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Abstract. This paper proposes an optimization method for the Equality Set Projection algorithm to compute
the orthogonal projection of polytopes. However, its computational burden significantly increases for the case of
dual degeneracy, which limits the application of the algorithm. Two improvements have been proposed to solve
this problem for the Equality Set Projection algorithm: first, a new criterion that does not require a discussion
of the uniqueness of the solution in linear programming, which simplifies the algorithm process and reduces the
computational cost; and second, an improved method that abandons the calculation of a ridge’s equality set to
reduce the computational burden in the case of high-dimensional dual degeneracy.

1 Introduction

Orthogonal projection is valuable for both theoretical re-
search (Kwan et al., 2022; Xu and Guo, 2021) and engineer-
ing applications (Xia et al., 2021; Liu et al., 2023), particu-
larly as a basic operator for polytopes, which are a type of
geometric structure composed of flat boundaries and giving
a good representation of linear constraints on variables. The
orthogonal projection of polytopes is extensively applied in
the field of control and optimization (Borrelli et al., 2017;
Lee and Kouvaritakis, 2000; Sadeghzadeh, 2018). For exam-
ple, the calculations of the Minkowski sum (Teissandier and
Delos, 2011), controllable set (Vincent and Wu, 1990), reach-
able set (Rakovic et al., 2006), and parametric linear program
(Jones et al., 2008) can all be transformed into the projection
of polytopes.

Traditional projection algorithms can be grouped into
three classes, i.e., Fourier elimination (Keerthi and Sridha-
ran, 1990; Saraswat and Hentenryck, 1995), block elimina-
tion (Balas, 1998; Fukuda and Prodon, 1996), and vertex
enumeration (Avis, 1998). The former two algorithms re-
quire expensive computation and produce a lot of redun-
dant inequalities. The third algorithm is suitable for poly-
topes with fewer vertices; however, the number of vertices

of a high-dimensional polytope exceeds the number of half-
spaces. Thus, it is not an efficient algorithm for the high-
dimensional cases.

The Equality Set Projection (ESP) algorithm was proposed
in Jones et al. (2004), and it applies the inspiration of the gift-
wrapping algorithm to the projection calculation. Under the
condition of non-degeneracy, the complexity of ESP is lin-
ear in the number of half-spaces, which offers a tremendous
advantage compared to the traditional projection algorithms.
However, in the case of dual degeneracy, the computation
grows exponentially.

Dual degeneracy is a frequently encountered phenomenon
in control applications. For instance, when variables have
constant maximum and minimum constraints, the occurrence
of dual degeneracy is more likely. Unfortunately, this limita-
tion curtails the wider application of ESP algorithms in the
control field. Therefore, the primary motivation behind en-
hancing the ESP method is to improve its performance un-
der dual-degeneracy conditions. We propose a novel criterion
based on the non-zero rows of the null-space matrix to ad-
dress the issue of discussing the uniqueness of solutions un-
der such conditions. Furthermore, we introduce an improved
strategy that eliminates the need to search for equation sets
under dual-degeneracy conditions. These two advancements
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render the ESP algorithm more concise, efficient, and easily
implementable. Consequently, the algorithm’s performance
in the situations involving dual degeneracy has been signifi-
cantly enhanced, which paves the way for further promotion
and application of ESP in engineering practices.

The paper is organized as follows. The preliminary knowl-
edge and the workflow of the original ESP algorithm are in-
troduced in Sect. 2. The two proposed improvement strate-
gies are given in Sects. 3 and 4. Numerical simulation com-
parisons between the original ESP and the improved ESP are
reported in Sect. 5, and final conclusions given in Sect. 6.

2 Preliminaries and existing results

2.1 Definitions and notation

1. A polytope is a bounded polyhedron defined by
the intersection of closed half-spaces. Let P equal{
(x,y) ∈ Rd ×Rk|Cx+Dy ≤ b

}
; the orthogonal pro-

jection of P onto x space is defined as

πd (P )=
{
x ∈ Rd |∃y ∈ Rk, (x,y) ∈ P

}
.

2. f is a face of the polytope P ⊂ Rd ×Rk if there exists
a hyperplane

{
(x,y)

∣∣cTx+ dTy = b
}
, where c ∈ Rd ,

d ∈ Rk , and b ∈ R such that

f = P ∩
{

(x,y) ∈ Rd ×Rk|cTx+ dTy = b
}

and cTx+ dTy ≤ b for all (x,y) ∈ P . The face of the
polytope P ⊂ Rd ×Rk refers to the face of dimension
n− 1, whereas the ridge refers to the face of dimension
n− 2.

3. The affine hull of every face of the polytope is

afff =
{

(x,y) ∈ Rd ×Rk|cTx+ dTy = b
}
.

