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Time-varying reliability assessment of parallel systems of beam structures with crack defects is of
great importance for structural safety evaluation. In this paper, time-varying reliability models for parallel sys-
tems with cracked beams are proposed. In the modeling process, the statistical correlation between crack depth,
random working load, random strength degradation, and random stress response as well as the complex failure
correlation jointly caused by these factors are considered. Based on the finite element analysis of the cracked
beams, the reliability models are constructed by combining the neural network and the response surface agent
model. The validity of the model is verified by the Monte Carlo simulation method. The results show that crack
depth and working load dispersion have important effects on reliability and failure correlation.

With the increase in the demand for work tasks, performance
diversification, and safety of industrial products, engineer-
ing systems have become more and more complex (Hao and
Kong, 2012; Liang et al., 2021; Yavuz and Oztiirk, 2021).
Considering system composition and working mechanism,
complex mechanical systems need to be expressed as a more
complex system logic block diagram for system reliability
evaluation (Huang et al., 2019). The complex logic block di-
agram of mechanical systems, such as a series—parallel sys-
tem, parallel-series system, or bridge system, can be decom-
posed into the typical series systems and parallel systems by
using the methods such as minimal cut set method, mini-
mal path set method, etc. (Lv et al., 2017; Huang et al., 2009).
However, the reliability calculation of mechanical parallel
systems is usually difficult, because the components in a me-
chanical parallel system are subjected to homologous loads,
which affect each others performance. Moreover, the compo-
nents in the parallel system may contain certain defects, such
as cracks or holes. These defects can cause mutual influence
on the performance degradation of each component (Hsu
and Shu, 2010; van Noortwijk, 2009; Arama et al., 2020).
Therefore, the time-varying reliability evaluation of mechan-

ical parallel systems with performance degradation of com-
ponents becomes extremely complicated due to the complex
failure dependence among components. Hence, it is neces-
sary to propose time-varying reliability models of parallel
systems with defective components, which can be used to
quantitatively analyze the time-varying effects of system and
component performance on system reliability and to provide
a theoretical basis for the fault diagnosis and maintenance
strategy development of mechanical systems.

Parallel systems are one of the most important types of
systems in the reliability analysis of structural systems. Engi-
neering systems such as planetary gears and cantilever beams
that share a common load can usually be simplified as paral-
lel systems as shown in Fig. 1. In practice, from the stress
analysis point of view, many engineering structures can be
simplified as cantilever beam structures for qualitative or
quantitative reliability analysis. At present, a great deal of
research has been carried out on the dynamics of beams with
flawed construction. Chondros et al. (1998) developed a con-
tinuous cracked beam vibration model for solving the lat-
eral vibration problem of cracked beams. The Hu—Washizu—
Barr variational formulation is used, and the cracked beam
is considered a one-dimensional continuum. Besides, the vi-
bration characteristics of beams with localized crack flexi-
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bility are investigated in this paper and compared with the
continuous model (Chondros et al., 1998). The authors also
proposed a vibration model of beams with breathing cracks,
which can be used to predict the dynamic response of cracked
beams in transverse vibration. In the model, the beam with a
breathing crack was assumed to be a piecewise linear system
(Chondros et al., 2001). Saavedra and Cuitino presented an
approach for investigating crack detection and vibration be-
havior in different multi-beam systems. The additional flex-
ibility caused by a crack was evaluated by means of linear
fracture mechanics theory, and a new crack finite element
stiffness matrix was further derived. The method avoided the
limitations of traditional direct inspection methods, such as
ultrasonic and X-rays, which require frequent periodic in-
spections (Saavedra and Cuitino, 2001). Zheng and Kessis-
soglou proposed a free vibration analysis method for cracked
beams based on the finite element method. The total flexibil-
ity matrix and the stiffness matrix were obtained by adding
an overall additional flexibility matrix. Then a shape func-
tion was constructed which can satisfy the local flexibility
condition at the crack location to give more accurate vibra-
tion modes (Zheng and Kessissoglou, 2004). Orhan investi-
gated the application of free and forced vibration in identify-
ing cracks in beam-type structures. Free and forced vibration
analyses of beams with unilateral and bilateral cracks were
carried out by a finite element program. The results show
that free vibration analysis can identify single and two-edge
cracks, while forced vibration can only identify single uni-
lateral cracks (Orhan, 2007). Wei and Shang analyzed the
nonlinear vibration behavior of a breathing cracked beam. A
vibration model was proposed by using the finite difference
method and the transfer matrix method. Numerical simula-
tions verify the validity of the proposed model and the accu-
racy of the calculation method (Wei and Shang, 2019). Wang
et al. developed a crack detection method for beams based
on Bayesian inference and an analytical solution of vibration
modes. The expression of vibration modes was obtained by
analytical solution, and Bayesian inference was used to ob-
tain the probability density function of the crack parameters
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and to evaluate the uncertainty of the modes (Wang et al.,
2021). These models provide useful tools for vibration anal-
ysis of cracked structures.

