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Abstract. In urban traffic, accurate prediction of pedestrian trajectory and advanced collision avoidance strat-
egy can effectively reduce the collision risk between intelligent vehicles and pedestrians. In order to improve
the prediction accuracy of pedestrian trajectory and the safety of collision avoidance, a longitudinal and lateral
intelligent collision avoidance strategy based on pedestrian trajectory prediction is proposed. Firstly, the process
of a pedestrian crossing the road is considered as a combination of free motion described by first-order Markov
model and the constrained motion presented by improved social force model. The predicted pedestrian trajectory
is obtained by weighted fusion of the trajectories of the two models with a multiple linear regression algorithm.
Secondly, according to the predicted pedestrian trajectory and time to collision (TTC) the longitudinal and lat-
eral collision avoidance strategy is designed. The improved artificial potential field method is used to plan the
lateral collision avoidance path in real time based on the predicted pedestrian position, and a fuzzy controller
is constructed to obtain the desired deceleration of the vehicle. Finally, the pedestrian motion fusion model and
the longitudinal and lateral collision avoidance strategy are verified by Prescan and Simulink co-simulation. The
results show that the average displacement error (ADE) and final displacement error (FDE) of pedestrian trajec-
tory based on pedestrian motion fusion model are smaller compared with a Markov model and improved social
force model, and the proposed pedestrian collision avoidance strategy can effectively achieve longitudinal and
lateral collision avoidance.

1 Introduction

In urban road scenes, pedestrians crossing roads are likely
to have traffic accidents involving vehicles and usually suf-
fer serious injuries. Reports show that, in recent years, the
casualty rate of pedestrians in traffic accidents with motor
vehicles is more than 50 % (Wang et al., 2019; Saito and
Raksincharoensak, 2016). Therefore it is necessary to de-
velop a pedestrian collision avoidance control strategy con-
sidering pedestrian trajectory prediction. This provides a reli-
able basis for intelligent vehicles to distinguish the intention
and interaction of pedestrians crossing the road, and make a
prejudgment to avoid potential collisions, which is of great
significance to improve the safety of pedestrian crossing the
road and traffic efficiency.

Recent research on pedestrian collision avoidance has
mainly focused on two aspects: pedestrian trajectory pre-
diction and collision avoidance control strategy (Narváez et