4. If A is a matrix and E ⊆ {1, . . .,q}, then AE is a matrix
formed by rows of A whose indices are in E. If P is
a polytope, then the notation PE refers to the set PE =
P ∩ {z |CEx+DEy = bE }.

5. E is an equality set of P if and only ifE =G(E), where

G(E)= {i ∈ {1, . . .,q} |Cix+Diy = bi,∀(x,y) ∈ PE} .

6. N(A) is defined as a matrix whose columns form an or-
thonormal basis for the null space of A.

2.2 Auxiliary results

The following results can be found in Jones (2005), Ziegler
(1995), Webster (1994), and Balas and Oosten (1998), re-
spectively. Their proofs are omitted for the sake of brevity.

Theorem 2.1 (Jones, 2005) Given a polytope

P =
{

(x,y) ∈ Rd ×Rk|Cx+Dy ≤ b
}
,

if E is an equality set of P , then PE is a face of P . Further-
more, if F is a face of P , then there exists a unique equality
set such that F = PE .
Proposition 2.1 (Ziegler, 1995) If P ⊂ Rd ×Rk is a poly-
tope, then the projection of P onto Rd is a polytope.
Proposition 2.2 (Webster, 1994) If F1, . . .,Ft are facets of a
polytope P = {z ∈ Rn|Az ≤ b}, affFi =

{
z ∈ Rn|aT

i z= bi
}
,

where each ai ∈ Rn, bi ∈ R, then

P = affP ∩

x ∈ Rn
∣∣∣∣∣∣∣
a

T
1
...

aT
t

x ≤
b1
...

bt


 .

Proposition 2.3 (Ziegler, 1995) If P ⊂ Rd ×Rk is a poly-
tope, then for every face F of πd (P ), the pre-image π−1

d (F )
is a face of P .
Proposition 2.4 (Jones, 2005) If M ={
(x,y) ∈ Rd ×Rk|CEx+DEy = bE

}
is a affine set,

then the projection of M onto Rd is

πd (M)=
{
x ∈ Rd

∣∣∣N(DT
E

)TCEx = N
(
DT
E

)T
bE

}
.

Proposition 2.5 (Balas and Oosten, 1998) If E is an equality
set of polytope

P =
{

(x,y) ∈ Rd ×Rk|Cx+Dy ≤ b
}
,

then dim πd (PE)= dim PE − k+ rank DE .

2.3 Original ESP algorithm

We introduce the workflow of the original ESP algorithm in
this subsection. A brief introduction is given here, and the
details can be found in Jones (2005).

The algorithm is initialized by discovering a random facet
Fπ in πd (P ). Then we compute all ridges contained in the
initial facet and search all facets adjacent to it through each
ridge. Subsequently, we compute all the ridges of each new
facet and let the iterating process continue until all the ridges
appear twice. According to the property of the polytope, each
ridge exactly connects to two facets. Therefore, all facets of
πd (P ) can be found by this iteration. From Proposition 2.2,
we finally get πd (P )=

{
x ∈ Rd |Gx ≤ g

}
.

The ESP algorithm consists of three key oracles as given
below. Shooting Oracle:(
Ef0 ,af ,bf

)
= SHOOT(P ).

Ridge Oracle:

LEr = RDG
(
Ef ,af ,bf

)
.
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Adjacency Oracle:(
Eadj,aadj,badj

)
= ADJ

((
Ef ,af ,bf

)
(Er ,ar ,br )

)
.

The SHOOT oracle randomly obtains an equality set Ef0 of

P satisfying πd
(
PEf0

)
=

{
x|aT

f x = bf

}
∩πd (P ) as a facet

of πd (P ), the RDG oracle returns all ridges contained in the
facet

(
Ef ,af ,bf

)
of πd (P ), and the ADJ oracle takes two

equality sets Er and Ef of P and returns the unique equality

set Eadj, where πd
(
PEf

)
=

{
x|aT

f x = bf

}
∩πd (P ) is a facet

of πd (P ) and πd
(
PEr

)
=
{
x|aT

r x = br
}
∩πd

(
PEf

)
is a ridge

of πd (P ) with πd
(
PEr

)
⊂ πd

(
PEf

)
.

2.3.1 Outline of the ESP algorithm

Step 1. Get an initial facet
(
Ef0 ,af ,bf

)
of P :(

Ef0 ,af ,bf
)
= SHOOT(P ). Then, all the ridges contained

in the facet are calculated: LEr = RDG
(
Ef0 ,af ,bf

)
.

