieve precise friction compensation and high-
precision velocity control for the system.

2 Phenomenon description

In the current closed-loop mode of the DDS, the system
is excited to move with a current ramp signal, the input
signal is set to zero when the output angle of the system
reaches a given threshold, and the angular position response
is recorded to characterize the acceleration and free deceler-
ation processes of the system. The angular position response
is closely related to the state of the system prior to this test,
and the system exhibits the particular prestiction friction phe-
nomenon.

The angular position response of the DDS is shown in
Fig. 1. When the system is subjected to a sudden emergency
stop and the above test is conducted in the same direction
as before the emergency stop, the acceleration process slows
down and the output angle of the system crosses the starting
point during the free deceleration process, showing a “re-
verse overshoot” phenomenon marked as “Same direction”
in the figure and simplified as “sd” in the legend. When the
above test is conducted in the opposite direction to that be-
fore the emergency stop, the acceleration process becomes
faster and the output angle of the system fails to return to the
starting point during free deceleration, which is marked as
“Opposite direction” in the figure and simplified as “od” in
the legend. The angle thresholds for the different curves are
also given in the legend.

The above experimental phenomenon is similar to the
prestiction friction phenomenon described by Bazaei and
Moallem (2009), but the difference is that this paper obtains
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Figure 2. Relationship between angular velocity and bristle defor-
mation.

a particular prestiction friction phenomenon which is closely
related to the state of the system before the motion through
the clever design of the experiment. By observing the ex-
perimental phenomenon, it is recognized that the system is
not in a stationary state after a sudden emergency stop. In-
stead, it continues to move slowly towards the equilibrium
position. This movement is so minuscule that it cannot be
detected by current sensors and is therefore considered to be
in a stationary state. The slow-moving DDS can be consid-
ered a stiffness-damping system with a certain preload. In
this system, the energy gradually dissipates over time, and it
may take several days for the final dissipation to occur.

Similar to the friction behavior described by the deforma-
tion of the bristles between two contact surfaces in the LuGre
model, the above phenomenon can also be explained by this
theory. The expression for the LuGre model is
Tf = σ0z+ σ1ż+ σ2ω,

ż= ω− σ0 |ω|z/g (ω) ,

g (ω)= TC+ (TS− TC)e−( ω� )2
,

(1)

where z represents the average deformation of the bristles,
TC is the Coulomb friction, TS is the static friction, � is
the Stribeck velocity, σ0 is the stiffness coefficient, σ1 is the
damping coefficient, and σ2 is the viscous coefficient.

After the system is suddenly stopped or the maximum ve-
locity ωmax of the system is reduced to zero within a short
time, the average bristle deformation z remains between zero
and the maximum value zmax, which is denoted as zstop. Un-
der the weak restoring force of the bristles, the system slowly
moves to the equilibrium position, where the average bristle
deformation z is zero, and the relationship between angular
velocity and bristle deformation is shown in Fig. 2.

Due to the energy dissipation property of the LuGre model
(Canudas-de-Wit and Kelly, 2007), the average deformation
of the bristles z and the rate of change ż are used to describe
the variation of friction during the prestiction phase, but after
the system stops, the average deformation of the bristles z
and the rate of change ż are forced to zero and cannot exhibit
the particular prestiction friction phenomenon.

Figure 3. The proposed dynamic continuous friction model.

3 Friction model and identification

3.1 Friction model

To accurately describe the friction behavior of the DDS
closely related to the state before system operation, this ar-
ticle divides the friction model into pre-sliding and gross-
sliding regimes. At extremely low velocities, the friction is in
the pre-sliding regime, characterized by the angular velocity
and position prior to system halt. Once the system velocity
surpasses a predefined threshold, the friction is in the gross-
sliding regime, where the friction behavior is governed by the
Stribeck model. The established dynamic continuous friction
model is shown in Fig. 3, and its key difference from existing
friction models lies in the pre-sliding regime. Specifically, it
describes the transition process between forward and reverse
static friction using a dynamically varying concave function,
captures the friction hysteresis phenomenon at zero velocity,
and limits the output of the model to static friction using a
saturation function.