al., 2019; Sighencea et al., 2021). Due to pedestrian colli-
sion risk, the accuracy of pedestrian trajectory prediction has
an important impact on the safety of vehicle collision avoid-
ance. Domestic and foreign research on pedestrian trajec-
tory prediction is mainly classified as data-driven method or
the model-based method. The data-driven method is mainly
based on the improvement of the recurrent neural network
to generate related variants (Eiffert et al., 2020; Song et
al., 2020). Some researchers have optimized the network
structure and loss function in the model to improve op-
erational efficiency and accuracy. Hassan et al. (2021) in-
troduced social attention mechanism and physical attention
mechanism into generative confrontation networks and con-
sidered scene context information and historical trajectory
information to realize trajectory prediction under the inter-
action of multiple intelligent bodies. Zhou et al. (2021) con-
structed the trajectory prediction model of a graph convo-
lutional network to describe the interaction mode between
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pedestrians, so that the predicted trajectory conforms to the
habits and behaviors of pedestrians. The model-based meth-
ods often generate future trajectories based on historical time
series data according to the designed mathematical model
(Keller and Gavrila, 2014). Compared with the data-driven
method, the model-based method is more explanatory and
simpler, which can describe pedestrian movement behavior
in detail. Aiming at the interaction between a pedestrian and
a vehicle at an intersection with mixed traffic flow, Zhang
et al. (2020) established a pedestrian decision-making model
by using logic regression and proposed an improved social
force model to predict the trajectories of pedestrian. Based
on the characteristics of Markov, Vasquez et al. (2009) pro-
posed a hidden Markov model to predict trajectories of a
pedestrian and a vehicle in the current environment by com-
bining machine learning and semantic information. Wang et
al. (2018) established a fuzzy logic system to estimate the
transition probability between the pedestrian state and the
motion model, and used a Kalman filter to predict the tra-
jectory of pedestrian in a short time. Most of the studies
mentioned above focus on intersection scenarios with sig-
nal lights and crosswalks, as well as the improvement of
the basic model. However, the existing pedestrian motion
models are not comprehensive enough to analyze interac-
tive information and cannot be directly applied, which re-
quires detailed modeling in combination with actual scenes
to improve prediction accuracy. In terms of pedestrian col-
lision avoidance control strategy, there are two main ways
of collision avoidance for intelligent vehicles: longitudinal
collision avoidance and lateral collision avoidance (Zhang
et al., 2022; Gao et al., 2021). When there is collision risk,
the collision avoidance system actively sends warning sig-
nals to the driver and controls the vehicle to brake or steer
according to the risk indicators to avoid pedestrian injury.
More and more researchers are focusing on how to improve
the effectiveness and rationality of collision avoidance strate-
gies. Based on velocity obstacle theory, Wu et al. (2019)
proposed a real-time dynamic path planning collision avoid-
ance method for pedestrians crossing the road in the envi-
ronment of cooperative vehicle–infrastructure system to re-
duce the pedestrian collision risk. Chen and Zhang (2022)
proposed a data-driven fusion model of attention mechanism
long short-term memory (LSTM) network and modified so-
cial force model for pedestrian path prediction. According to
the pedestrian safety area, the front wheel angle was calcu-
lated in real time to plan the collision avoidance path and
tracked it based on model predictive control (MPC) the-
ory. Yang et al. (2019) presented a hierarchical autonomous
emergency braking pedestrian system, which built the upper-
layer controller of a fuzzy neural network by introducing a
genetic algorithm, and designed the lower-layer controller
based on proportional–integral–derivative (PID) theory. Con-
sidering that road users were affected by perceived location
and prediction errors, Themann et al. (2015) put forward a
collision avoidance system that optimized the longitudinal

and lateral trajectory. Most of the current studies only con-
sider single lateral or longitudinal collision avoidance and
few studies refer to a comprehensive longitudinal and lateral
collision avoidance strategy according to the pedestrian mo-
tion state, which makes the pedestrian collision avoidance
strategies less applicable and reliable.

On the basis of the previous analysis, a pedestrian collision
avoidance control strategy is proposed in this paper based
on pedestrian trajectory prediction in the scene of a pedes-
trian crossing the road without signal lights or crosswalks.
Firstly, the pedestrian motion model based on the fusion of
a Markov model and improved social force model is con-
structed in which the Markov model is applied to simulate
random walking of a pedestrian in a free state and the im-
proved social force model is established to represent the in-
teraction between a pedestrian and the surrounding environ-
ment. Secondly, the parameters of pedestrian motion fusion
model are calibrated based on the maximum likelihood esti-
mation method. The pedestrian trajectories predicted by the
two models are fused by a multiple linear regression algo-
rithm. Then the risk of pedestrian–vehicle collision is evalu-
ated based on the predicted pedestrian trajectory. Consider-
ing predicted pedestrian location and time to collision (TTC)
as well as the road scene, a longitudinal and lateral collision
avoidance strategy is designed, which can actively conduct
lateral avoidance or longitudinal braking. With respect to lat-
eral collision avoidance, the improved artificial potential field
method is used to plan the collision avoidance path for the in-
telligent vehicle. In the aspect of longitudinal collision avoid-
ance, the desired deceleration of the vehicle is obtained by a
fuzzy control method. Finally, the accuracy of the predicted
pedestrian trajectory based on the pedestrian motion fusion
model and the feasibility of collision avoidance control strat-
egy are verified by Prescan and MATLAB co-simulation.