For each element
(
Erj ,arj ,brj

)
in LEr , record((

Ef 0,af 0,bf 0
)
,
(
Erj ,arj ,brj

))
in list L and let G= aT

f ,
g = bf .
Step 2. If L 6= φ, select an element((
Efi ,afi ,bfi

)
,
(
Eri ,ari ,bri

))
randomly from

list L and let ((Efn,afn,bfn) , (Ern,arn,brn))=((
Efi ,afi ,bfi

)
,
(
Eri ,ari ,bri

))
. If L= φ, stop and report G

and g.
Step 3. Search the adjacent facet such that

(
Eadj,aadj,badj

)
=

ADJ((Efn,afn,bfn) , (Ern,arn,brn)) and let

G=
[

G
aT

adj

]
, a =

[
a

badj

]
.

Then, all the ridges contained in the adjacent facet can be
calculated: LEr = RDG

(
Eadj,aadj,badj

)
. For each element(

Erj ,arj ,brj
)

in LEr , if there exists an element in L that al-
ready containsErj , we remove the element from the list. Oth-
erwise, we add element

((
Erj ,arj ,brj

)
,
(
Eadj,aadj,badj

))
to

list L. Go to Step 2.

2.3.2 SHOOT oracle

Step 1 (selecting a direction γ and finding a point on the
surface of P )

Randomly choose γ ∈ Rd and solve the following linear
programming.

(r∗,y∗)= arg max
(r,y)∈R×Rk

r,

s.t. Cγ r +Dy ≤ b
(1)

Step 2 (determining whether a facet of πd (P ) is found)
Get Ef0 as Ef0 = {i|Ciγ r +Diy = bi}. If

Rank
(

N
(

DT
Ef0

)T
CEf0

)
= 1, go to Step 3. Otherwise,

go to Step 1.

Step 3 (computing the affine hull of the facet and normaliz-
ing)[
aT
f ,bf

]
= N

(
DT
Ef0

)T [
CEf0

,bEf0

]
[
aT
f ,bf

]
=

sign bf∥∥af ∥∥ 2

[
aT
f ,bf

]
Step 4 (handling the dual degeneracy in Step 1)

If the linear programming (1) in Step 1 is not dual-
degenerate, i.e., (1) has a unique optimizer, then stop. Oth-
erwise, Ef0 needs to be recalculated as follows.

For each row Cix+Diy ≤ bi of P , we compute the fol-
lowing linear programming problem:

J ∗(i)=min
x,y

Cix+Diy− bi,

s.t. CEicx+DEicy ≤ b,

x = x∗ ,

where

Eic = {1,2, . . .,q}\i,Ef0 =
{
i ∈ {1,2, . . .,q} |J ∗(i)= 0

}
.

2.3.3 RDG oracle

Step 1 (computing the dimension of PEf )
If k+ d − rank

[
CEf DEf

]
= d − 1, continue. Otherwise,

go to step 3.
Step 2 (dimPEf = d − 1) For all i ∈ Ecf = {1,2, . . .,q}\Ef ,

Qi =

{
j ∈ Ec

∣∣∣∣rank
[
aT
f bf

S{i,j} t{i,j}

]
= 2

}
,

and, solving the following linear programming,

min
(τ,x)

τ (i) ,

s.t.


SQc (i)x ≤ tQc (i)+ τ,
aT
f x = bf ,

Six = ti,
τ (i)≥−c,

,

where c is an arbitrary positive constant, Qc(i)= Ec\Q(i).
If τ (i)< 0, then ar = S{i},br = t{i} and add (Q(i),ar ,br ) to
LEr .
Step 3 (dimPEf > d − 1)

Conduct singular value decomposition aT
f =[

σ 0 . . . 0
]
V T, V =

[
V̂ Ṽ

]
. Then, we get

P̃ =
{

(x̃, ỹ) ∈ Rd−1
×Rn|Sf Ṽ x̃+Lf ỹ ≤ tf −SV̂ bf /σ

}
,

where Sf = CEcf −DEcf D†
Ef

CEf , Lf = DEcf N (DE), and

tf = bEcf
−DEcf D†

Ef
bEf . The πd−1(P̃ ) can be computed us-

ing a recursive call to the ESP algorithm. Each facet of
πd−1(P̃ ) can be converted into the ridge of πd (P ) as{
x|Ṽ ãT

f x = b̃f

}
∩πd−1(P̃ ).
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Then, we get ar = ãf , br = b̃f , and (Q(i),ar ,br ) to LEr .
Step 4 (normalizing and orthogonalizing)[
aT
r br

]
←
[
aT
r br

]
− aT

f ar

[
aT
f bf

]
[
aT
r br

]
←

signbr
ł|ar‖2

[
aT
r br

] .