The orange solid line in the figure represents the gross-
sliding regime of friction described by the Stribeck model.
The pink dashed line and green dashed line represent the pre-
sliding regime of friction, where the pink dashed line rep-
resents the transition process from forward static friction to
reverse static friction, and the green dashed line represents
the transition process from reverse static friction to forward
static friction. The friction model expression is

Tf =


satT +S [T

−

S + T
+

S fc1(ω)], if |ω|<1ω&ω > ωold,

satT −S [T
+

S + T
−

S fc2(ω)], if |ω|<1ω&ω < ωold,

T +C +
(
T +S − T

+

C
)

e−( ω̂
−

�+
)δ
+B+ω̂−, if ω ≥1ω,

T −C +
(
T −S − T

−

C
)

e−( ω̂
+

�−
)δ
+B−ω̂+, if ω ≤−1ω,

(2)

where ω represents the angular velocity of the system. T +S
and T −S are the static friction, T +C and T −C are the Coulomb
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friction, B+ and B− are the viscous friction coefficients, and
�+ and�− are the Stribeck velocity parameters. ω̂ is the ve-
locity variable in the Stribeck model, where ω̂± = ω±1ω.
The symbols “+” and “−” represent the forward and reverse
directions, respectively. δ is the empirical constant, which
is empirically taken as δ = 2. The saturation function sat(•)
limits its input to the set value. 1ω is the angular velocity of
the system when the friction regime is switched.

When the system velocity is less than1ω, the system is in
the pre-sliding regime, and the friction force is related to a va-
riety of factors. When the system velocity direction changes
from reverse to forward, the friction changes gradually from
the reverse static friction T −S to the forward static friction
T +S , the same when the system velocity direction changes
from forward to reverse. In the pre-sliding regime, the trend
of the friction is determined by the dynamically varying con-
cave function fc(ω). This concave function satisfies the fol-
lowing equation for any t ∈ [0,1].

fc (tω1+ (1− t)ω2)> tfc(ω1)+ (1− t)fc(ω2) (3)

In this article, the concave functions fc1(ω) and fc2(ω) are
represented by the inverse tangent, expressed as{
fc1(ω)= k1atan(k2(ω+1ω)) ,
fc2(ω)= k3atan(k4(−ω+1ω)) , (4)

where k1 and k3 are length coefficients and k2 and k4 are
width coefficients that are used to adjust the shape of the
concave function. These four parameters are dynamically ad-
justed according to the system state.

According to the particular prestiction friction phe-
nomenon described in Sect. 2, it is observed that when the ve-
locity of a DDS momentarily reaches zero during its motion,
the friction does not become zero. Instead, it becomes zero
at a minimal velocity after the direction of motion changes.
This minimal velocity is denoted as δω, and it is influenced
by the motion state of the system prior to the momentary zero
velocity. When the system experiences a sudden emergency
stop at high velocity, the value of δω is larger, and when the
system comes to a gradual halt at low velocity, the value of
δω is smaller or even zero. Therefore, this article describes
δω using the following formula:

δω = satδm

[
ωm

θm

]
, (5)

where ωm is the maximum velocity in the most recent mo-
tion, θm is the angle at which the system rotates when it de-
creases from this maximum velocity to zero, δω has a max-
imum value denoted as δm (which is a small constant), and
δm <1ω.

From the above description, we can obtain
fc1(−δω)= k1atan(k2(−δω+1ω))=−T

−

S
T +S
,

fc2(δω)= k3atan(k4(−δω+1ω))=−T
+

S
T −S
.

(6)

When the system velocity is greater than 1ω, the friction is
considered the gross-sliding regime, and friction is described
by the Stribeck model. To ensure the smoothness of the fric-
tion model when switching occurs, ω̂ is used as the velocity
variable in the Stribeck model.

3.2 Friction identification method

The frictional behavior of the system in the gross-sliding
regime is described by the Stribeck model, which is char-
acterized by simple and easily identifiable parameters. The
DDS is operated in the velocity closed-loop mode, the av-
erage velocity and average torque of the motor at a cer-
tain velocity command are collected to obtain the friction
torque–velocity curve relationship, and the parameters of the
Stribeck model are obtained through the least-squares fitting
algorithm. In the friction torque–velocity curve relationship,
the motor velocity corresponding to the static friction torque
is used as the regime-switching velocity from the pre-sliding
regime to the gross-sliding regime.