2 Pedestrian motion model establishment

2.1 The first-order Markov model

Pedestrians usually tend to walk freely and attempt to iden-
tify a destination without disturbance from the external en-
vironment. During the procedure, the speed and direction of
each step would vary with the state of the previous moment.
Therefore, a first-order Markov chain is selected to describe
the randomness of the pedestrian movement process (Yuan
et al., 2023). According to the principle of Markov, the po-
sition and speed of the pedestrian in the following step can
be determined by the current position and speed. The coordi-
nate system in this paper is the global coordinate system, in
which the x axis represents the longitudinal direction along
the road, and the y axis represents the lateral direction cross-
ing the road. The pedestrian movement is resolved into x and
y axis components, and the pedestrian state is described as

Stateped =
(
vx−p(t),vy−p(t),xm_p(t),ym_p(t)

)
, (1)
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where Stateped is the motion state of the pedestrian, vx−p(t)
and vy−p(t)represent the speed of the pedestrian in the x and
y axis directions, respectively, xm_p(t) and ym_p(t) are the
position of the pedestrian in the x and y axis directions.

The speed and position of the pedestrian in the x axis di-
rection are shown as below:

vx−p (t +1t)= vx−p(t)+1vx−p(t) , (2)

1vx−p(t)=−kx
[
vx−p(t)− vx−p

]
+ εx(t) , (3)

xm_p (t +1t)= xm_p(t)+1t · vx−p (t +1t) , (4)

where vx−p (t +1t) indicates the speed of the pedestrian at
the time of t+1t in the x axis direction,1vx−p is the speed
increment at t in the x axis direction, kx represents the co-
efficient of speed increment in the x axis direction, vx−p
indicates the average speed in the x axis direction, and εx
expresses the random fluctuation in pedestrian speed in the
x axis direction, which is subject to Gaussian distribution.

Similarly, the speed and position of the pedestrian in the
y axis direction are represented by following expressions:

vy−p (t +1t)= vy−p(t)+1vy−p(t), (5)

1vy−p(t)=−ky
[
vy−p(t)− vy−p

]
+ εy(t), (6)

ym_p (t +1t)= ym_p(t)+1t · vy−p (t +1t) , (7)

where vy−p (t +1t) indicates the speed of the pedestrian at
t +1t in the y axis direction, 1vy−p is the increment of
speed at t in the y axis direction, ky represents the coefficient
of speed increment in the y axis direction, vy−p indicates the
average speed in the y axis direction, and εy expresses the
random fluctuation in pedestrian speed in the y axis direction,
which also follows Gaussian distribution.

Thus, the pedestrian position at t moment can be predicted
by the Markov model:

pm(t)=
(
xm_p(t),ym_p(t)

)
. (8)

2.2 Improved social force model

According to a social force model (Wu et al., 2022), the mov-
ing pedestrian is considered as a particle that confirms to the
law of mechanics, and the relationship between the pedes-
trian and the surrounding traffic participants can be expressed
by mechanics equations. The classical social force model in-
cludes three forces: pedestrian self-driving force, pedestrian
interaction force, and interaction force with boundary or ob-
stacle. Based on the basic theory, the social force model in

Figure 1. Schematic of pedestrian forces.

this paper is improved for applications in urban scenes with-
out crosswalks or signal lights. The resultant force of the
pedestrian is shown in Fig. 1, and the improved social force
model (I-SFM) is built as follows:

F α(t)= F 0
α +F αv +F αβ , (9)

v (t +1t)= v(t)+
F α(t)
m

1t, (10)

ps (t +1t)= ps(t)+ v(t)1t +
1

2m
F α(t)1t2, (11)

ps(t)=
(
xs−p(t),ys−p(t)

)
. (12)

In Eqs. (9)–(12), F α(t) is the resultant force on the pedes-
trian, F 0

α is the self-driving force on the pedestrian toward
the target point, F αv is the interaction force of the vehicle on
the pedestrian, F αβ is the interaction force of the surround-
ing pedestrians, ps(t) is the predicted pedestrian position at
t , ps (t +1t) is the predicted pedestrian at t+1t , v(t) is the
velocity of the pedestrian at the moment of t , 1t is the time
step, and m is the mass of the pedestrian.