In addition, creative work has been done in the area of reli-
ability calculations for systems with parallel structures. Coit
and Zio described system reliability optimization problems
in the field of reliability engineering and system safety. The
redundancy assignment problem, the reliability assignment
problem, and the reliability—redundancy assignment problem
involved in parallel systems were introduced (Coit and Zio,
2019). Li et al. (2020) presented a serial and parallel reliabil-
ity model for robot arm reliability analysis. The structure and
system types of robot arms were introduced. Then a serial
system reliability model based on the total probability the-
orem was proposed, which takes into account the statistical
dependence between load strength, number of load actions,
component strength, and component failures (Li et al., 2020).
Ashok et al. studied the reliability of multi-component sys-
tems. The cases of stresses and strengths obeying the Fréchet
distribution, the mixed Fréchet distribution, etc., were ana-
lyzed, and the law of change of system reliability was de-
rived by calculating the reliability at different parameter val-
ues (Ashok et al., 2019). Kumar et al. developed a complex
system reliability assessment method based on universal gen-
erating function (UGF) and the fuzzy set theory by using the
weighted average operator (Kumar et al., 2019). Fang et al.
proposed a bivariate degradation model for a coherent system
whose performance characteristics are positively correlated
by the degradation processes. The effects of environmental
stress variables were considered in the model, and depen-
dence between the two degradation processes was addressed
via a copula function (Fang et al., 2020). These models of-
fer a solid foundation for evaluating the reliability of parallel
systems.

Despite the fact that many studies have been conducted
on the dynamic analysis of beam structures and reliability
modeling of parallel systems, the quantitative calculation of
the reliability of parallel systems for mechanical structures
still faces the following challenges.



The failure dependence mechanism of the parallel sys-
tems with cracked beams is complex. The stresses on the
beams in a system are statistically correlated, because the
beams jointly share a common load. The crack extension in
each component is mutually dependent due to the correlated
stresses on each beam. Moreover, crack propagation corre-
lations again affect the change and dependence of stresses
on each beam and correlate the change in residual strength.
These complex correlations interact with each other and af-
fect the entire system failure process. Thus, these mecha-
nisms need to be explored and considered in the modeling
process.

Empirical parameters for characterizing failure depen-
dence between components cannot be used to express the
complex system failure dependence stated above in system
reliability modeling. The failure rate of mechanical structures
is often not constant, and the empirical parameters cannot be
explained mechanistically. Consequently, a parallel system
reliability model that has a distinct physical meaning is re-
quired.

When some components in a parallel system fail, load re-
distribution will occur, and the redistribution time is stochas-
tic due to the stochastic nature of the performance degrada-
tion. The problem of stochastic load redistribution in paral-
lel systems will greatly increase the modeling difficulty and
computational burden.

In order to solve the problems above, a time-varying re-
liability model for the parallel systems with cracked beams
is proposed in this paper. The method for calculation of the
stochastic dynamic response of the system is presented in
Sects. 2 and 3, which are used for the stress solution of the
system components. Then, the complex failure dependence
mechanism in the parallel system is elaborated on in Sect. 4,
and the time-varying reliability models of the parallel sys-
tems considering the complex mechanism is further estab-
lished in Sect. 5. In Sect. 6, the validity and correctness of
the model is illustrated by numerical examples. Finally, the
conclusion is given in Sect. 7.