When the system is in the pre-sliding regime, a set of dy-
namically varying concave functions is used to describe the
process of static friction torque between forward and reverse,
and the shape of the concave functions is regulated by the
length coefficients k1 and k3 and the width coefficients k2 and
k4. In the pre-sliding regime, the dynamic variation of the
friction torque is determined by two important coordinates,
which are (−1ω, T −S ) and (1ω, T +S ), and the length and
width coefficients can be determined by combining Eq. (6)
with two sets of binary linear equations.

In Eq. (6), the minimal velocity δω is determined by
Eq. (5), where θm and ωm are changed in real time according
to the system state, and their values are determined based on
the angular position, angular velocity, and time of the sys-
tem. The maximum value δm of the minimal velocity δω can
be calculated by referencing the reverse maximum overshoot
value at the angular position shown in Fig. 1, which is ap-
proximately 0.006°. Consequently, when the system reverses
its direction of motion and rotates to achieve this specified
angular value, its velocity value is δm.

4 Controller design based on friction compensation

Through experimental tests and simulations, it is found that
friction is a key factor that restricts the performance improve-
ment of the DDS. In order to improve the velocity closed-
loop control performance of the DDS, the established fric-
tion model and the system state information are used to pre-
dict the magnitude and direction of the friction torque during
the system motion, and the friction model-based compensa-
tion method is used to suppress the influence of friction on
the system velocity closed-loop performance. The block di-
agram of the DDS control system with the friction compen-
sation is shown in Fig. 4, which mainly consists of a PI con-
troller and a friction compensator, where Kp and Ki are the
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Figure 4. Block diagram of DDS friction compensation.

proportional parameter and integral parameter, respectively.
Gp(s) is the transfer function of the DDS, the inputs of the
friction compensator are the output angle θ and angular ve-
locity ω, and the output is the voltage compensation signal
uf. In this block diagram, the PI controller, being the sim-
plest and most widely utilized, is employed to eliminate ve-
locity errors, and this controller adjusts the system output by
considering both instantaneous velocity errors and accumu-
lated errors over time, effectively reducing steady-state errors
and optimizing overall system performance (Wu et al., 2018;
Zhang et al., 2014; Wu et al., 2021, 2022). Additionally, a
friction compensator is designed based on the established dy-
namic continuous friction model. This compensator is posi-
tioned within the inner loop of the PI controller, allowing it
to initially mitigate friction within the DDS.

4.1 PI controller design

The blind adjustment of PI controller parameters often poses
challenges in achieving optimal results, as alterations in these
parameters influence the servo performance of the system.
To address this, the article proposes a method for designing
PI controller parameters based on the mechanical parame-
ters, electrical parameters, and servo indicators of the system.
This approach aims to standardize the PI controller design,
ensuring more consistent and reliable performance. In order
to obtain a reasonable value interval for the PI controller pa-
rameters to make the system stable, the DDS is simplified to
a first-order inertial system, and the system dynamics equa-
tions are derived and solved. According to the torque balance
equation of the DDS, the following set of differential equa-
tions is obtained:{
J ω̇+Bω = Tm− Tf,

Tm = kakmUC,
(7)

where UC is the input voltage command, ka is the voltage
conversion factor of the driver, km is the motor torque coef-
ficient, and Kt = ka km is the total amplification factor. Tm is
the driving torque. ω and ω̇ are the angular velocity and an-
gular acceleration, respectively, of the system. J and B are
the total rotational inertia and velocity damping coefficient,
respectively, and Tf is the friction torque.

The input velocity command is ωc, and the velocity error
e and the integration e0 of the velocity error over time are

defined as

e = ωc−ω, (8)

e0 =

t∫
0

e (τ )dτ. (9)

Assuming that the proportional parameter of the PI controller
is Kp and the integral parameter is Ki , the output signal of
the velocity error through the PI controller is

Uin =Kpe+Kie0. (10)

Combining Eqs. (7), (8), (9), and (10), the differential equa-
tion for the velocity closed-loop system is obtained as{
ω̇ =

−KtKp−B

J
ω+

KtKi
J
e0+

KtKp
J
ωc−

Tf
J
,

ė0 = ωc−ω.
(11)