2.3.4 ADJ oracle

Step 1 (finding a point on the adjacent facet πd
(
PEadj

)
and

its corresponding pre-image)
Solve the following linear programming:

(x∗,y∗)= arg max
x,y

aT
r x ,

s.t. CErx+DEry ≤ bEr ,

aT
f x = bf (1− ε) ,

(2)

where ε is a sufficiently small positive constant.
If LP (2) is not dual-degenerate, i.e., LP (2) has a unique

optimizer (x∗,y∗), then continue. Otherwise, go to Step 3.
Step 2 (the case without dual degeneracy)

Eadj←
{
i ∈ Er

∣∣Cix∗+Diy∗ = bi
}

Go to Step 4.
Step 3 (the case of dual degeneracy)

γ =−
aT
r x
∗
− br

aT
f x
∗− bf

For each row Cix+Diy ≤ bi of P , compute the following
linear programming problem:

J ∗(i)=min
x,y

Cix+Diy− bi ,

s.t. CEicx+DEicy ≤ bEic ,(
ar + γ af

)T
x = br + γ bf ,

where Eic = {1,2, . . .,q}\{i}, Eadj = {i|J
∗(i)= 0}.

Step 4 (computing the affine hull of the facet and normaliz-
ing)[
aT
f ,bf

]
= N

(
DT
E0

)T [
CE0 ,bE0

]
[
aT
f ,bf

]
=

sign bf∥∥af ∥∥2

[
aT
f ,bf

]

3 Improvement of the uniqueness discussion

In the original ESP algorithm, expressions (1) and (2) in the
SHOOT and ADJ oracles need to judge the uniqueness of the
optimizer of linear programming (LP), and different steps are
taken according to whether the optimizer is unique or not.

In this section, an illustrative example is given at first, the
barriers of the original ESP algorithm in the case of dual de-
generacy are listed, and the alternative criteria are proposed.

Figure 1. Polytope and its projection onto Rd .

3.1 An illustrative example

The linear programming (2) in Step 1 of the ADJ oracle is
given for illustration, and the solution of (2) satisfies

x∗ ∈ πd
(
Eadj

)
∩

{
x

∣∣∣aT
f x = bf (1− ε)

}
. (3)

The projection of (x∗,y∗) is on πd
(
PEadj

)
(Jones, 2005). If

the optimizer (x∗,y∗) of linear programming is unique, Eadj
should be taken as the equality set corresponding to the face
PEadj where (x∗,y∗) is located. If the optimizer is not unique,
Eadj should be taken as the equality set corresponding to the
face PEadj ,where the entire optimal solution space is located.
Next, a simple example is provided to illustrate the reasons
for the discussion of the uniqueness of the optimizer and
leads to its alternative strategy.
Example 1

Given a polytope P =
{
(x,y) ∈ Rd ×Rk|Cx+Dy ≤ b

}
,

C=


0 −2
0 0.667

0.4 0
−2 0
0 0

 , D=


2

−0.667
0.4
0
−1

 , b =


1
1
1
−1
−1

 ,
the orthogonal projection πd (P )= {Gx ≤ g} onto x space
Rd is shown in Fig. 1, where

G=


−1 0

0.707 0.707
1 0
0 −1

 , g =

−0.5
2.83
1.5
−0.5

 .
Figure 2 shows that the ADJ oracle takes the facet{
aT
f x = bf

}
∩π (P ) of P (the blue line segment in this ex-

ample) and ridge
{
aT
r x = br

}
∩πd

(
PEf

)
(the intersection of

the blue line segment and the yellow line segment in this ex-
ample) to solve the adjacent facet (the yellow line segment in
this example is the facet to be solved), and x∗ is the intersec-
tion of plane aT

f x = bf (1− ε) and the yellow line segment.
All the points on the red line segment of P can be pro-

jected onto x∗, which indicates that all points on the red line
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Figure 2. The ADJ oracle in Example 1.

Figure 3. The non-uniqueness of the optimal solution is ignored.

segment are optimal solutions of the LP problem. The opti-
mal solution domain belongs to the yellow facet of PEadj , and
its corresponding equality set is Eadj = {4}.

However, most of the LP solvers will only give one opti-
mal solution for the LP problem with multiple optimal solu-
tions. If this solution is mistakenly considered the only opti-
mal solution, this may lead to the iteration cycle and increase
the computational burden.

In this case, if (x∗,y∗) on the intersection of the blue facet
and yellow facet is taken as the unique optimal solution,
the PE′adj that (x∗,y∗) belongs to is the intersection line of
the blue and yellow facets of P , E′adj = {1,4}. According to

Fig. 3, PE′adj ⊂ PEadj and πd
(
PE′adj

)
⊂ πd

(
PEadj

)
.

Owing to affπd
(
PE′adj

)
= affπd

(
PEadj

)
, some facets may

appear multiple times in the following iterative process,
which may increase the number of iterations, and even the
algorithm cannot be terminated.

