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Abstract. The multi-mode planar mechanisms (MMPMs) are excellent-performance reconfigurable mecha-
nisms, which not only inherit structural characteristics of planar mechanisms but also have the multi-task, multi-
working-condition application advantages of multi-mode mechanisms. However, lacking common bifurcation
analysis and construction methods, their industrial application and development are seriously hindered. This
paper presents a replaceable-component method to construct a set of single-degree-of-freedom (single-DOF)
MMPMs based on the branch graphs of the corresponding planar mechanisms and the proposed multi-mode
modules (MMMs). First, according to the established loop equations, all the kinematic information of the orig-
inal planar mechanism is obtained by the branch graphs and singularity points using Maple. Then, compared to
the relationship between the concepts of the branch and motion mode, the number and continuity of branches are
taken as the index to identify the potential bifurcation and mode conversion ability for the corresponding planar
mechanisms. Subsequently, the MMM is presented to help the planar mechanisms break the singularity positions
to form the corresponding MMPMs, and the steps of constructing single-DOF MMPMs are summarized. Finally,
a single-DOF Stephenson six-bar three-mode planar mechanism, a Watt six-bar three-mode planar mechanism,
and an eight-bar four-mode planar mechanism are constructed for the first time, and the corresponding multi-
mode motion analyses are made. The results can give the available configuration for the design of corresponding
MMPMs. The proposed method will provide strong guidance for the configuration design of MMPMs.

1 Introduction

The multi-mode mechanism (Zlatanov et al., 2002a) is an
important branch of reconfigurable mechanisms. Compared
to other types of reconfigurable mechanisms, it can achieve
multi-mode motion by changing its structure without disas-
sembly and assembly. And since no auxiliary devices are re-
quired in the conversion process of this kind of mechanism, it
has the advantage of rapid mode conversion (Yu et al., 2020),

which meets the performance requirements of multiple func-
tions and multiple working conditions for equipment. There-
fore, the multi-mode mechanism has attracted great attention
from scholars and has become the research hotspot of current
mechanism research. The research results have been widely
used in innovative designs of high-end mechanical equip-
ment such as in aviation equipment (Agogino et al., 2018;
Li et al., 2018), medical rehabilitation (Tseng et al., 2017;
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Nurahmi et al., 2019; Carbonari et al., 2014), and machining
(Azulay et al., 2014; Rico et al., 1999; Wu et al., 2017).

The traditional single-degree-of-freedom (single-DOF)
planar mechanism is the mechanism with the lowest degree
of freedom among planar mechanisms. It has the advantages
of convenient installation, low cost, relatively simple motion
trajectory, and convenient control. Due to these character-
istics, it is normally the first choice for mechanical equip-
ment design. Despite having been studied for hundreds of
years, many scholars are still interested in it. By introduc-
ing the mixed-poses concept, Zhao et al. (2021) presented a
new synthesis method for single-DOF six-bar linkages, and,
based on the results, they successfully designed and tested
a rehabilitation device with more accurate motion trajec-
tory for multi-joint coordinated training of human limbs. Lee
et al. (2021) provided a quantitative approach to determin-
ing the relative performances of single-DOF four-, six-, and
eight-bar robotic gait trainers from the standpoint of kine-
matics, which helps determine cost-effective training solu-
tions for rehabilitation clinics and possibly even for home
use. Zhang et al. (2022) proposed the design method for
the single-DOF planar-linkage bionic mechanism to solve
the problems caused by the multiple variables of the six- or
eight-bar mechanisms and the complicated constraint con-
ditions. Liu and Chang (2018) used the so-called Virtual
Cam–Hexagon Method to obtain all the instant centers of
the planar single-DOF kinematically indeterminate linkages
up to 10 bars. The applicable rate of this method is 73 %.
Based on instant centers and the rewritten D’Alembert prin-
ciple, Di Gregorio (2022) proposed geometric and analytic
techniques for modeling and studying the dynamic behavior
of planar single-DOF mechanisms. The resulting dynamic
model is novel and general. Nie et al. (2019) utilized graph
theory and transmission angle to locate the dead-center po-
sitions of single-DOF planar mechanisms. The dead-center
positions of the single-DOF 10-bar and 12-bar planar link-
ages are first solved. Desai et al. (2019) presented a new
single-DOF crank-driven walking-leg mechanism for walk-
ing machines and walking robots. It has the characteristics of
compact structure, low cost, and high speed, which can be ad-
vantageous in industries, agriculture, recreation, autonomous
vehicles, and so on.

Based on the above discussion, it has been proven that the
traditional single-DOF planar mechanism holds significant
application and research value. However, due to the continu-
ous progress of science and technology, as well as the on-
going scarcity of resources and consequent environmental
concerns, traditional single-DOF planar mechanisms are un-
able to meet the demands of current mechanical equipment
or mechanisms that require multitasking, multiple working
conditions, and various scenes. Therefore, the single-DOF
multi-mode planar mechanism (MMPM) is proposed to over-
come the limitations of traditional mechanisms. By alter-
ing the constraints of singular configuration, the single-DOF
MMPM can achieve multi-mode motion and offer both the

structural advantages of traditional planar mechanisms and
the application benefits of multi-mode mechanisms. This
provides a new research direction for single-DOF mecha-
nisms and expands their potential applications. Based on a
planar four-bar mechanism, Huang et al. (2023) firstly de-
signed a set of single- and double-stage mechanisms de-
pending on the rule of the degrees-of-freedom formula-
tion; then, the single- and multi-loop reconfigurable plat-
forms are both presented using the above results. Wu et
al. (2019) redesigned a three-RRR (rotation joint) spheri-
cal parallel manipulator (SPM) of co-axis input with recon-
figurability, which can be used directly for the applications
such as flight simulators. By utilizing a simple four-bar link-
age, the SPM can change virtually the dimensions of driv-
ing links. Lin et al. (2022) proposed a concept of the recon-
figuration parallel mechanism based on friction self-locking
composite joints, which can transform between a truss and
a mechanism. In their paper, a parallelogram linkage with
two wedge blocks is taken as the JSLTr (JSLT – translation
self-locking joint – and JSLR – revolution self-locking joint)
of the family of friction self-locking composite joints. Tian
et al. (2018) presented a method for configuration synthe-
sis of metamorphic mechanisms based on functional anal-
yses and developed eight source-metamorphic mechanisms,
which are obtained by integrating two corresponding planar
mechanisms. Wu et al. (2021a, 2023) proposed two types of
robots with four working modes for spraying work. By uti-
lizing the four-bar mechanism with two sliders (2021) and
the five-bar mechanism (2023) of these two spraying robots,
a larger workspace can be achieved. Based on the analy-
sis of three kinds of kinematotropic four-bar mechanisms,
Zhang et al. (2022) presented the idea of constructing re-
configurable generalized parallel mechanisms (GPMs) by in-
tegrating closed-loop kinematotropic linkages with config-
urable platforms. Using the proposed method, a 5-degree-
of-freedom reconfigurable GPM with the configurable plat-
form is formed and discussed. Wu et al. (2021b) designed a
novel dual degree-of-freedom octopod platform with a re-
configurable trunk. To adjust the posture and enlarge the
working space of legged modules to enhance the obstacle-
climbing capability, the trunk mechanism can be reconfig-
ured into a steering four-bar linkage in steering motion with
the aid of the singular feature. Liu et al. (2020) put forward a
new reconfigurable multi-mode walking–rolling robot based
on the single-loop closed-chain four-bar mechanism, which
has four types of motion modes: four-bar walking, four-bar
rolling, self-deforming, and six-bar rolling modes. And the
robot can be changed to different modes according to the ter-
rain.