The finite element method is an important method for struc-
tural response analysis (Ozakpolor et al., 2021). The cracks
affect the stiffness and strength of the beams shown in Fig. 2.
When the beams are subjected to dynamic loading, the cracks
show the “breathing effect”. The cracks open and close pe-
riodically, and the crack surface is periodically subjected to
compressive stress or no contact state, resulting in periodic
changes in the stiffness of the beams. The finite element
model of a cracked beam structure can be expressed as fol-
lows (Saavedra and Cuitino, 2001):

M.X + CX + KX =F, (1)

where My is the overall mass matrix of the cracked beam,
K is the overall stiffness matrix of the cracked beam, C; is
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the damping matrix of the cracked beam, X is the displace-
ment matrix in the overall coordinate system, and Fy is the
external force matrix. The stiffness of the cracked element
can be calculated as follows if only the effect of the stiffness
change on the force and motion state of the system is consid-
ered:

K.=TC'TT, )

0O 0 -1 00
where T = 0 -1 -1 0 1

-1 0 0 1 0
the beam element, C = C°+ C!, C? is the matrix consisting
of the flexibility coefficients of the uncracked beam element,
and C! is the matrix consisting of the flexibility coefficients
caused by the crack.

If the effect of stresses generated by cracks on the strength
of the system as well as crack extension is further consid-
ered, finite element models based on two-dimensional planar
elements used to simulate cracked beams are currently gain-
ing wide acceptance. The use of contact elements to simulate
the breathing effect of cracks in finite element calculations
solves the problems of the traditional finite element model
that requires real-time identification of crack opening and
closing states and real-time stiffness calculations. In the fi-
nite element calculation of the system, the contact force at
the crack surface can be expressed as

0 e >0,
= ) 3)
Kn,e?1+38¢ £<0,

1
0 | is the length of
0

where K, is the contact normal stiffness, ¢ is the penetration
distance between contact nodes, and § is the damping co-
efficient. Meanwhile, the singularity of the crack tip is simu-
lated by using a 1/4 node element, and the approximate stress
value near the crack is obtained.

The method above is used for solving the system response
under deterministic working load. When the system is sub-
jected to a random working load, the discrete distribution
vector F, representing the random external load of the sys-
tem at moment ¢ is expressed as follows:

Flz[fltsles"'fnt]v (4)



where nt is the total number of discretely distributed values
of random external loads on the system. Suppose a parallel
system consists of n beams, each with a crack in it, and the

crack length at moment ¢ is aj (jt = 1,2,...,n). For fit (i =
1,2,...,n) at moment ¢, the stresses generated by the load at
each beam crack can be expressed as

Sit = [sit1 (a1r), si2 (@), - - -, Sign(a@no)1. )

Thus, the discrete distribution of individual beam stresses
under random load F, at time ¢ can be obtained as follows:

ste1(@air), s1e2(aze), - - ., Sten(ane)
sor1(as), s22(azs), . .., Sun(a

s, = 21(@1r), s212(@2r) 2tn (Ant) . )
Snt1(@1r), Sne2(a@2¢), - - -5 Sntn(@nt)

Although the finite element computational models provide an
effective method for the calculation of stresses and displace-
ments of beams, with the increase in the number of cracks,
the number of constituent parts of the parallel system and
the number of load actions, as well as the continuous expan-
sion of the cracks under repeated actions of the loads, the
stress data that need to be calculated for the system will be
huge. Thus, the combination of back-propagation (BP) neu-
ral network fitting technique and a crack extension response
surface model will be used in this paper to solve the problem
of stochastic response calculation of parallel systems with
cracked beams. This method can reduce the number of sam-
ples and improve the computational efficiency.

Neural networks have advantages in data prediction and
fitting (Shah and Karabulut, 2022). The traditional BP neu-
ral network is a multi-layer feed-forward neural network that
performs error correction through an error back-propagation
algorithm. Its working principle is that the input information
reaches the output layer through the input layer and a speci-
fied number of hidden layers. If the fitting result has a large
error with the actual result, the error is returned in the reverse
direction and the weights of the layers are modified to realize
the back-propagation process. Therefore, in practice, the in-
put data of the neural network are forward propagated, while
the fitting error is backward propagated.

In this paper, the BP neural network is used to analyze
the process by taking a finite number of working loads and
the length of each crack as inputs, and the stresses of each
beam obtained by finite element calculation as outputs, as
shown in Fig. 3. The input and output are expressed as X, =
[Xin1, Xin1» - -+ Xinj] and Yo = [yo1, Yo1, - *» Yo; ], TESpECtively,
and the output can be obtained as follows (Li et al., 2019).