3.2 Shortcomings of the original algorithm

The barriers of the original ESP algorithm in the case of dual
degeneracy can be listed as follows.

i. Currently, most of the LP solvers do not have the ability
to judge the uniqueness of the solutions of linear pro-

gramming. Although several achievements have been
made on the unique conditions of LP solutions (Man-
gasarian, 1979), these methods are difficult to embed
into the existing LP solvers, since they induce additional
computation.

ii. Since the dual degeneracy is only a necessary but insuf-
ficient condition for linear programming to have mul-
tiple optimizers (Borrelli et al., 2017), it is conserva-
tive to determine the uniqueness of the solution by test-
ing whether the dual degeneracy occurs in Jones et al.
(2004).

iii. Expression (3) implies that, in the case of d ≥ 3, the
value of x∗ is always not unique; i.e., the LP problem
always has multiple optimal solutions. However, if only
the value of x∗ is not unique and the value of y∗ is
unique, irrespective of the point in the optimal solution
space, it can be regarded as the unique optimal solution,
and the obtained PEadj does not vary. In this case, an ex-
tra computation is added to handle the non-uniqueness
of the optimal solution of the LP.

3.3 Alternative criteria

According to Example (1), there may be multiple faces PEf
in P , and the projections of their affine hulls are all affFπ .
The collection of all Ef satisfying this condition can be de-
noted as

4Fπ =

{
Ef ⊂ {1,2, . . .,q}

∣∣πd (affPEf
)

= affFπ ,G
(
Ef
)
= Ef

}
, (4)

where

G
(
Ef
)
=
{
i ∈ {1,2, . . .,q} |Cix+Diy = bi,

∀(x,y) ∈ PEf
}
.

The discussion on the uniqueness of optimizers of LP is to
ensure that the obtained Ef is the element in 4Fπ with the
maximal dimPEf . The primary result can be stated as given
below.
Theorem 3.1 Consider the 4Fπ defined in Expression (4),
and Ef is the subset of 4Fπ that maximizes the value of

dimPEf if and only if there are no zero rows in N
(

DT
Ef

)
.

Proof (sufficient part): the sufficiency of Theorem 3.1 has
been proven by the following inverse negative proposition.

If there exist zero rows in N
(

DT
Ef

)
, then Ef is not the

element in 4Fπ that maximizes the value of dimPEf .
Let Ef = {e1,e2, . . .,en, }, DT

E =[
DT
e1

DT
e2

. . . DT
en

]
; without loss of generality, we

https://doi.org/10.5194/ms-15-183-2024 Mech. Sci., 15, 183–193, 2024
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can assume that the last m rows of N
(

DT
Ef

)
are zero rows.

N
(

DT
Ef

)
=
[
N1 N2 . . . Nn−r

]

=



N11 N12 · · · N1(n−r)
N21 N22 · · · N2(n−r)
...

...
. . .

...

N(n−m)1 N(n−m)2 · · · N(n−m)(n−r)
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



=



N row
1

N row
2
...

N row
n−m

N row
n−m+1
...

N row
n


.

According to DT
Ef

N
(

DT
Ef

)
=

n∑
i=1

DT
ei
N row
i = 0, there is

a one-to-one correspondence between N row
i and DT

ei ; i.e.,
there is a one-to-one correspondence between the rows of
N
(

DT
Ef

)
and the elements of Ef .

Let E′f = {e1,e2, . . .,en−m}.

N
(

DT
Ef

)
=
[
N1 N2 · · · Nn−r

]

=



N11 N12 · · · N1(n−r)
N21 N22 · · · N2(n−r)
...

...
. . .

...

N(n−m)1 N(n−m)2 · · · N(n−m)(n−r)
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



=



N row
1

N row
2
...

N row
n−m

N row
n−m+1
...

N row
n


[
N1 N2 . . . Nn−r

]
forms a basis for the null space of

DT
Ef

, implying that
[
N ′1 N ′2 . . . N ′n−r

]
forms a basis

for the null space of DT
E′f

.

Next, we will prove that E′f is an equality set, i.e.,

E′f =
{
i ∈ {1, · · ·,q} |Cix+Diy = bi,∀ (x,y) ∈ PE′f

}
.

Since Ef is an equation set, we only need to prove that

∀ei ∈ E
′′

f ,∃(x,y) ∈ PE′f ,s.t. Cix+Diy 6= bi,

where

E′′f = {en−m+1,en−m+2, · · ·,en} .