Although the single-DOF MMPM has incomparable ap-
plication advantages compared with the traditional single-
DOF planar mechanisms, its research and development are
still in the initial stages. This is because of the unique flat
structure of the planar mechanism, which makes it diffi-
cult to effectively analyze its bifurcation motion and mode
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conversion. Bifurcation motion and mode conversion mo-
tion are the two main motion characteristics of multi-mode
mechanisms, which are also the key to forming the corre-
sponding multi-mode mechanism. Bifurcation motion repre-
sents the fact that the mechanism can realize multiple mo-
tion modes (Dai et al., 2021; Müller, 2014; Hervé, 1999;
Angeles, 2004; Wei and Dai, 2020; Zlatanov et al., 2002b),
while mode conversion is the means or method by which
a mechanism switches from one motion mode to another
(Galletti and Fanghella, 2001; Husty and Zsombor-Murray,
1994; Larochelle and Venkataramanujam, 2013; Venkatara-
manujam and Larochelle, 2014). Generally speaking, bifur-
cation motion is a prerequisite for mode conversion motion,
and only when the mechanism can realize bifurcation motion
does it have the possibility of mode conversion motion. In
other words, the mechanism must have two or more motion
modes before it can perform the corresponding mode con-
version operation. Therefore, bifurcation motion is the first
problem to be solved in the construction of a multi-mode
mechanism. Normally, single-DOF MMPM is established
based on the structure of a single-DOF planar mechanism.
However, for a single-DOF planar mechanism, there gener-
ally exists only one explicit motion mode when the joints are
assembled, and it is difficult to reveal the motion mode hid-
den in the mechanism structure because of the lack of the
corresponding identification method (Yu et al., 2020). As a
result, designing single-DOF MMPMs often relies solely on
researchers’ inspirations and experiences, and few structures
of single-DOF MMPMs can be formed for application. The
development is hindered.

To solve the development dilemma of single-DOF
MMPMs, this paper proposes a common method to analyze
the potential bifurcation motion of single-DOF planar mech-
anisms and provides a systematic way to construct the corre-
sponding single-DOF MMPMs. The proposed method may
present a new design thought for the configuration design
of the MMPMs. Based on loop equations, the corresponding
branch graphs and singularity points are obtained to analyze
the potential of bifurcation motions of planar mechanisms.
Then, according to the mode conversion principle of break-
ing the singularity positions, the telescopic link-type module
(II) is presented and discussed in the multi-mode four-bar
planar mechanisms. Subsequently, the steps for constructing
single-DOF MMPMs are summarized. Finally, two single-
DOF six-bar MMPMs (Stephenson and Watt) and a single-
DOF eight-bar MMPM are presented and discussed in this
paper for the first time. These new mechanism designs of-
fer numerous potential applications and opportunities for the
development of single-DOF MMPMs.

One contribution of this paper is to provide a new
method for identifying bifurcation motion, mode conversion,
and constructing mechanism configurations of single-DOF
MMPMs. The proposed method not only reveals the mecha-
nism of bifurcation movement but also provides design guid-
ance at the structural scale. Furthermore, since the proposed

method is based on the loop equations, branch graphs, and
the multi-mode modules (MMMs) (all three are common
to single-DOF planar mechanisms), it is universally appli-
cable. Additionally, the proposed method provides a graph-
ical insight into the relationship between the configuration
formation and the bifurcation motion of the mechanism and
presents a new research idea for the study of single-DOF
MMPMs. Another contribution is to summarize the corre-
sponding construction steps and to form a single-DOF four-
bar MMPM, two single-DOF six-bar MMPMs (Stephenson
and Watt), and a single-DOF eight-bar MMPM. To our best
knowledge, these last three MMPMs are built for the first
time. Simultaneously, multi-mode motion analyses are con-
ducted correspondingly. The results can provide the avail-
able configuration for designing corresponding MMPMs and
some design guidance.

This paper is organized as follows: in Sect. 2, the ba-
sic concepts such as loop equation, branch graph, singular-
ity point, motion mode, motion state, and MMMs are intro-
duced. In Sect. 3, firstly, the number of breaches is taken as
an index to identify the bifurcation ability of planar mecha-
nisms. Then, MMMs are used as a tool to implement mode
conversion of the MMPMs. Finally, the steps for constructing
single-DOF MMPMs are summarized, and the correspond-
ing flow chart is drawn. In addition, multi-mode motion anal-
ysis is presented, and the single-DOF four-bar MMPM is
taken as an example for explanation. The Stephenson six-
bar three-mode planar mechanism, the Watt six-bar three-
mode planar mechanism, and the eight-bar four-mode pla-
nar mechanism are constructed, and the corresponding multi-
mode motion analyses are discussed in Sect. 4. Conclusions
are presented at the end of this paper.

2 Basic concepts

2.1 Loop equation

With the digitalization of mechanism configuration, the loop
equations can provide all the kinematic characteristic in-
formation of the planar mechanism, including link connec-
tions, input–output relationships, transient motion, and more.
These findings have been proven in Ting and Dou (1996),
Ting (1994), Ting et al. (2010), Dou and Ting (1996), Wang
et al. (2010), and Nie et al. (2020). Taking the four-bar planar
mechanism (Fig. 1) – for example, when the input joint is at
the joint A (i.e., the input angle is θ2), – the following loop
equations are established.

First, we have loop ABCD:

a2e
iθ2 + a3e

iθ3 − a1− a4e
iθ4 = 0. (1)

Equation (1) can be written as the following two equations
based on Euler’s formula:

a4 cosθ4− a2 cosθ2− a3 cosθ3+ a1 = 0, (2)
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Figure 1. Kinematic graph of a four-bar planar mechanism.

a4 sinθ4− a2 sinθ2− a3 sinθ3 = 0. (3)

Eliminating θ3, Eq. (1) can be expressed as follows:

a2
1 + a

2
2 − a

2
3 + a

2
4 − 2a2a4 cos

(
θ4− θ2

)
− 2a1a2 cosθ2

+ 2a1a4 cosθ4 = 0. (4)

Equation (4) is the equation of the one-to-one correspon-
dence between the input joint angle θ2 and the output joint
angle θ4.

2.2 Branch graph and singularity point

Branches (or circuits) (Nie et al., 2016) are a fundamental is-
sue in the realm of mobility for planar mechanisms. A branch
is a gathering of mechanism configurations, referring to the
continuous motion of the mechanism. Branches are deter-
mined by the link size of the loops and are independent from
input conditions (Ting, 1994; Nie et al., 2016). Typically,
mechanism configurations of the planar mechanism cannot
transform from one branch to another without disconnecting
the mechanism. The branch graph is a map containing all the
kinematic information of the mechanism. It can be obtained
by the loop equations and the concept of joint space rotation
(JRS) (Ting, 1994; Ting et al., 2010) and can be drawn in
Maple. For the four-bar planar mechanism, whose link pa-
rameters are provided in Table 1, a branch graph is shown in
Fig. 2 based on Eq. (4). The corresponding singularity points
are listed in Table 2. Considering Fig. 2, the red curves are
the joint rotation space of the four-bar loop ABCD. There
are the two branches (I and II), and each branch has two sub-
branches, for example, sub-branch 1-2 and sub-branch 2-1
are the two sub-branches in branch I. Similarly, sub-branch
3-4 and sub-branch 4-3 exist in branch II. Obviously, the
two branches and the sub-branches have been separated into
singularity points of 1 and 2 and 3 and 4. Furthermore, the
two sub-branches cannot occur at the same time in the same
branch since the mechanism has only a pair of θ2, θ4 at an in-
stantaneous configuration. For example, if the mechanism is

in sub-branch 1-2 of branch I (such as instantaneous config-
uration A), the other sub-branch 2-1 (instantaneous configu-
ration B) does not exist. Normally, the branches of the pla-
nar mechanisms cannot be transformed into each other unless
the joint is disassembled and re-equipped. But if the planar
mechanism has been changed into the corresponding multi-
mode mechanism using the following proposed method, the
multi-mode mechanism will be able to transform from sub-
branch 1-2 to one of the sub-branches 3-4 or 4-3 through the
singularity points 2 and 3 (path I) or from sub-branch 2-1 to
one of the sub-branches 3-4 or 4-3 through the singularity
points 1 and 4 (path II) at one time. Note that path I and path
II are only used for purposes of indication and are not specific
movement routes. Based on the above discussion, sub-branch
1-2 and sub-branch 2-1 cannot appear simultaneously. There-
fore, the transformation of sub-branch 1-2 to sub-branch 2-
1 is meaningless. For that reason, in the following part of
this paper, no distinction is made between branches and the
sub-branches. Besides, the configurations of the four-bar pla-
nar mechanism corresponding to each sub-branch in Fig. 2
are shown in Fig. 3. And except for branches and singular-
ity points, the rest of the branch graph (Fig. 2) is the non-
branching area, in which the planar mechanism cannot be as-
sembled. The singularity point (Ting,1994; Ting et al., 2010)
represents the singular configurations of the mechanism. In
these configurations, the mechanism may lose control mo-
mentarily and has zero mechanical advantage. Considering
Figs. 2 and 3, the singularity points 1, 2, 3, and 4 belong to
the forward singularities (the case in which the passive links
are collinear, i.e., dead-center position), separating the sub-
branches and branches, and there are also four inverse singu-
larities, that is, the inverse singularity points 1©, 2©, 3©, and
4© in Fig. 3 (the case in which the input link is collinear with