The state space equation is obtained as[
ω̇

ė0

]
=

[
−KtKp−B

J
KtKi
J

−1 0

][
ω

e0

]
+

[
KtKp
J

−1
J

1 0

][
ωc
Tf

]
. (12)

Then the state matrix A is

A=
[
−
KtKp+B

J
KtKi
J

−1 0

]
. (13)

The characteristic polynomial of the system is

ρ(s)= det(sI−A). (14)

To ensure a good dynamic response performance, it is as-
sumed that the velocity closed-loop system of the DDS is a
second-order underdamped system. In this case, the charac-
teristic roots of the characteristic polynomial are a pair of
conjugate complex numbers, and their expression is

λ1,λ2 =−ζωn± jωn

√
1− ζ 2, (15)

where ζ is the damping ratio and ωn is the undamped natural
frequency.

The dynamic performance index of the second-order un-
derdamped system, evaluated in terms of peak time tp and
system damping ζ , has the following relationship:

tp =
π

ωn
√

1− ζ 2
. (16)

Combining Eqs. (14), (15), and (16), the expressions of Kp
and Ki can be obtained: Kp =

2Jζπ
Kttp
√

1−ζ 2
−

B
Kt
,

Ki =
Jπ2

Ktt2p (1−ζ 2) .
(17)
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According to the standardized design process of the PI con-
troller mentioned above, only some known parameters of the
system are needed to easily determine the parameters of the
PI controller.

4.2 Friction compensator design

The established dynamic continuous friction model deter-
mines the friction torque of the system based on its current
and previous states and can describe the friction behavior of
the system at zero velocity. Based on this feature, design-
ing the friction compensator based on the established fric-
tion model will greatly eliminate system friction and achieve
higher velocity control accuracy.

In the pre-sliding regime, the angular position information
can be used to determine the friction regime instead of the
velocity because of the low accuracy of the system velocity
measurement. The angle measured by the encoder is θ (k), the
sampling time is T , and k is the kth sampling period of the
system. Then the angle difference in a fixed time t0 is

1θ (k)= θ (k)− θ (k− t0/T ) . (18)

The expression for the friction compensation torque T̂f in the
pre-sliding regime is

T̂f =


satT +S [T

−

S + T
+

S fc1(1θ (k))] if
∣∣θ̇ ∣∣

<1ω&1θ (k)>1θ (k− 1),
satT −S [T

+

S + T
−

S fc2(1θ (k))] if
∣∣θ̇ ∣∣

<1ω&1θ (k)<1θ (k− 1),

(19)

where
{
fc1(1θ (k))= k′1atan(k′2(1θ (k)+1ω · t0)),
fc2(1θ (k))= k′3atan(k′4(−1θ (k)+1ω · t0)), and

the length coefficients k′1 and k′3 and the width coefficients
k′2 and k′4 can be obtained by the identification method in
Sect. 3.2.

In the gross-sliding regime, the encoder differential veloc-
ity ω (k) can be used directly, and the friction compensation
torque T̂f is expressed as

T̂f =


T +C +

(
T +S − T

+

C
)

e−( ω̂(k)−

�+
)δ
+B+ω̂(k)−

if ω(k)≥1ω,

T −C +
(
T −S − T

−

C
)

e−( ω̂(k)+

�−
)δ
+B−ω̂(k)+

if ω(k)≤−1ω.

(20)

By using the angular position and angular velocity infor-
mation of the DDS, it is possible to mitigate the impact of
system measurement noise to a significant degree. This re-
duction in noise enables a more accurate calculation of fric-
tion compensation torque, thereby facilitating precise friction
compensation for the DDS. After obtaining the friction com-
pensation torque, it needs to be converted into the compen-
sation voltage uf, and the relationship between the two is

uf =
T̂f

kakm
. (21)

Figure 5. The DDS experimental platform.