H inj
yojl=t<Z[Wh~e<ijXj+y1):|+F2), @)

h=1 =1

2
3
E
£
&
o
<
=
?
@
o

Correlated Stress

\ Input layer Hidden layer

Time-varying response calculation considering crack ex-
tension.

where H is the number of hidden layers, Wy, and w; are the
transfer weights, y1 and y» are the neuron transfer thresholds,
and 7(x) and €(x) are information transfer functions. As a
result, the fitted value between input and output can be ob-
tained, which reduces the number of samples and improves
the computational efficiency.

The above model is capable of obtaining the stress re-
sponse of each component with a constant crack depth. How-
ever, cracks can expand under conditions such as cyclic ac-
tion of stresses and corrosion, which changes the response of
each component within the system. Besides, crack expansion
is a slow-change process relative to the change in system re-
sponse, and the amount of change is quite small during each
operating cycle. In addition, the crack expansion increment
is generally related to the stress and the current crack depth.
Therefore, relative to the Ith working cycle, the response sur-
face relationship equation of crack extension Aa with stress s
and crack depth a at the end of the /th cycle during the 7 4 1
working cycle is expressed as follows:

Aa = y(s,n,a)B, 3

where 7 is the material parameter vector, y(s,n,a) is the
input parameter matrix, and f is the fitting coefficient ma-
trix. With the experimental samples in different crack states,
the response surface model fitting coefficient matrix can be
obtained, and the crack extension can be obtained with less
sample size. The method is also capable of timely calcula-
tions of crack extensions based on new acting stresses and
existing crack depth. If only the effects of the I + 1th work-
ing cycle stress and the /th working cycle crack depth on the
crack extension amount are considered, the polynomial re-
sponse surface model in Eq. (8) for crack extension can be
approximated as

YU+1)=bo(I+1)+b1(I+ 1)sp41+b2(I + Day
+b3(I + D)s7y +basysrar + bsaj. 9)



Then the crack length at the jth working cycle can be ex-
pressed as

a j=1
. ' .
ai +Z:§1:1bo(‘]l + 1)+b1(]1 —|— 1)Sjl+l
+b2(j1+ Daji +b3(j1+ 1)s}1+1

+bas 1110 +b561]21

10)

aj =

j=2.

Hence, the crack extension trajectory can be obtained by
synthesizing the depth of the crack at different working cy-
cles. Then, the stochastic response of the cracked beams in
the parallel system considering crack extension can be ob-
tained with the results from the neural network brought into
Eq. (10) and iterated continuously as shown in Fig. 3. The
proposed method lays the foundation for the time-varying re-
liability modeling.

In this paper, we will analyze the complex failure dependence
mechanism and reliability evaluation methods of parallel sys-
tems in the failure mode of fatigue. The stiffness degrada-
tion and strength degradation phenomena caused by crack
extension are considered in the failure dependence mecha-
nism analysis and reliability modeling process. The classi-
cal parallel system reliability models are developed via the
system structure function and the reliability of each com-
ponent. However, the dependence between components is
always ignored. If considering the statistical correlation of
components, a system reliability model has to be establish
based on the failure rate of components, and then the sys-
tem failure rate has to be corrected by empirical parameters.
However, this approach is unrealistic for the parallel sys-
tems with cracked beams, because the failure rate of beams
is greatly affected by structural parameters, material param-
eters, system loads, etc., and presents a very obvious non-
constant state. Thus it is impossible to obtain such a huge
sample size to calculate the failure rate directly through ac-
tual testing. Furthermore, this model cannot directly reflects
the working mechanism and failure mechanism of cracked
beams and the physical sense of the empirical parameters is
not well explained. In this section, the complex failure depen-
dence mechanism existing in the parallel system containing
cracked beams will be explained.

In order to consider the effects of stress and strength
during the working process of a system, the well-known
stress—strength interference (SSI) model and its extension
are widely used in mechanical reliability calculations. The
stress on the jth component in a parallel system during the
Ith operating cycle is denoted by s;(/) with its probability
density function (PDF) denoted by fS.i (sj(I)). Denote the
residual strength of the jth component in the system dur-
ing the /th operating cycle by r;(I) with its PDF denoted by
Jr;(rj(I)). According to the SSI model, the reliability of the

Jjth component in the system can be expressed as

Rj(I)= P(s;(I) < rj(I))

=/fsj(Sj(1)) / Jri (rj(I))dr;(I)ds (1) an
0

s;(I)