the link to which it is connected shown). These only affect the
motion range of the mechanism and do not change the mo-
tion performance of the mechanism as they only involve the
input link. Compared to the forward singularities, the inverse
singularities have relatively little impact on the mechanism.
Therefore, in this paper, singularity positions usually refer
to the forward singularities. Last but not least, for the four-
bar planar mechanism at the forward singularity point (such
as, the forward singularity point 2 in Fig. 3a), the mechanism
will degenerate into a stable three-bar mechanism by losing 1
degree of freedom as the input continues to rotate, as shown
in Fig. 3a (red arrow). As for the uncertainty of the mech-
anism at the forward singularity point, this happens when
the input of the mechanism changes because there are sub-
branches in the same branch of the mechanism. The forward
singularity point is the dividing point of the sub-branches of
the mechanism; thus, the probability of the mechanism at the
forward singularity position choosing which sub-branch to
enter is random. For example, in Fig. 2, there are the two
sub-branches, 2-1 and 1-2, in branch I. When the input of
the mechanism at the forward singularity point 2 changes
– that is, changing from the red arrow into the purple ar-
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Table 1. Parameters of the four-bar planar mechanism in Fig. 1.

Parameters a1 a2 a3 a4

Values 26 26.5 14.7 26.7

Figure 2. Branch graph of the four-bar planar mechanism.

row – the mechanism will randomly enter sub-branch 1-2
(Fig. 3a) or sub-branch 2-1 (Fig. 3b). However, in this pa-
per, the later discussed mode conversion is mostly based on
the condition that the input of the mechanism is unchanged,
that is, the degraded degree of freedom mechanism (such
as the stable three-bar mechanism case). More importantly,
even if the input of the mechanism changes when it is at the
forward singularity position, the mechanism randomly en-
ters the sub-branch, but whether the mechanism is converted
from sub-branch 1-2 or sub-branch 2-1 to other branches of
the mechanism, it will not affect the mode conversion result
of the mechanism (see Figs. 3a, b, and 4); thus, the uncer-
tainty of the mechanism at the forward singularity point does
not affect the multi-mode mechanism construction method
proposed in this paper. In short, according to the discussion
above, it is easy to see that the branches are separated by the
forward singularity positions.

2.3 Motion mode and motion state

2.3.1 Motion mode

In this paper, for the planar mechanisms discussed, motion
modes are defined as a set of continuous sequences of in-
stantaneous configurations. They are normally separated by

Table 2. Singularity points the four-bar planar mechanism in Fig. 1.

r 1 2 3 4

θ2 26.4° 104.1° 255.9° 333.6°

θ4 100.9° 141.9° 218° 259.1°

singular configurations, and all of them add up to the con-
figuration space of the mechanism. Considering the above
definition, motion modes have the following three features:
(1) in a motion mode, the mechanism cannot meet any sin-
gularity position; (2) any two motion modes are separated by
the singular configurations of the mechanism, and the link
parameters of the mechanism in different motion modes must
be the same; (3) different motion modes result in distinct
workspaces, which together make up the configuration space.
Comparing the above three features with the discussion about
branches in Sect. 2.2, it is easy to see that the concept of mo-
tion mode is similar to that of a branch. Actually, in this pa-
per, the branch of the mechanism is equal to its motion mode,
and the branch graph, which contains all the branches of the
mechanism, is exactly its configuration space. Here, we take
the four-bar planar mechanism in sub-branch 2-1 (Fig. 3) and
the four-bar planar mechanism in sub-branch 3-4 (Fig. 3) as
the examples for explanation in Fig. 4.

For a certain assembled planar mechanism, the links are
limited by the joints, resulting in only one explicit motion
mode existing at any given time. Therefore, the four-bar pla-
nar mechanism in sub-branch 2-1 has one motion mode,
which is represented by the yellow curve when link AB
serves as the input. The four-bar planar mechanism in sub-
branch 3-4 has another motion mode, i.e., the blue curve,
shown in Fig. 4. However, since the two mechanisms have
the same parameters and a connected relation in terms of
the links, according to loop equations and the definition of
branches, they have the same branch graph. This means that
they have the same configuration space. Based on the three
features of motion modes, to some extent, they can be iden-
tified as two motion modes of the same mechanism. Further-
more, the two motion modes just exactly correspond to two
branches in the branch graph of the mechanism shown in
Fig. 2; i.e., sub-branch 2-1 corresponds to branch I, and sub-
branch 3-4 corresponds to branch II. Considering Fig. 2, the
two branches are separated by singularity points; the mech-
anisms in different branches cannot be directly transformed
into each other unless the joint (the red one; i.e., the mech-
anism meets its singular configuration) is disassembled and
re-equipped. The purple arrow and green arrow indicate the
path of the transition of two motion modes. The green arrow
represents branch I to branch II. The purple arrow represents
branch II to branch I.
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Figure 3. (a) Configuration corresponding to sub-branch 2-1 in Fig. 2. (b) Configuration corresponding to sub-branch 1-2 in Fig. 2. (c) Con-
figuration corresponding to sub-branch 3-4 in Fig. 2. (d) Configuration corresponding to sub-branch 4-3 in Fig. 2. See Table 1 for the
parameters of the four-bar planar mechanism in Fig. 1.

Figure 4. Motion modes of the four-bar planar mechanism in sub-
branch 2-1 and in sub-branch 3-4 and the corresponding transition
of the two motion modes.

2.3.2 Motion state

Motion state is used to describe the motions of the mecha-
nisms. It can describe not only the instantaneous motion but
also the continuous motion of the mechanism. Different mo-
tion states can be distinguished by the changes in motion
characteristics (normally, meeting singularity positions) or
the link parameters. Compared to motion mode, the mecha-
nism described by motion station can change its link parame-
ters, but the mechanism described by motion mode does not.
For a certain planar mechanism, the link parameters in dif-
ferent motion modes must be the same. According to the dis-
cussion above, we know that the four-bar planar mechanism
(Fig. 1) has a branch graph and two motion modes shown
in Figs. 2 and 3a and c. Furthermore, in the motion mode
as shown in Fig. 5a, there exist three kinds of motion states:
configuration 1© (the beginning state, 26.4°< θ2 < 104.1°),
configuration 2© (the singular state, i.e., singularity point 2,
θ2 = 104.1°), and configuration 3© (the singular state, i.e.,
singularity point 1, θ2 = 26.4°). In the motion mode shown
in Fig. 5b, there are three motion states: configuration 4©

(the singular state, i.e., singularity point 3, θ2 = 255.9°),
configuration 5© (the state, 255.9°< θ2 < 333.6°), and con-
figuration 6© (the singular state, i.e., singularity point 4,
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θ2 = 333.6°); these are in addition to configuration 1©, con-
figuration 2©, and configuration 3©. The green arrow and blue
arrow (Fig. 5b) indicate the mode state path that the mecha-
nism encounters in turn during the mode transition.

2.4 Multi-mode modules

Multi-mode modules (MMMs) are the units that can change
their scale or torque under a certain condition. For planar
mechanisms, they are commonly used to help the mechanism
break the constraint singularity configuration to realize the
motion mode transformation (i.e., mode conversion). In our
other paper (Nie et al., 2024), depending on how the con-
straint singularity configuration is changed, MMMs are sim-
ply classified into three types (that is, variable-scale module,
variable-torque module, and combination module) and are all
discussed in detail in single-DOF four-bar MMPMs. Since
this paper focuses on the construction method of single-DOF
MMPMs, MMMs are only a part of the construction process.
Therefore, in the following section of this paper, the tele-
scopic link-type module (II), which belongs to the variable-
scale module, is just used as an example to construct the
corresponding single-DOF MMPMs. In other words, single-
DOF MMPMs containing other multi-mode modules will not
be studied in depth.