5 Experiment and analysis

To verify the correctness of the established friction model
and the accuracy of the friction compensation-based veloc-
ity control, the DDS experimental platform is built as shown
in Fig. 5. The DC motor model is 130LCX-2, the peak
torque is 8.25 N m, and the motor torque coefficient km is
0.73 N m A−1. The output shaft of the motor is fixedly con-
nected to the input shaft of the encoder through a coupling,
and the total rotational inertia J is 0.009 kg m2. The driver
model is AMC30A8, and the cutoff frequency of the cur-
rent closed loop is much larger than the system response fre-
quency, so the current loop part of the driver can be equated
to the proportional coefficient, and the voltage conversion
factor ka is 0.447 A V−1. The encoder model RON285-
18000-0103 provides an angular position output with more
than 22-bit resolution through 256× subdivision. The test
system is run on the dSPACE1103 real-time simulation plat-
form with a sampling time setting of 1 ms. The previous de-
bugging experience shows that the peak time tp = 0.1s and
the damping ratio ζ = 0.707 can meet the dynamic perfor-
mance of the system. According to Eq. (17), the proportional
parameter Kp = 1.72 and the integral parameter Ki = 54.43
can be calculated.

5.1 Friction parameter identification

To obtain the static friction torque TS and regime-switching
velocity 1ω, the motor is operated in the current closed-
loop state and the control command is a small slope signal,
and then the angular position and velocity signals of the en-
coder are collected. The relationship between the angular po-
sition and angular velocity of the system output is shown in
Fig. 6. From the figure, when the output angle of the sys-
tem is greater than 0.048°, the output velocity is 0.39° s−1

(5 times the velocity resolution), which obviously shows
the trend of accelerated motion and at this time the friction
regime through the transition from the pre-sliding regime to
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Figure 6. Output response of the DDS under slope command in
(a) the forward direction and (b) the reverse direction.

Table 1. The parameters of the Stribeck model.

Parameter Value Parameter Value

T+C (N m) 0.1759 T−C (N m) −0.1785
T+S (N m) 0.1878 T−S (N m) −0.1927
B+ (N m s rad−1) 0.0039 B− (N m s rad−1) 0.0032
�+ (rad s−1) 0.9000 �− (rad s−1) −0.7800

the gross-sliding regime. Therefore, the angular velocity cor-
responding to this point is set as the regime-switching ve-
locity 1ω, and the corresponding friction torque is the static
friction torque TS. Due to the extremely low output velocity
of the system, the driving torque of the motor can be equiva-
lent to the friction torque of the system.

When the friction of the system is in the gross-sliding
regime, there is a Stribeck curve relationship between the
friction torque and velocity, allowing the system to operate in
a velocity closed-loop mode and achieve uniform operation
at different velocities. The motor current signal is used as a
reference value for the friction torque at the current veloc-
ity, and the Stribeck model parameters are identified through
curve fitting as shown in Table 1, which can be used for sub-
sequent velocity control based on friction compensation.

5.2 Sine-tracking experiment

The proposed dynamic continuous friction model focuses on
describing the friction behavior at low velocity and velocity
past zero. To test the effectiveness of the established friction
model and the compensation method, the output velocity of
the DDS is made to track a sine signal, and the PI controller,
the Stribeck friction compensation method (PI+Stribeck),
and the proposed friction compensation method are com-
pared at different amplitudes and different frequencies of the
sinusoidal signal, respectively. The amplitude and frequency
of the sinusoidal signals are 6.28° s−1 1 Hz, 6.28° s−1 0.5 Hz,
10° s−1 1 Hz, and 20° s−1 0.5 Hz, respectively. The experi-
mental results of the DDS are shown in Fig. 7.

From the figure, when using the PI controller and the
Stribeck friction compensation method, the output velocity

Figure 7. Performance comparison of three control methods with
different input signals: (a) 6.28° s−1 1 Hz, (b) 6.28° s−1 0.5 Hz,
(c) 10° s−1 1 Hz, and (d) 20° s−1 0.5 Hz.

Figure 8. Enlarged view of velocity past zero.

of the DDS shows a significant tracking error in the low-
velocity region after the velocity passes zero, manifested
as the error peak phenomenon in the velocity error graph
and indicating the existence of overcompensation. The pro-
posed friction compensation method significantly reduces
the velocity-tracking error in the low-velocity region after the
velocity passes zero, indicating the effectiveness of the pro-
posed friction compensation method and the accuracy of the
established friction model in describing low-velocity friction
behavior.
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Table 2. Calculated results of the evaluation indexes.