For a parallel system with r statistically independent com-
ponents, the reliability of the parallel system during the
I'th operating cycle can be expressed as

Ri(h=1-T] [1 — / fep(sja(D)
0

Jj2=1
< / frjz(”jz(l))drjz(l)dsjz(l)] (12)
sj2(1)

The reliability of the system after N working cycles with-
out failure can be expressed as

N n co
Rysi(N) =[] {1 - T1 [1— / fi2(s12(73))
0

j3=1 j2=1

X / frjz(Vj2(j3))drj2(]'3)dsj2(j3)i|} (13)
5j2(73)

In the above classical reliability model based on the as-
sumption of independence, the respective loads are consid-
ered to be independent. Nevertheless, when a common load
is applied, the stresses applied to the individual components
are not statistically independent from each other. Assuming
that the working load of the system in the /th working cycle
is F/(I), and the load shared by the jth component is F;(/),
then if the statistical characteristics of F (/) are known, the
statistical characteristics of F;(/) and s;(/)c an be obtained.
Then, the failure of each component in the system is corre-
lated due to sharing the system working load.

As stated above, crack expansion determined by stress.
Therefore, not only the stresses on each component in the
system are statistically correlated, but also the crack expan-
sion behavior in the components is statistically correlated.
The statistical correlation of crack extension will also have
an effect on the statistical correlation between component
stresses again in conjunction with the external loads of the
system. In addition, the strength degradation of individual
components within the system is the function of stress. As
a result, there is a very complex statistical correlation be-
tween system operating loads, crack propagation, component
stresses, and component residual strength, as shown in Fig. 4.
This complex correlation leads to the complex failure depen-
dence between the beams in the system, which will have a
large impact on the accurate quantitative reliability evalua-
tion of the system, and this failure dependence mechanism
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must be taken into account in the time-varying reliability
modeling process.

In this paper, stiffness degradation caused by crack extension
is considered. The failure criterion of the system is that the
failure of all the components of the system causes the sys-
tem failure. The failure criterion of components is that the
residual strength is less than the working stress. In this sec-
tion, a time-varying system reliability model considering the
above complex failure dependence will be developed. The
residual strength of cracked beams is continuously decreas-
ing due to the presence of failure modes such as corrosion
and fatigue. Failure of the system arises not only from cyclic
stress effects, but also from stresses generated by larger as-
signed transient loads (e.g., shock loads). In parallel sys-
tems, some beams may fail, and then the remaining beams
of the system that have not failed will bear the system work-
ing load. The load redistribution phenomenon occurs at this
time. According to the definition of parallel system reliabil-
ity, the system undergoes N operating cycles without failure,
which requires at least one component to be able to work
normally within this specified time. Random failure of part
of the beams in the parallel system and the corresponding
random load redistribution could occur during the N operat-
ing cycles. Load redistribution is currently a difficult prob-
lem in time-varying reliability modeling of parallel systems,
especially in the case of complex failure dependence among
components in the systems.

During these N operating cycles, all of the n beams that
make up the system may not fail or n1 (1 <nl < n) beams
may fail. The failure of any of the n1 beams may occur in
any one of the N operating cycles. Hence, define the system

working cycle vector as follows.

W =1Iil,i2,i3,...,in], (14)
where ij (j =1,2,3,...,n) indicates the number of operat-
ing cycles in which the jth beam can operate normally. For
example, i5 =3 means that the fifth part of the system can
operate normally for three operating cycles and fails at the
fourth cycle. In particular, ij = N means that the jth compo-
nent does not fail in all N operating cycles. ij = 0 means that
the first component fails after the first operating cycle. Thus,
the probability that the parallel system will not fail for a pe-
riod of N operating cycles, i.e., the reliability of the system,
can be expressed as follows

N N N
Rya(N)=D ) - > P(W),

i1=0i2=0 in=0

15)

where P(W) denotes the probability of failure of beam j at
cycle ij + 1, which can be expressed as

Pw)=[]Piij.