The telescopic link-type module (II) is a component re-
sembling a piston, which is composed of an inside link, a
rigid sleeve (note that there is a trapezoid-like cavity in this
sleeve, which requires the module to be pulled by more than
a certain amount before it can be deformed), and a spring.
It can change its link length by pulling the inside link while
the spring provides a restoring force accordingly. Based on
the simple structure, it has the advantages of low cost and re-
liable movement, making it the preferred choice of MMMs.
However, its disadvantage is the spring in the sleeve, which
can cause problems during installation and reduce service
life. The schematic diagram and characteristics are listed in
Table 3.

3 Construction method and multi-mode motion
analysis

3.1 Identification of bifurcation ability

Bifurcation motion of multi-mode mechanisms indicates that
the mechanism can realize multiple motion modes, which is
the first issue to be considered. For single-DOF MMPMs,
since they are normally established based on the correspond-
ing planar mechanisms, the potential bifurcation ability of
these planar mechanisms should be identified first. However,
limited by the flat structures, planar mechanisms commonly
exhibit only one explicit motion mode, and identifying the
remaining motion modes is difficult due to a lack of identifi-
cation methods. Nevertheless, in this paper, as demonstrated
in the above discussion, the meaning of a branch in a branch

graph is equivalent to its motion mode. Therefore, the num-
ber of breaches serves as an index for identifying the bifurca-
tion ability of planar mechanisms. In other words, if a planar
mechanism has two or more branches in its branch graph,
it has the potential for bifurcation motion. For example, the
branches shown in Fig. 2 illustrate this case. If there are no
such branches, then the planar mechanism cannot undergo
bifurcation motion. Additionally, the branch graph is influ-
enced by the link parameters of the loop equations of the
planar mechanism; therefore, only certain scales of planar
mechanisms have potential for bifurcation ability.

3.2 Implementation of mode conversion

Mode conversion is the means or method by which a mech-
anism switches from one motion mode to another. It is
the second main motion characteristic of the multi-mode
mechanism. In this paper, we utilize the above-mentioned
MMMs to achieve mode conversion and to form correspond-
ing single-DOF MMPMs. For planar mechanisms, the pro-
cess of implementing mode conversion is as follows. Firstly,
after satisfying the bifurcation ability of planar mechanisms,
the singularity points (forward singularities) should be lo-
cated by solving the loop equations. Then, the continuity of
the two branches near the singularity point will be checked.
If the range of the abscissa or ordinates of two branches
near the singularity points increases unidirectionally, the two
branches are continuous. For example, in Fig. 2, the sin-
gularity points are at points 2 and 3, the two branches are
branch I and II, and the abscissa values between branch I
(26.4°< θ2 < 104.3°) and branch II (255.9°< θ2 < 333.6°)
are unidirectionally increasing. Therefore, the two branches
(branch I and II) are continuous. Finally, some links in the
mechanism are replaced by the MMMs, usually the driven
link closest to the input link, such as the case in Fig. 7.
By changing the scale or torque of the MMMs, the mecha-
nism can overcome constraint singularity configurations and
achieve mode conversion. What is worth noting is that the
number of MMMs to be replaced is not as much as pos-
sible but should be selected according to the different re-
quirements of the production needs for the mechanism mode
so as to form the structural configuration with the best cost
and function. Last but not least, since the mode conversion
process only takes place in the non-branching area (such as
the case in Fig. 7) in this paper, it means that the scale of
the mechanism structure is unchanged (i.e., the loop equa-
tions, which affect the kinematic characteristics of the mech-
anism discussed in Sect. 2.1, are the same) in different mo-
tion modes. In other words, the replacement of multi-mode
modules hardly affects the mechanism movement in their re-
spective modes.
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Figure 5. (a) A four-bar planar mechanism. (b) Another four-bar planar mechanism.

Table 3. Schematic diagram and characteristics of the telescopic link-type module (II).

Module type Sub-type Schematic diagram Characteristics

Variable-scale Telescopic link- 1. Simple structure
module type module (II) 2. The spring provides a restoring force when stretched

3. Preferred choice of MMMs

3.3 Process of constructing a single-degree-of-freedom
multi-mode planar mechanism

As mentioned previously, MMPMs are generally based on
the structural configuration of traditional planar mechanisms,
and the main difference between MMPMs and traditional
planar mechanisms lies in bifurcation motion and mode con-
version. Therefore, the key to constructing MMPMs is to en-
able traditional planar mechanisms to exhibit these two mo-
tion characteristics. In this paper, for traditional planar mech-
anisms, (1) to obtain bifurcation ability, the corresponding
loop equation and branch graph are established and used to
determine whether the traditional planar mechanisms can be
transformed into the corresponding MMPMs. If there are at
least two branches in the branch graph, then it is possible for
the planar mechanisms to become MMPMs. (2) To obtain
mode conversion ability, firstly, the singular points of tradi-
tional planar mechanisms are identified by the loop equa-
tions. Then, the particular links or components suitable for
replacement are located when the mechanisms are at the sin-
gular configuration. Finally, based on given requirements for
motion modes, appropriate MMMs are chosen and replaced
to construct MMPMs.

To facilitate understanding, the following steps are sum-
marized, and the four-bar planar mechanism shown in Fig. 1

is used as an example for a detailed explanation. The flow
chart for constructing single-DOF MMPMs is shown in
Fig. 6.

1. Establish the loop equation of the traditional
planar mechanism. After that, choose the input and out-
put angles and obtain the equation of the one-to-one
correspondence between the input joint angle and the
output joint angle. Subsequently, based on the concept
of joint rotation space, draw the corresponding branch
graph with Maple. For the four-bar planar mechanism
in Fig. 1, the loop equation is Eq. (1); the branch graph
is shown in Fig. 2.

2. Check whether the planar mechanisms can be
transformed into the corresponding MMPMs based on
the number of branches in the branch graph. If the num-
ber of branches≥ 2 (i.e., the case in Fig. 2 for the four-
bar planar mechanism), go to step (3). Otherwise, ad-
just the link parameters in the above loop equation until
there exist at least two branches, and then go to step (3).

3. Determine the current configuration of the tra-
ditional planar mechanism belonging to a particular
branch in the branch graph according to the input range.
Then, identify all the singularity points by solving the
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loop equations. For the four-bar planar mechanism in
Fig. 1, all the singularity points are listed in Table 2.
The current configuration of the four-bar planar mecha-
nism (Fig. 1) corresponds to branch I in Fig. 2.

4. Select the corresponding other branches and
right singularity points for mode conversion based on
the requirement of the mechanism function and the
number of motion modes. This step is generally consid-
ered to be key in determining the excellent performance
of the finally constructed MMPMs. However, since this
problem involves the performance of the mechanism
and is very complicated with many factors, this paper
aims to put forward the construction method; thus, it
will not be discussed in depth in this paper. As far as
mode conversion is concerned in this paper, all branches
are involved and not just some branches for conve-
nience. For the four-bar planar mechanism in Fig. 1,
since there only two branches in the branch graph, the
other branch can only be branch II, and the correspond-
ing singularity point can only be point 2; the input di-
rection is shown in Fig. 1.

5. Based on step (4), obtain the corresponding sin-
gular configuration of the mechanism and identify the
suitable replacement link or component. For the four-
bar planar mechanism in Fig. 1, the singular configu-
ration is the motion state configuration 2©, and the re-
placement link is link BC.

6. Choose the appropriate MMMs and perform the
replacement operation to construct the corresponding
MMPMs based on motion modes and input conditions.
For the four-bar planar mechanism in Fig. 1, the re-
sulting four-bar MMPMs with the proposed method are
shown in Fig. 7 and discussed in Sect. 3.4.