Since DT
Ef \{ei }

N
(

DT
Ef \{{ei }}

)
= 0, the null space of DT

Ef
and

DT
Ef \{ei }

has the same number of bases, and thus

rank DT
Ef
− rank DT

Ef \{ei }
= 1. (5)

Equation (5) implies that

rank
[
CEf DEf

]
− rank

[
CEf \{ei } DEf \{ei }

]
= 1. (6)

Then, combining Proposition 2.5 with Expression (6), we get

dimPEf = k+ d − rank
[
CEf DEf

]
= dimPEf \{ei }− 1. (7)

EEf \{ei } ⊂ Ef implies that

PEf \{ei } ⊇ PEf . (8)

Combining Expressions (7) and (8) gives us

PEf \{ei } ⊃ PEf .

Thus, PEf \{ei }\PEf 6= φ. Let x ∈ PEf \{ei }\PEf , Cix+
Diy 6= bi , and thus E′f is an equality set. We can verify that

N
(

DT
Ef

)T
CEf = N

(
DT
E′f

)T
CE′f ,

N
(

DT
Ef

)T
bEf = N

(
DT
E′f

)T
bE′f .

From Proposition 2.4, affPE′f = affPEf , and thus E′f ∈
4Fπ . Therefore, dimPE′f ≥ dimPEf \{ei } > dimPEf , and the
sufficient part is proven.

Necessary part: the necessary part is proven by contradic-
tion.

Suppose that each row in N
(

DT
Ef

)
is not a zero row.

If ∃Ef ∗ ∈4Fπ , then dimPEf ∗ > dimPEf . Let dimPEf ∗ −
dimPEf = nc, since the projections of Ef ∗ and Ef have the
same affine hull. This can be obtained from Proposition 2.5:

rank DEf − rank DEf ∗ = nc,

since πd
(
affPEf

)
= πd

(
affP ∗Ef

)
. Proposition 2.4 implies

that N(DT
Ef

) and N
(

DT
Ef
∗

)
have the same number of

columns, i.e., n∗− rank DEf ∗ = n− rank DEf , n− n∗ = nc.

We can denote N
(

DT
E∗f

)
as follows.

N
(

DT
E∗f

)
=
[
N∗1 N∗2 . . . N∗n−r

]

=


N∗11 N∗12 · · · N∗1(n−r)
N∗21 N22 · · · N∗2(n−r)
...

...
. . .

...

N(n∗)1 N(n∗)2 · · · N(n∗)(n−r)
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Then, we add nc zero elements to each column of N
(

DT
E∗f

)
as follows.

N
(

D′TE∗f

)
=
[
N ′∗1 N ′∗2 . . . N ′∗n−r

]

=



N∗11 N∗12 · · · N∗1(n−r)
N∗21 N22 · · · N∗2(n−r)
...

...
. . .

...

N(n∗)1 N(n∗)2 · · · N(n∗)(n−r)
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


Since N ′∗1 , N ′∗2 , . . .,N

′∗
n−r are linearly independent, N ′∗1 ,

N ′∗2 , . . .,N
′∗
n−r are bases of DT

Ef
. There are no zero rows in

N
(

DT
Ef

)
, and thus N1, N2, . . .,Nn−r cannot be expressed

linearly by N ′∗1 , N ′∗2 , . . .,N
′∗
n−r , which is a contradiction.

Therefore, the necessary part is proven.
Corollary 3.1 Let Ef = {e1,e2, . . .,en, } ∈4Fπ . If there ex-

ist zero rows in N
(

DT
Ef

)
, then E′f , which consists of ele-

ments of Ef corresponding to non-zero rows in N
(

DT
Ef

)
, is

the element in 4Fπ that maximizes the value of dimPEf .
Corollary 3.1 is a direct consequence of Theorem 3.1, and

it implies that it is no longer necessary to discuss the unique-
ness of the solutions in the SHOOT and ADJ oracles. How-
ever, it only takes an arbitrary solution as the unique solution
and then gets the Ef that maximizes the value of dimPEf in
4Fπ .

3.3.1 Improved SHOOT oracle

Step 1 (selecting a direction γ and finding a point on the
surface of P )

By randomly choosing γ ∈ Rd , we solve the following lin-
ear programming.

(r∗,y∗)= arg max
(r,y)∈R×Rk

r

s.t. Cγ r +Dy ≤ b
(9)

Step 2 (whether a facet of πd (P ) is found)

Ef0 = {i|Ciγ r +Diy = bi} (10)

If Rank
(

N
(

DT
Ef0

)T
CEf0

)
= 1, continue. Otherwise, go to

Step 1.
Step 3 (ensuring the Ef0 is the element with the maximal
dimPEf 0

in 4Fπ )

If there exist zero rows in N
(

DT
Ef0

)
, let Ef0 ← E′f0

as
Corollary 3.1. Otherwise, continue.