=1

(16)

It should be noted that when max(ij) < N, Rsys2(N) = 0.
Moreover, when the stresses applied to the components in
the system are independent, the probability of failure of the
Jth component at the (ij + 1)th cycle, denoted by P;(ij), can
be expressed as



ij P
Piij) = ( [T [ #6064
0

ja=1

x / fr,-(Vj(j4))drj(j4)de(j4))

5;(j4)
x [ffs,<s,-<j4+1>)
0

s;(j4+1)

X / fri(rj(j4+1))
xdrj(j4+1)dsj(j4+l)i|. (17

However, from the failure dependence mechanism analy-
sis in Sect. 4, it can be seen that the stresses of each com-
ponent are statistically correlated to each other and are af-
fected by the system working load F(j4) and crack depth at
the same time, which are obtained by the method in Sect. 3.
Consequently, when the statistical correlation between the
stresses is taken into account, the above equation becomes

ij %
Pi(ij) = [ [T [ £6s:G4 FG.a;G40
ja=1y

S A

sj(j4F(j4).a;(j4)

xdrj(j4)ds;(j4, F(j4),aj(j4))}

X [/fsj(Sj(j4+ L F(j4),a;(j4))
0

5;(j4+1,F(j4),a;(j4)
x / fr, 4+ 1)

—00

xdrj(j4+ Dds;(s;(j4+1, F(j4),aj(j4)))]. (18)

If the stochastic properties of F(x) is considered, such that
its PDF is expressed as fr(F(x)), then P(W) can be ex-
pressed as

N o0 n
PW) =[] / fF<F<jS>>(]_[ Pj<j5)>dfF<F<jS>>, (19)
j=1

js=1.2

Load parameters, geometric parameters and material pa-
rameters.

Parameter Value  Unit
Mean value of working load u(F) 1200 N
Standard deviation of working load o (F) 150 N
Modulus of elasticity E 2x 101 pa
Density p 7800 kgm™3
Length of beams 06 m
Height of beams 0.06 m
Mean value of initial residual strength 15%x107 Pa
Standard deviation of initial residual strength 10° Pa
c 10'®  pa?
v 1 -
m 2 -
where

S5 £ sy ay s Frs (PGS (S, F(5).
beam j works at the j5th cycle;

si(j5,F(j5),a;(j5 . .
JHUSFGGUD ¢ 5 (9),

beam j fails at the j5th cycle.

Pi(j5) = (20)

It should be noted that when the jth beam has failed before
the j5Sth cycle, P;(j5) = 1. Furthermore, the load redistribu-
tion due to the failure of the jth component is taken into ac-
count in the stress solution process of other components, and
the stresses of each component after the load redistribution
are obtained using the method proposed in Sect. 3.

Consider a parallel system consisting of two cantilever
beams with the same structural dimensions and material pa-
rameters as shown in Fig. 2, which are listed in Table 1. Each
beam has a straight crack, which is at the mid-point position
of the beam and may have different depths. The two beams
are jointly subjected to the same random working load F.
The random statistical characteristics of the working loads
are shown in Table 1. u(x) represents the mean value of a
random variable, and o () represents the standard deviation
(SD) of a variable. The residual strengths of the two beams
under the action of the loads continuously degrade, and the
degradation law can be expressed as follows (Gao and Yan,
2013):

125 fu(s)ds
r(n):ro(l——n 0 CS ) s (21)

where ry is the initial strength; a and C are material parame-
ters.

In order to verify the validity and correctness of the pro-
posed system reliability model, when the crack depths of the
two beams are 0.025 mm, the Monte Carlo simulation (MCS)
method shown in Fig. 5 is used to compare with the time-
varying system reliability proposed in this paper. The MCS
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method does not rely on a specific reliability model and is
used to simulate the working process of the beams, which is
fundamentally different from the proposed analytical relia-
bility model. The results from the two methods are shown in
Fig. 6.

As can be seen from Fig. 6, the MCS method has a good
agreement with the reliability model proposed in this paper.
Besides, it can be known from Fig. 6 that the system relia-
bility has the characteristic of decreasing with the working
time. When the crack depths are both 0.025 mm, the relia-
bility decreasing rate decreases continuously, and the reli-
ability decreases the fastest at the beginning of the working
stage. Due to the large crack depth, the stresses on the system
are significantly high, leading to a rapid decrease in residual
strength. As a result, the service life of the system is lower
and the reliability decreases rapidly. As a result of the sig-
nificant reduction in system service life, the initial smooth
decline time of the system as a proportion of the full life cy-
cle undergoes a significant shrinkage, demonstrated by the
rapid decline in reliability shown in Fig. 6. The results from
the proposed models are validated using the MCS in this nu-
merical example. The MCS verification process is presented
in Fig. 5. When the structural, load, and material parameters
of the system are obtained, the MCS validation can be car-
ried out according to the flow shown in Fig. 5. The proposed
validation method is not limited to the specific parameters
provided in this numerical example.