3.4 Multi-mode motion analysis

Multi-mode motion analysis mainly involves analyzing mo-
tion modes of single-DOF MMPMs and the transformation
process between motion modes. Based on the multi-mode
mechanism construction method described in Sect. 3.3, the
motion mode of the mechanism has been identified based on
the loop equations and branch graphs. Therefore, in the fol-
lowing part of this paper, the mode motion analysis mainly
refers to how the mechanism realizes the transformation be-
tween multiple motion modes. Still taking the four-bar pla-
nar mechanism in Fig. 1 as our example, when the mecha-
nism is operated according to Sect. 3.3, the corresponding
single-DOF four-bar MMPM with the telescopic link-type
module II is shown in Fig. 7a. Based on the definition of mo-
tion mode and motion state, there exist two motion modes
(i.e., branch I and branch II). Although each motion mode
has two sub-branches – that is, there exist four combina-
tions – only two sub-branches can appear at the same time.

Figure 6. Flow chart for constructing four-bar multi-mode planar
mechanisms.

The detailed explanation can be found in Sect. 2.2. These
four combinations are similar for multi-mode motion analy-
sis; therefore, this section will only consider sub-branch 2-
1 and sub-branch 3-4. Furthermore, there exist at least nine
motion states (Fig. 7a): configurations 1©, 2©, 3©, 4©, 5©, 6©,
7©, 8©, and 9©. Configuration 1© represents the continuous-

motion state within the input limit range of branch I. Con-
figuration 2© represents the motion state at the input limit
position of branch I (the forward singularity point 2, red ar-
row input). Configuration 3© represents the motion state at
the input limit position of branch I (the forward singular-
ity point 1, purple arrow input). Configuration 7© represents
the motion state in the non-branching area with an increas-
ing scale. At this time, the length of the MMM is the local
maximum. Configuration 4© represents the motion state at
the input limit position of branch II (the forward singularity
point 3, purple arrow input). Configuration 5© represents the
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motion state within the input limit position of branch II. Con-
figuration 6© represents the motion state at the input limit po-
sition of branch II (the forward singularity point 4, red arrow
input). Configurations 8© and 9© represent the motion state
in the non-branching area with an increasing scale. Note that
they are the motion states which have the maximum scale in
the non-branching area. Configuration 8© corresponds to the
red arrow input, and configuration 9© corresponds to the pur-
ple arrow input. As the four-bar MMPM only has two motion
modes, there are only two types of mode transitions, namely,
(1) branch I to branch II and (2) branch II to branch I, as
shown in Fig. 7a, according to different input conditions. For
simplicity, the case with the red arrow input is discussed in
the following.

(1) Branch I to branch II. When the four-bar MMPM is
switched from branch I to branch II, configurations 1©, 2©,
7©, 4©, and 5© are involved, and the input direction is the

red arrow in Fig. 7. The detailed motion decomposition is
as follows. In the motion states of configuration 1© and con-
figuration 2©, the length of the telescopic link-type module
(II) is the same as the original size of link BC (Fig. 1). At
this time, the four-bar MMPM is in branch I. In the pro-
cess of configuration 2© transforming to configurations 7©,
4©, and 5©, the telescopic link-type module (II) is in the

variable-scale stretching state, and the length of the tele-
scopic link-type module (II) becomes the local longest one
in configuration 7©. In the process of configuration 7© trans-
forming to configuration 4©, the telescopic link-type mod-
ule (II) will first go through the local longest stretch, and
then it is gradually compressed (configuration M in Fig. 7b)
until it reaches the original size (configuration 4© in Fig. 7b)
under the spring force of the MMM. Finally, the mechanism
will stay in branch II (configuration 5© in Fig. 7a).

(2) Branch II to branch I. After successfully transforming
the four-bar MMPM from branch I to branch II, as the in-
put link continues to rotate, the MMPM can be directly con-
verted back to branch I by going through configurations 6©,
8©, and 3©. The detailed motion decomposition of transform-

ing from branch II to branch I is as follows. In the motion
states of configuration 5© and configuration 6©, the length of
the telescopic link-type module (II) is the same as the origi-
nal size of link BC (Fig. 1), and the four-bar MMPM is still
in Branch II. In the process of configuration 6© transform-
ing to configuration 1©, the telescopic link-type module (II)
is in the variable-scale stretching state, and the length of the
telescopic link-type module (II) becomes the longest one in
configuration 8©. At this time, the link AB is horizontally co-
incident with the link AD, and the longest MMM length a3 is
equal to a4; in other words, a3 ≥ a4 > a2 > a1. Based on the
N-bar rotation theorem (Ting and Liu, 1991; Nie et al., 2022),
the link AD is the shortest link, and the link AB and the link
CD can be the cranks. Furthermore, the MMMs are still the
maximum length in configurations N and P (where the link
CD is horizontal) in Fig. 7b, and after configuration P, the
telescopic link-type module (II) will go through the longest

stretch, and then it is gradually compressed (configuration Q
in Fig. 7b) until it reaches the original size (configuration 3©

in Fig. 7a) with the help of the restoring force provided by
the spring in this module. Finally, the mechanism will stay in
branch I.

4 Single-degree-of-freedom multi-mode planar
mechanisms with up to eight links

4.1 Single-degree-of-freedom six-bar three-mode
planar mechanisms

Single-DOF six-bar planar mechanisms are common in the
design of mechanical equipment, except for the single-DOF
four-bar planar mechanism. In this paper, in order to prove
the effectiveness of the proposed method, a Stephenson six-
bar planar mechanism (Fig. 8) and a Watt six-bar planar
mechanism (Fig. 11) are used as the component basis to
construct the corresponding multi-mode mechanisms; see the
Stephenson six-bar three-mode planar mechanism shown in
Fig. 10 and the Watt six-bar three-mode planar mechanism
in Fig. 13.

4.1.1 Single-degree-of-freedom Stephenson six-bar
three-mode planar mechanism

1. Loop equation established

For the Stephenson six-bar planar mechanism in Fig. 8, the
input joint is at joint A (i.e., the angle θ2 is the input angle);
two loop equations, which contain the all kinematic informa-
tion of the mechanism, are shown as follows. The detailed
calculation process for obtaining the one-to-one correspon-
dence relationship equation between input and output joints
or two input joints can be found in the published papers of
our team (Ting and Dou, 1996; Ting et al., 2010; Wang et
al., 2010).

For loop ABCD, we have

a2e
iθ2 + a3e

iθ3 − a1e
iα
− a4e

iθ4 = 0, (5)

and for the loop ABEFG, we have,

a2e
iθ2 + a9e

i(β+θ5−2π )
− a7− a6e

iθ6 − a5e
iθ5 = 0. (6)

2. Construction of Stephenson six-bar three-mode planar
mechanism

According to the discussion in Sect. 3, constructing single-
DOF MMPMs involves first identifying the bifurcation abil-
ity of the corresponding planar mechanism and then replac-
ing the appropriate links or components with suitable MMMs
to achieve mode conversion. For bifurcation ability, based on
the loop equations above, the corresponding branch graph of
the Stephenson six-bar planar mechanism can be obtained
using Maple. Adjusting the link parameters of the Stephen-
son six-bar planar mechanism, a branch graph with three
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Figure 7. Multi-mode motion analysis of single-DOF four-bar MMPMs.

Figure 8. Kinematic graph of the Stephenson six-bar planar mech-
anism.

branches (branches I, II, and III) is shown in Fig. 9 (since
the branch graph belongs to the 2π cycle of trigonometric
functions, the two branch graphs can be shown as in Fig. 9
for the sake of intuitive analysis). In Fig. 9, the red curve is
the joint rotation space of the four-bar loop ABCD, and the
blue curve and inside part (light-gray area) are the joint ro-
tation space of the five-bar loop DCEFG. The corresponding
parameters of the Stephenson six-bar planar mechanism are
listed in Table 4. For mode conversion, firstly, the singularity
points are obtained by solving loop equations, that is, singu-
larity points 1, 2, 3, 4, 5, 6, and 7 in Table 5. Furthermore,
it is easy to see that the points 5′, 6′, and 7′ are the same as
the points 5, 6, and 7 in Fig. 9, and the three branches are
separated by the singularity points 1, 2, 3, 4, 5, and 6 (branch

Figure 9. Branch graph of the Stephenson six-bar planar mecha-
nism (−2π ≤ θ2 ≤ 2π ).

points) listed in Table 5. In addiction, point 7 (Table 5) con-
stitutes the sub-branch points that cannot affect the branches.
Secondly, according to the singularity points and the input
condition of the Stephenson six-bar planar mechanism, the
continuities of the three branches are checked. Obviously,
they are continuous. Then, the replaced links are chosen, that
is, the links CD and EF, and the MMMs, i.e., the telescopic
link-type module (II), are replaced as shown in Fig. 10. In
Fig. 10, the structures of the telescopic link modules are not
drawn in detail; i.e., they are represented as the purple links
for the sake of simplification.
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Table 4. Parameters of the Stephenson six-bar planar mechanism in Fig. 14.