Step 4 (computing the affine hull of the facet and normaliz-
ing)[
aT
f ,bf

]
= N

(
DT
Ef0

)T [
CEf0

,bEf0

]
[
aT
f ,bf

]
=

signbf∥∥af ∥∥2

[
aT
f ,bf

]

3.3.2 Improved ADJ oracle

Step 1 (finding a point on the adjacent facet of πd (P ) and its
corresponding pre-image)

Solve the following linear programming.

(x∗,y∗)= arg max
x,y

aT
r x

s.t. CErx+DEry ≤ bEr ,

aT
f x = bf (1− ε)

Step 2 (searching for theEf of4Fπ that maximizes the value
of dimPEf )

Eadj←
{
i ∈ Er

∣∣Cix∗+Diy∗ = bi
}

If there exist zero rows in N
(

DT
Eadj

)
, let Eadj← E′adj as

Corollary 3.1. Otherwise, continue.
Step 3 (computing the affine hull of the adjacent facet and
normalizing)[
aT

adj,badj

]
= N

(
DT
Eadj

)T [
CEadj ,bEadj

]
[
aT

adj,badj

]
=

signbadj∥∥aadj
∥∥

2

[
aT

adj,badj

]

4 An improved strategy without searching for Er

In this section, we first explain the obstacles to searching for
Er in the case of dimPEf > d− 1, an improved strategy that
does not require Er is proposed, and then a new criterion is
given to judge whether the two ridges are the same.

4.1 The barrier to searching for Er

In the RDG oracle, if dimPEf > d − 1, this requires a re-
cursive call to the ESP algorithm that reduces the dimension
onto which we are projecting at each step.

We note that ar and br can easily be obtained through
this strategy, but it is often expensive to search for Er .
The only way to do this is to list all of the equality sets
Ec = {1,2, . . .,q}\Ef ,

{
Eip = Ef ∪Ei

}
, and Ei ⊂ Ec, and

searching for the πd

(
Eip

)
is equal to

{
x

∣∣∣ãT
f x̃ = b̃f

}
∩

πd−1(P̃ ). The computational effort increases in an exponen-
tial manner in the number of dimensions.
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4.2 New criteria without Er

To improve the computational efficiency of the algorithm
when the optimizer of LP is not unique, the search for Er has
been abandoned. However, in the original ESP algorithm, Er
is needed to judge the occurrence times of ridges, and hence
we have proposed a new criterion to judge whether the two
ridges in πd (P ) are the same without Er .
Lemma 4.1 Let P be a polytope. F1 =

{
x|aT

f1
x = bf1

}
∩

πd (P ) and F2 =
{
x|aT

f2
x = bf2

}
∩πd (P ) are the facets of P ,

R1 =
{
x|aT

r1
x = br2

}
∩F1 and R2 =

{
x|aT

r2
x = br2

}
∩F2 are

the ridges of P , and R1 ⊂ F1 and R2 ⊂ F2. Then, F1 ∩F2 =

R1 = R2 if and only if

rank


aT
f1
aT
f2
aT
r1
aT
r2

= rank


aT
f1

bf1

aT
f2

bf2

aT
r1

br1
aT
r2

br2

= 2. (11)

Proof Only the proof of sufficiency is given here, and the
necessity is obvious. Since af1 ⊥ ar1 ,af2 ⊥ ar2 ,

rank
[
aT
f1

bf1

aT
r1

br1

]
= rank

[
aT
f2

bf2

aT
r2

br2

]
= 2. (12)

Combining Expression (11) with Expression (12) gives us{
x|aT

r1
x = br1

}
∩

{
x|aT

f2
x = bf2

}
=
{
x|aT

r2
x = br2

}
∩

{
x|aT

f2
x = bf2

}
.

Note that

R2 =
{
x|aT

r2
x = br2

}
∩

{
x|aT

f2
x = bf2

}
∩πd (P ),

R1 =
{
x|aT

r1
x = br1

}
∩

{
x|aT

f1
x = bf1

}
∩πd (P ),

and thus R1 = R2. Since the two facets of the polytope can
only have one common ridge, F1 ∩F2 = R1 = R2.

4.3 Some other patches caused by the abandonment of
searching for Er

Since Er is required in other steps in the original ESP algo-
rithm, certain other patches need to be made.

In the ADJ oracle, LP (9) and Eq. (10) can be changed to
LP (13) and Eq. (14), respectively.

(x∗,y∗)= arg max
x,y

aT
r x

s.t. Cx+Dy ≤ b,

aT
f x = bf (1− ε)

(13)

Eadj←
{
i ∈ {1,2, . . .,q}

∣∣Cix∗+Diy∗ = bi
}

(14)

Figure 4. Comparative running times for typical cases.

We can verify that the modified algorithm still gets the cor-
rect result, though it also adds certain extra computation cost
in the case of dimPEf = d − 1. We note that dim

(
PEf

)
>

d − 1 if and only if the optimizer of LP is non-unique. A
switching strategy can be adopted to take the original method
until the optimizer of LP is non-unique.