In order to analyze the effect of crack depth on reliability
and failure correlation, the system reliability was calculated
for the two beams with different values of crack depth. The
three different crack depth parameters are shown in Table 2.
The system reliability when stress dependence due to load-
sharing and random load redistribution are considered, and
the system reliability results in the case that stresses on both
beams are independent are shown in Figs. 7 to 9.
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As shown in Figs. 7-9, crack depth has a pronounced ef-
fect on both time-varying system reliability and failure cor-
relation. As the crack deepens, the time-varying reliability
of the system decreases significantly. When the crack depth
is small, the time-varying reliability of the system decreases
at a rate that first increases and then decreases. When the
crack depth is large, the time-varying reliability of the sys-
tem shows an obvious characteristic of decreasing more and
more slowly. Moreover, the crack depth has a greater ef-
fect on the failure correlation of the two beams in the sys-
tem and the system reliability under the independent assump-
tion is significantly lower than that under the failure depen-
dence assumption. The time-varying system reliability under
the independent assumption has a similar trend to the time-
varying system reliability with failure dependence caused by
stress correlation. This demonstrates that the conventional
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Crack depth parameters

Crack 1 (m) Crack 2 (m)
Case 1 0.015 0.015
Case 2 0.02 0.02
Case 3 0.025 0.025

system reliability model for the independent assumption is
not applicable to the load-sharing parallel system composed
of cracked beams. In addition, the difference between the re-
liability of the independent system and that of the dependent
system first increases and then decreases with time. The fail-
ure dependence becomes more obvious with the increase of
crack depth and the error between the system reliability cal-
culated under the independent assumption and the actual be-
comes larger due to the increase of crack depth.

In order to analyze the effect of crack extension on the
system reliability, it is assumed that the crack expands with
stress at different operating cycles and can be expressed as

aj41 = a; + (s/100) x 0.00003. 22)

Then the time-varying system reliability considering the
two cases of crack extension and crack non-extension with
the initial depth of cracks of both beams being 0.02m is
shown in Fig. 10. From Fig. 10, it can be seen that the crack
extension will cause the time-varying system reliability to
decrease rapidly. Therefore, in engineering practice, the se-
rious destructiveness of the crack on the system reliability is
in concern.

In addition, in order to analyze the effect of work load dis-
persion on the time-varying system reliability, the system re-
liability in the case where the working load has different SD,
which is listed in Table 3, is shown in Fig. 11.
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Effects of load dispersion on system reliability.

From Fig. 11, it can be known that the working load dis-
persion has a large effect on the time-varying reliability and
failure correlation of the system. As the working load disper-
sion increases, the system reliability decreases. The reliabil-
ity trends of the dependent and independent systems are sim-
ilar. However, with the increase of working load dispersion,
the calculation error caused by the independent assumption
increases, which will have a greater impact on the accurate
assessment of system safety.

A time-varying reliability model of load-sharing parallel sys-
tems composed of beams with cracks is presented in this pa-
per. By finite element analysis of cracked beams, a stochas-
tic response statistics method based on a neural network and
a response surface model is proposed. The statistical corre-



Working load parameters.
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Case 1l 130N 1200N
Case2 140N 1200N
Case3 150N 1200N

lation between crack depth, random working load, random
strength degradation, and random stress response as well as
the complex failure correlation caused by the combination
of these factors are considered in the time-varying reliability
model of the parallel system with cracked beams. The va-
lidity and correctness of the model are verified by the MCS
method. It is shown that crack depth has a quite important
effect on the time-varying reliability and failure dependence
of the system. An increase in crack depth leads to a rapid de-
crease in system reliability, while exacerbating the error in
the assessment of system reliability under the assumption of
independence. In addition, the work load dispersion also has
a large impact on the time-varying reliability of the cracked
beam system. An increase in working load dispersion will
reduce the time-varying reliability of the system and also ag-
gravate the failure dependence effect. Overall, crack depth,
system stress, and other factors that contribute to the com-
plex failure dependence of a system have a large impact on
both reliability and the rate of reliability degradation, causing
the reliability curves to exhibit different patterns. These ana-
lytical conclusions provide a theoretical basis for mechanical
system failure diagnosis.
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