Parameters a1 a2 a3 a4 a5 a6 a7 a9 α β

Value 1.5 2.6 1.2 1.4 1.4 4.2 4.3 3.2 25° 7°

Figure 10. Several configurations of the Stephenson six-bar planar mechanism: (a) configuration 1© (−18.8°< θ2 < 27.6°), (b) con-
figuration 2© (θ2 = 27.6°), (c) configuration 3© (54.3°< θ2 < 95.2°), (d) configuration 4© (θ2 =95.2°), (e) configuration 5© (310.9°<
θ2 < 18.8°+360°), and (f) configuration 6© (θ2 = 18.8°+360°).

Table 5. Singularity points of the Stephenson six-bar planar mech-
anism.

r 1 2 3 4 5 6 7

θ2 18.8° 95.2° 54.3° 27.6° 341.2° 315.5° 310.9°
θ3 273.9° 294.6° 203.5° 138.1° 76.3° 84.5° 100.6°

3. Multi-mode motion analysis

The Stephenson six-bar MMPM (Fig. 10) has mainly six
motion states: configurations 1©, 2©, 3©, 4©, 5©, and 6©

when the input link is link AB. Configuration 1© represents
the continuous-motion state within the input limit range of
branch II (Fig. 10a), configuration 2© represents the motion
state at the singularity position of branch II (the passive links
EF and FG come across in a straight line, i.e., the singu-
larity point 4 in Fig. 10b), configuration 3© represents the

continuous-motion state within the input limit of branch I
(Fig. 10c), configuration 4© represents the motion state at the
singularity position of branch I (the passive links EF and FG
come across in a straight line, i.e., the singularity point 2 in
Fig. 10d), configuration 5© represents the continuous-motion
state within the input limit of branch III (Fig. 10e), and con-
figuration 6© represents the motion state at the singularity po-
sition of branch III (the passive links EF and FG come across
in a straight line, i.e., the singularity point 1 in Fig. 10f).

As the Stephenson six-bar MMPM only has three mo-
tion modes (branches), there are only six types of mode
transitions, namely, (1) branch II→ branch I, (2) branch
I→ branch III, (3) branch III→ branch II, (4) branch
I→ branch II (5) branch III→ branch I, and (6) branch
II→ branch III. Considering the above mode transitions, it is
easy to find the fact that the first three can form the counter-
clockwise loop of mode conversion (i.e., branch II→ branch
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I → branch III → branch II in Fig. 9; here, the symbol
→ shows the direction of motion state transformation), and
the last three can establish the clockwise loop (branch II→
branch III→ branch I→ branch II). If the input direction is
given as a red arrow, indicating that the input is in full rota-
tion, based on structural characteristics of the telescopic link
module (I), the motion state loop configuration 1© (branch
II) → configuration 2© → configuration 3© (branch I) →
configuration 4©→ configuration 5© (branch III)→ config-
uration 6©→ configuration 1© can be formed. Since the only
difference between the counterclockwise loop and the clock-
wise loop is the input direction, the following parts of the
paper only discuss the counterclockwise loop case.

(1) Branch II to branch I. In the motion state configura-
tions 1© and 2©, the telescopic link modules are in the origi-
nal size state. The mechanism is in branch II (−18.8° (341.2–
360°)< θ2 < 27.6°). During the process of configuration 2©

transforming into configuration 3©, firstly, the telescopic link
module EF is in the variable-scale stretching state under the
traction action reaching the longest length, and then it is com-
pressed to the original size. Finally, the mechanism reaches
configuration 3© (54.3°< θ2 < 95.2°), that is, branch I.

(2) Branch I to branch III. In the process of configura-
tion 4© transforming into Configuration 5©, the telescopic
link module EF undergoes the process of stretching to the
bottom and then compressing to the original size. Then the
mechanism moves into branch III.

(3) Branch III to branch II. In the process of configu-
ration 5© transforming into configuration 1©, as the input
link continues to rotate, the mechanism will meet configu-
ration 6©, and then the telescopic link module EF is stretched
to break the singularity position (the configuration of sin-
gularity point 5), leading to the MMPM transforming from
branch III to branch II. Particularly worth mentioning is that
the singularity point 7 in branch III is the sub-branch point;
that is, there are two sub-branches (sub-branch 1-7 and sub-
branch 7-6). As is known from the discussion in Sect. 2.2,
they can appear at the same time. Therefore, in this case, the
sub-branch 1-7 is chosen, which mean the singularity point 1
(configuration 6©) will be met in the in the process of config-
uration 5© transforming into configuration 1©.

According to the discussion above, considering the input
direction given (red arrow), as shown in Fig. 10, the Stephen-
son six-bar MMPM only meets the singularity points 4, 2,
and 1 or 6 in order (forming the branch II → branch I →
branch III → branch II loop), and only the telescopic link
module EF works, but the singularity points 3, 5, and 7 are
missing. The reason is that the configuration of the mecha-
nism is different under conditions of different input direction
(see the discussion of the four-bar case in Fig. 7a). In other
words, the Stephenson six-bar MMPM will only meet the
singularity points 3, 5, and 7 and will lose the points 4, 2,
and 1 or 6 if the input direction is reversed (purple arrow)
in Fig. 10 (forming the branch II→ branch III→ branch I
→ branch II loop), and at the singularity point 7, the tele-

Figure 11. Kinematic graph of the Watt six-bar planar mechanism.

scopic link module CD will be used to break the constraint
singularity of the mechanism.

In short, using the proposed method for the Stephenson
six-bar MMPM, the mechanism will transform from branch
I to branch II when the mechanism breaks through the sin-
gularity point 4 (Fig. 10b). When the mechanism breaks
through the singularity point 2 (Fig. 10d), the mechanism
will switch from branch I to branch III.

4.1.2 Single-degree-of-freedom Watt six-bar
three-mode planar mechanism

1. Loop equation established

For the Watt six-bar planar mechanism in Fig. 11, the input
joint is at the joint A (i.e., the angle θ2 is the input angle); two
loop equations, which contain the all kinematic information
of the mechanism, are shown as follows. For the detailed cal-
culation process, the reader can refer to the published papers
of our team (Wang et al., 2014).

For the loop ABCD, we have

a2e
iθ2 + a3e

iθ3 − a1e
iα
− a4e

iθ4 = 0, (7)

and for the loop ABEFG, we have

a2e
iθ2 + a3e

iθ3 + a9e
i(θ4+β−π )

− a7− a5e
iθ5 − a6e

iθ6 = 0. (8)

2. Construction of Watt six-bar three-mode planar
mechanism

Similarly to the Stephenson six-bar planar mechanism case,
to construct the Watt six-bar three-mode planar mechanism,
the two conditions regarding bifurcation motion and mode
conversion also need to be satisfied. (1) For bifurcation
motion, by adjusting the link parameters of the Watt six-
bar planar mechanism, a branch graph with three branches
(branches I, II, and III) is shown in Fig. 12. In Fig. 12, the red
curve is the joint rotation space of the four-bar loop ABCD,
and the blue curve and inside part (light-gray area) are the
joint rotation space of the virtual five-bar loop ABEFG. The
corresponding parameters of the Watt six-bar planar mecha-
nism are listed in Table 6. For mode conversion, the singu-
larity points are obtained solving loop Eqs. (7) and (8), that
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Figure 12. Branch graph of the Watt six-bar planar mechanism
(−π ≤ θ2 ≤ π ).

is, singularity points 1, 2, 3, 4, 5, 6, m, and n in Table 7. Ad-
ditionally, the three branches are separated by the singularity
points 1, 2, 3, 4, 5, and 6. These points are the branch points.
Furthermore, points m and n are the sub-branch points. In
addiction, the replaced links are the links BC and EF, and the
corresponding Watt six-bar three-mode planar mechanisms
are obtained and shown in Fig. 13 with the MMMs, i.e., tele-
scopic link-type module (II).