5 Numerical simulations

In this section, the effectiveness of the proposed method is
verified based on certain typical orthogonal projection cases
and applications toN -step controllable set calculations in the
control field.

5.1 Numerical simulations for the typical orthogonal
projection cases

We select three cases for numerical simulation, and two of
them are dual-degenerate, though one is not dual-degenerate.

i. The projection of a three-dimensional n prism with n+2
half-spaces onto a two-dimensional plane

ii. The projection of an n-dimensional cube with 2n half-
spaces onto a two-dimensional plane

iii. The projection of an n-dimensional cube onto a three-
dimensional space

In cases (i) and (ii), the dual degeneracy occurs, whereas
there is no dual degeneracy in case (iii). The simulation op-
eration has been implemented in MATLAB 2019, and the
running times of the original ESP and the improved ESP are
shown in Fig. 4.
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The running time of the original ESP algorithm increases
exponentially with dimensions and the number of half-planes
of the input polytopes under the dual-degeneracy cases,
whereas the improved ESP algorithm significantly reduces
the computational burden in the case of dual degeneracy. The
running time is also optimized in the case of non-dual degen-
eracy, since it is no longer necessary to judge the uniqueness
of linear programming solutions in the improved ESP algo-
rithm.

5.2 Applications to N-step controllable set calculations

We apply the proposed method for the calculation of N -step
controllable sets in the control field, and the problem setup is
described as given below.

Consider the following linear discrete system.

[
x1(k+ 1)
x2(k+ 1)

]
=

[
1.1 2
0 0.95

]
︸ ︷︷ ︸

A

[
x1(k)
x2(k)

]
+

[
0

0.0787

]
︸ ︷︷ ︸

B

u

x = [x1,x2]T and u are the state and input vectors, respec-
tively, subject to the constants as follows.


0.125 0
−0.125 0

0 0.125
0 −0.125


︸ ︷︷ ︸

Ax

[
x1
x2

]
≤


1
1
1
1

[−1
1

]
︸ ︷︷ ︸

Au

u≤

[
1
1

]

Then, we define the target set as follows.


0.25 0
−0.25 0

0 0.25
0 −0.25


︸ ︷︷ ︸

Af

[
x1
x2

]
≤


1
1
1
1



The N -step controllable set C(N ) is defined as the collection
of all initial states x0 that can evolve into the target set in
N steps while satisfying the state and input constraints, and
it can be transformed into the orthogonal projection problem
as given below.

C(N )= πd
(
P =

{
(x,u) ∈ Rd ×Rk|Cx+Du≤ b

})
,

where d = 2, k = 1,

D=



Au 0 · · · 0
0 Au · · · 0
...

...
...

...

0 0 · · · Au
0 0 · · · 0

AxB 0 · · · 0
AxAB AxB · · · 0
...

...
...

...

AfAN−1B AfAN−2B · · · AfB


,

C=



0
0
...

0
Ax

AxA
AxA2

...

AfAN


,

and

b =


1
1
...

1

 .
The N -step controllable set can be derived, as shown in
Fig. 5, using either the improved ESP algorithm or the orig-
inal ESP algorithm. When N is small, the region of the N -
step controllable set changes significantly with the increasing
N , though the trend of change gradually weakens and when
N ≥ 12. The N -step controllable set no longer changes with
the increase in N .

Moreover, the running times of the original ESP and the
improved ESP are shown in Fig. 6. When N = 1,2, the two
algorithms have similar computational efficiencies. When
N > 2, the computational efficiency of the improved ESP
method is higher than that of the original ESP method. This is
due to the fact that, whenN = 1,2, dual degeneracy does not
occur or occurs very rarely, while, when N > 3, dual degen-
eracy occurs frequently. Clearly, the improved ESP algorithm
is better than the original ESP method in the application of
N -step controllable set computation.

6 Conclusions

In this paper, the improved ESP algorithm becomes simpler,
faster, and easier to implement in the case of dual degen-
eracy. This is achieved by the following methods. First, an
alternative criterion has been proposed to directly obtain the
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Figure 5. Results of the N -step controllable set.

Figure 6. Comparative running times for the calculation of the N -
step controllable set.

equality set that maximizes the value of dimPEf . It avoids
the uniqueness discussion of the optimizer in linear program-
ming, which is not easy to implement. Further, it also reduces
the operation times and simplifies the algorithm process. Sec-
ond, an improved strategy has been presented to solve the
difficulty in searching for the equality set Er in the case of
dimPEf > d − 1, which significantly reduces the burden of
computation. Finally, the effectiveness of the proposed im-
proved ESP algorithm has been validated through numerical
simulations.
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