Input Index PI PI+Stribeck Proposed

6.28° s−1 1 Hz P–P (° s−1) 4.04 3.50 (13 %) 2.02 (50 %)
rms (mrad) 0.48 0.18 (62 %) 0.15 (69 %)

6.28° s−1 0.5 Hz P–P (° s−1) 2.96 3.51 (−18 %) 1.62 (45 %)
rms (mrad) 0.51 0.30 (41 %) 0.27 (47 %)

10° s−1 1 Hz P–P (° s−1) 4.96 5.17 (−4 %) 2.14 (57 %)
rms (mrad) 0.68 0.46 (32 %) 0.13 (81 %)

20° s−1 0.5 Hz P–P (° s−1) 4.98 5.52 (−10 %) 2.15 (57 %)
rms (mrad) 0.72 0.39 (46 %) 0.20 (72 %)

With the increasing amplitude of the sine signal, the
magnitude of the velocity error using the Stribeck friction
compensation method is also increasing. Different from the
proposed dynamic continuous friction model, the Stribeck
model is a static model, and the discontinuity of the Stribeck
model at zero velocity and the characteristic of not recording
the operating state of the system lead to a more serious ve-
locity error peak phenomenon (Fu et al., 2017; Tjahjowidodo
et al., 2007).

In order to visually analyze the control effect of the pro-
posed friction model and compensation method, the details
of the sine tracking of the DDS at velocity past zero are en-
larged, as shown in Fig. 8. The proposed friction compensa-
tion method has some velocity fluctuation when the system
velocity passes zero, and the velocity-tracking effect is ob-
viously better. Thanks to the fact that the proposed dynamic
continuous friction model has the characteristic of recording
the system operation state all the time, the friction in the sys-
tem is calculated and compensated for when the velocity is
briefly reduced to zero, which realizes the “prior compensa-
tion” before the system velocity passes zero, and the over-
compensation is suppressed to the maximum extent.

The peak-to-peak (P–P) value of the velocity error and
the root-mean-square (rms) value of the velocity error inte-
gral are used as evaluation indexes to quantitatively deter-
mine the tracking effect of the proposed friction compensa-
tion method under different sine signals. The calculated re-
sults of the evaluation indexes for the DDS under the three
control methods are calculated separately, as shown in Ta-
ble 2.

The evaluation indexes of the sine tracking of the DDS
under the three control methods are listed in Table 2, and the
percentages in parentheses indicate the degree of improve-
ment compared with the PI controller. Compared with the
PI controller, the P–P value of the velocity error is not re-
duced with the Stribeck friction compensation method, but
the rms value is improved significantly, while the application
of the proposed friction compensation method results in a
significant improvement in both indexes, with a 57 % reduc-
tion in the P–P value and an 81 % reduction in the rms value

in the optimal tracking. Compared with the Stribeck friction
compensation method, the P–P value of the proposed fric-
tion compensation method is significantly reduced by a max-
imum of 61.1 %, and the rms value is reduced by 71.7 %.
The minimum P–P value of the proposed friction compensa-
tion method is 1.62° s−1, and the minimum rms value reaches
0.13 mrad, achieving a high level of control accuracy for
the DDS.

6 Conclusions

According to the different angular position responses of the
DDS to the same input signal after a sudden emergency
stop, the system exhibits a particular prestiction friction phe-
nomenon, which leads to the conclusion that the friction is
not zero at the zero velocity of the system. Based on this, this
paper proposes a dynamic continuous friction model consist-
ing of a pre-sliding regime and a gross-sliding regime, which
differs from the existing friction model in that it utilizes the
angular velocity and angular position information of the sys-
tem before the velocity briefly reaches zero, and it describes
the transition process between forward and reverse static fric-
tion with a dynamically changing concave function, thus de-
scribing the friction hysteresis phenomenon at zero velocity.

Based on the established dynamic and continuous friction
model, a friction compensation method for the DDS is de-
veloped in velocity control mode. The superior performance
of this proposed friction compensation method is demon-
strated through sine-tracking experiments. When compared
to the PI controller, the proposed method achieves a reduc-
tion in the P–P value by 57 %, and the rms value is reduced
by 81 %. Compared with the Stribeck friction compensation
method, the proposed method further reduces the maximum
P–P value by 61.1 % and the rms value by 71.7 %, with
the minimum rms value reaching an impressive 0.13 mrad,
thereby enabling high-precision velocity control of the DDS.
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