3. Multi-mode motion analysis

The Watt six-bar MMPM (Fig. 13) has mainly six mo-
tion states: configurations 1©, 2©, 3©, 4©, 5©, and 6© when
the input link is link AB. Configuration 1© represents the
continuous-motion state within the input limit range of
branch II (Fig. 13a), configuration 2© (Fig. 13b) represents
the motion state at the singularity position of branch II (the
passive links EF and FG come across in a straight line, i.e.,
the singularity point 4 in Fig. 12), configuration 3© represents
the continuous-motion state within the input limit of branch
I (Fig. 13c), configuration 4© (Fig. 13d) represents the mo-
tion state at the singularity position of branch I (the passive
links BC and CD come across in a straight line, i.e., the sin-
gularity point n in Fig. 12), configuration 5© represents the
continuous-motion state within the input limit of branch III
(Fig. 13e), configuration 6© (Fig. 13f) represents the motion
state at the singularity position of branch III (the passive links
EF and FG come cross in a straight line, i.e., the singularity
point 2 in Fig. 12).

Similarly to the Stephenson six-bar MMPM discussed
above, the Watt six-bar MMPM also has three motion modes
(branches); there are only six types of mode transitions,

namely, (1) branch II to branch I, (2) branch I to branch
III, (3) branch III to branch II, (4) branch I to branch II
(5) branch III to branch I, and (6) branch II to branch III.
Due to the same reason as the above case, here we only dis-
cuss the counterclockwise loop of the mode conversion case
(i.e., branch II → branch III → branch I → branch II in
Fig. 12); the corresponding motion state loop is configura-
tion 1© (branch II)→ configuration 2©→ configuration 3©

(branch I)→ configuration 4© → configuration 5© (branch
III)→ configuration 6©→ configuration 1© loop.

(1) Branch II to branch III. In the motion state config-
urations 1© and 2©, the telescopic link modules are in the
original size state. The mechanism is in branch II (−25.3°<
θ2 < 21.8°). During the process of configuration 2© trans-
forming into configuration 3©, firstly, the telescopic link
modules EF and BC are in the variable-scale stretching state
under the traction action reaching the longest length, and then
they are compressed to the original size (what is worth not-
ing is that, in the process of mode conversion, the dimension
change is generally completed by a single MMM, but in the
above case, two MMMs are involved; the reason for this is
that the passive links BC and CD also appear collinearly dur-
ing the rotation of the mechanism, which leads to the emer-
gence of new singularity). Finally, the mechanism reaches
configuration 3© (49.7°< θ2 < 173.6°), that is, branch III.

(2) Branch III to branch I. In the process of configura-
tion 4© transforming into configuration 5©, the telescopic link
module BC undergoes the process of stretching to the bottom
and then compressing to the original size. Then the mecha-
nism moves into branch I.

(3) Branch I to branch II. In the process of configu-
ration 5© transforming into configuration 1©, as the input
link continues to rotate, the mechanism will meet configu-
ration 6©, and then the telescopic link module EF is stretched
to break the constraint singularity configuration (i.e., the
configuration of singularity point 2), leading to the MMPM
transforming from branch I into branch II.

According to the discussion above, considering the input
direction given (red arrow), as shown in Fig. 13, the Watt
six-bar MMPM only meets the singularity points 4, n, and
2 in order (forming the branch II→ branch III→ branch I
→ branch II loop), and the singularity points 3, m, and 6 are
missing. The reason is that the configuration of the mech-
anism is different under conditions of different input direc-
tions. In other words, the Watt six-bar MMPM will only meet
the singularity points 3, m, and 6 and will lose the points 4,
n, and 2 if the input direction is reversed (purple arrow), as
shown in Fig. 13. Note that 1-m and m-2 are the two sub-
branches of branch I, which cannot exist at the same time;
for that reason, the singularity points 1 and 2 can only appear
once, and this paper takes singularity point 2 as an example.
The same thing happened in the singularity points 5 and 6.
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Table 6. Parameters of the Watt six-bar planar mechanism in Fig. 12.

Parameters a1 a2 a3 a4 a5 a6 a7 a9 α β

Value 8.0 6.0 6.0 7.0 3.0 7.0 5.27 2.43 37.62° 79.68°

Table 7. Singularity points of the Watt six-bar planar mechanism.

r 1 2 3 4 5 6 m n

θ2 37.3° −96.3° −25.3° 21.8° 49.7° 150.5° −98.3° 173.6°
θ3 150.5° 49.7° 21.8° −25.3° −96.3° 37.3° 56.3° 18.9°

4.2 Single-degree-of-freedom eight-bar four-mode
planar mechanisms

Single-DOF eight-bar planar mechanisms have 16 types of
mechanism configurations based on Pennock and Hasan
(2002). They usually consist of three loops. These loops
may be composed of four bars, five bars, or even more bars.
However, in this paper, because the branch graph of the
mechanism is obtained by solving the corresponding input–
output loop equations, only some single-DOF eight-bar pla-
nar mechanisms containing at least a four-bar loop and five-
bar loops are suitable for this method. For that reason, the
single-DOF eight-bar planar mechanism in Fig. 14, which
consists of a four-bar loop and two five-bar loops, is taken as
an example to explain the construction of single-DOF eight-
bar MMPM.

1. Loop equation established

For the eight-bar planar mechanism in Fig. 14, the input joint
is at the joint D (i.e., the angle θ5 is the input angle); three
loop equations, which contain the all kinematic information
of the mechanism, are shown as follows. For the detailed cal-
culation process, the reader can refer to the published papers
of our team (Wang and Ting, 2002).

For loop DCBA, we have

a5e
iθ5 + a6e

iθ6 − a8e
i(α1+α2−π )

− a7e
iθ7 = 0. (9)

For loop EFGCD, we have

a2e
iθ2 + a3e

iθ3 + a4e
i(π+β2+θ6)

− a1e
iα1 − a5e

iθ5 = 0. (10)

For loop DCBHIJAD, we have

a5e
iθ5 + a6e

iθ6 + a10e
i(π−β3+θ6)

− a8e
i(π−α3−α4)

− a13e
i(2π−α4)

− a12e
iθ12 − a11e

iθ11 = 0. (11)

2. Construction of eight-bar four-mode planar mechanism

Firstly, to satisfy the requirement of bifurcation motion, for
the eight-bar planar mechanism in Fig. 14, the branch graph
with four branches (branches I, II, III, and IV) is shown in

Table 8. Parameters of the eight-bar planar mechanism in Fig. 15.

a0 15.32 a11 5.8
a1 4.44 a12 8.6
a2 10.6 a13 4.85
a3 4.0 α1 32.0°
a4 7.12 α2 155.0°

Parameters Value a5 6.2 α3 129.0°
a6 4.0 α4 44.0°
a7 4.8 β1 36.0°
a8 8.0 β2 161.0°
a9 13.6 β3 109.0°
a10 6.63 β4 53.0°

Fig. 15. In Fig. 15, the red curve is the joint rotation space
(JRS) of the four-bar loop DCBA; the blue curve and in-
side part (light-blue area) are the JRS of the five-bar loop
EFGCD; the green curve and inside part (light-green area)
are the JRS of the seven-bar loop DCBHIJAD (it is actually a
virtual five-bar loop); and the common part of the three JRSs
is the actual JRS where the mechanism can move, that is, the
four branches: branch I, II, III, and IV. The corresponding
parameters of the eight-bar planar mechanism are listed in
Table 8. Secondly, for the requirement of mode conversion,
the singularity points are obtained by solving loop Eqs. (9),
(10), and (11), that is, singularity points 1, 2, 3, 4, 5, 6, 7,
8, m, and n in Table 9. The singularity points 1, 2, 3, 4, 5,
6, 7, and 8 are the branch points, which separate the four
branches. Points m and n are the sub-branch points. In ad-
diction, the replaced links are the links FG, BA, and HI, and
the corresponding eight-bar four-mode planar mechanisms
are obtained and shown in Fig. 16 with the MMMs, i.e., tele-
scopic link-type module (II).

3. Multi-mode motion analysis

The eight-bar MMPM (Fig. 16) has mainly eight motion
states: configurations 1©, 2©, 3©, 4©, 5©, 6©, 7©, and 8© when
the input link is link DC (i.e., the red link). Configuration 1©

represents the continuous-motion state within the input limit
range of branch I (Fig. 16a), configuration 2© (Fig. 16b) rep-
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Figure 13. Several configurations of the Watt six-bar planar mechanism: (a) configuration 1© (−25.3°< θ2 < 21.8°), (b) configura-
tion 2© (θ2 = 21.8°), (c) configuration 3© (49.7°< θ2 < 173.6°), (d) configuration 4© (θ2 = 173.6°), (e) configuration 5© (−98.3°+ 360°<
θ2 <−96.3°+ 360°), and (f) configuration 6© (θ2 =−96.3°+ 360°).

Table 9. Singularity points of the eight-bar planar mechanism.

r 1 2 3 4 5 6 7 8 m n

θ5 −68.2° −56.6° −20.1° 1.3° 66.0° 82.3° 1.9° −19.1° −68.4° 82.4°
θ6 45.6° 86.6° 132.4° 128.0° −1.5° −39.6° −79.3° −22.3° 50.0° −36.0°

Figure 14. Kinematic graph of an eight-bar planar mechanism.

resents the motion state at the singularity position of branch
I (the passive links HI and IJ come across in a straight line,
i.e., the singularity point 4 in Fig. 15), configuration 3© rep-
resents the continuous-motion state within the input limit of
branch IV (Fig. 16c), configuration 4© (Fig. 16d) represents
the motion state at the singularity position of branch IV (the
passive links BC and AB come across in a straight line, i.e.,
the singularity point n in Fig. 15), configuration 5© represents
the continuous-motion state within the input limit of branch
II (Fig. 16e), and configuration 6© (Fig. 16f) represents the
motion state at the singularity position of branch II (the pas-
sive links HI and IJ come across in a straight line, i.e., the
singularity point 2 in Fig. 15).
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Figure 15. Branch graph of the eight-bar planar mechanism.

According above stated, the eight-bar MMPM has four
motion modes (branches); in general, there are only eight
types of mode transitions, namely, (1) branch I to branch
IV, (2) branch IV to branch II, (3) branch II to branch
III, (4) branch III to branch I, (5) branch I to branch
III, (6) branch III to branch II, (7) branch II to branch
IV, and (8) branch IV to branch I. However, in this case,
since this MMPM has the common part of the input an-
gle range between branch I (−20.1°< θ5 < 1.3°) and branch
III (−19.1°< θ5 < 1.9°), in a cycle (2π ), the transformation
from branch III into branch I cannot proceed directly; that
is, counterclockwise loop (formed by (1), (2), (3), and (4)) of
branch I→ branch IV→ branch II→ branch III→ branch I
cannot be formed. Instead, the following loop of branch I→
branch IV→ branch II→ branch III→ branch IV→ branch
II→ branch III is formed. Furthermore, for the same reason,
the probability of the MMPM switching from branch IV to
branch I and branch III is random when the MMPM is in a
clockwise loop (i.e, branch I→ branch III→ branch II→
branch IV→ branch I). That is a very interesting question,
but because it is not the focus of this article, the discussion is
not expanded. Here, we only discuss the simple motion state
loop of configuration 1© → configuration 2© → configura-
tion 3©→ configuration 4©→ configuration 5©→ configu-
ration 6©→ configuration 6©→ configuration 7©→ config-
uration 8©→ configuration 3©, that is, branch I→ branch IV
→ branch II → branch III → branch IV → branch II →
branch III.

(1) Branch I to branch IV. In the motion state configu-
rations 1© and 2© , the telescopic link modules are in the
original size state. The mechanism is in branch I (−20.1°<
θ5 < 1.3°). During the process of configuration 2© transform-

ing into configuration 3©, firstly, the telescopic link module
HI is in the variable-scale stretching state under the traction
action reaching the longest length, and then it is compressed
to the original size. Finally, the mechanism reaches configu-
ration 3© (66.0°< θ2 < 82.4°), that is, branch IV.

(2) Branch IV to branch II. In the process of configura-
tion 4© transforming into configuration 5©, the telescopic link
module AB undergoes the process of stretching to the bottom
and then compressing to the original size. Then the mecha-
nism moves into branch III.

(3) Branch II to branch III. In the process of configu-
ration 5© transforming into configuration 7©, as the input
link continues to rotate, the mechanism will meet configu-
ration 6©, and then the telescopic link module HI is stretched
to break the constraint singularity configuration (i.e., the
configuration of singularity point 2), leading to the MMPM
transforming from branch II to branch III.

(4) Branch III to branch IV. In the process of configura-
tion 7© transforming into configuration 3©, the mechanism
will meet configuration 8©, and then the telescopic link mod-
ule FG is stretched to break the constraint singularity config-
uration (i.e., the configuration of singularity point 7), leading
to the MMPM transforming from branch III into branch IV.

The remaining mode transitions of branch IV to branch II
and branch II to branch III in the above-mentioned simple
motion state loop are the same as in the cases of (2) branch
IV to branch II and (3) branch II to branch III.

According to the discussion above, considering the input
direction given (red arrow), as shown in Fig. 16, the eight-bar
MMPM only meets the singularity points 4 and n or 5, 2, and
7 in order (forming the branch I→ branch IV→ branch II
→ branch III→ branch IV→ branch II→ branch III loop),
and the singularity points 8 and m or 1, 3, and 6 are missing.
The reason is that the configuration of the mechanism is dif-
ferent under conditions of different input directions. In other
words, the eight-bar MMPM will only meet the singularity
points 8, m, 3, and 6 and will lose the points 4, n, 2, and 7
if the input direction is reversed (purple arrow), as shown in
Fig. 16. Normally, since the singularity points m and n are
sub-branch points, the singularity points 1 and 2 can appear
at the same time. The singularity points 5 and 6 experienced
the same occurrence. However, in this case, except for the
above situation, the singularity points 1 and m and 5 and n,
which are the two extreme points of the same sub-branches,
also cannot exist at the same time in a mode transition. The
reason for this is that the corresponding angles θ5 of the two
are too close, causing the mechanism to be bound to miss one
of them in the mode conversion. As a result, the singularity
points 1 and m can only appear once, and this paper takes
singularity point m as an example. The same thing happened
in the singularity points 5 and n.
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Figure 16. Several configurations of the eight-bar planar mechanism: (a) configuration 1© (−20.1°< θ5 < 1.3°), (b) configura-
tion 2© (θ5 = 1.3°), (c) configuration 3© (66.0°< θ5 < 82.4°), (d) configuration 4© (θ5 = 82.4°), (e) configuration 5© (−68.4°+ 360°<
θ5 <−56.6°+ 360°), (f) configuration 6© (θ5 =−56.6°+ 360°), (g) configuration 7© (−19.1°+ 360°< θ5 < 1.9°+ 360°), and (h) config-
uration 8© (θ5 = 1.9°+ 360°).
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5 Conclusions

Based on loop equations and branch graphs, this paper pro-
poses a method to construct some single-DOF MMPMs by
replacing links or components of the singular configuration
of corresponding planar mechanisms with the MMMs. The
conclusions and advantages can be summarized as follows.

1. Due to the corresponding bifurcation analysis and mode
conversion of this method only depending on the branch
graphs, singularity points, and the replacing MMMs (all
three are common to planar mechanisms), the proposed
method is straightforward and visible and can be widely
applicable to single-DOF MMPM.

2. For the potential bifurcation and mode conversion abil-
ity of planar mechanisms, this paper provides the spe-
cific identification index (i.e., the number and continuity
of branches), which will give a new design direction and
powerful design guidance for the design of MMPMs.

3. A single-DOF four-bar MMPM, a single-DOF Stephen-
son six-bar three-mode planar mechanism, a Watt six-
bar three-mode planar mechanism, and an eight-bar
four-mode planar mechanism are constructed. The last
three MMPMs are formed for the first time. The results
provide more choices for the available configuration and
its application.
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