A pedestrian crossing the road is attracted to their destina-
tion and will take the shortest path to reach it at the desired
speed. When the surrounding environment interferes in the
pedestrian crossing process, the deviation between the actual
speed and the desired speed occurs and the pedestrian’s walk-
ing direction varies, which causes the self-driving force to au-
tomatically adjust the current speed to the desired speed. The
expression of self-driving force is presented as follows:

F 0
α =mα

v0
α(t)e0

α(t)− vα(t)
τ

, (13)

where v0
α(t) is the desired speed at t (m s−1), e0

α(t) is the de-
sired speed direction, vα(t) is the actual speed (m s−1), τ in-
dicates the relaxation time, and mα is the mass of pedestrian
α (kg).
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Usually the crossing behavior of pedestrian is influenced
by surrounding pedestrians. When surrounding pedestrians
are closer to the pedestrian, the pedestrian will avoid col-
lision, stop, and so on. In order to meet their own motion
space, the virtual repulsive force will act on the pedestrian
to maintain a certain distance from surrounding pedestrians.
According to the classical social force model, the repulsive
force between pedestrian α and pedestrian β is expressed as
follows:

F αβ = F
soc
αβ +F

phy
αβ , (14)

F socαβ = Aα exp

[(
rαβ − dαβ

)
Bα

]
nαβ , (15)

F
phy
αβ = kg

(
rαβ − dαβ

)
nαβ+κg

(
rαβ − dαβ

)
1vtαβ tαβ , (16)

g
(
rαβ − dαβ

)
=

{
0, rαβ − dαβ < 0

rαβ − dαβ , rαβ − dαβ ≥ 0 , (17)

where F socαβ is the psychological repulsive force on pedes-

trian α affected by the surrounding pedestrian β, Fphyαβ is the
physical repulsive force on pedestrian α, Aα is the strength
coefficient of repulsive force (N), Bα is the distance coef-
ficient of repulsive force (m), rαβ is the sum of virtual ra-
diuses of pedestrian α and pedestrian β (m), dαβ is the dis-
tance between pedestrian α and pedestrian β (m), nαβ is the
direction in which pedestrian β points to pedestrian α, k is
the elastic coefficient of the human body (kg s−2), which
describes the energy transmission during the collision pro-
cess between pedestrians, κ is the sliding friction coefficient
of bodies (kg (m s)−1) which describes the resistance when
pedestrians slide with each other, 1vtαβ is the tangential rel-
ative velocity (m s−1), and tαβ is the tangent direction vector
perpendicular to nαβ .

A pedestrian crossing the road will not only be disturbed
by surrounding pedestrians but also by conflict with vehicles.
The pedestrian usually tries their best to avoid collision with
approaching vehicles. Since the speed of vehicles is much
faster than that of the pedestrian, an elliptical potential field
(Zeng et al., 2014) that describes the difference in speed is
used to represent the repulsive force of the approaching ve-
hicle on the pedestrian. The repulsive force is shown as fol-
lows:

F αv = Av exp
[
−
bαv

Bv

]
nαv (18)

with

bαv =

1
2

√
(‖dαv‖+‖dαv − (vv − vα) ·1t‖)2

− [‖(vv − vα) ·1t‖]2, (19)

where Av is the strength coefficient of the interaction force
between the vehicle and the pedestrian (N), Bv is the distance
coefficient of interaction force between the vehicle and the
pedestrian (m), dαv is the distance vector between the pedes-
trian and the vehicle, vv is the speed of the vehicle (m s−1),
vα is the speed of the pedestrian α (m s−1), nαv is unit vector
of the vehicle pointing to the pedestrian, and 1t is the time
step (s).

2.3 Pedestrian motion fusion model

When a pedestrian crosses the road, the uncertainty of the
environment plays an important role in pedestrian motion.
The Markov model can better predict the random and free
movement of pedestrians without interference, while the so-
cial force model can better predict the interfered motion by
the surrounding environment. To combine the advantages of
the Markov model and social force model, a pedestrian mo-
tion fusion model is constructed to reflect the characteristics
of pedestrian motion, as shown in Fig. 2.

1. In the first layer, the Markov model and the improved
social force model are used to calculate the speed and
position of the pedestrian at each time step respectively
according to the conditions of the initial moment and
obtain the pedestrian trajectory in future time through
iteration.

2. The predicted pedestrian trajectory datasets
are obtained by the Markov model and im-
proved social force model and are recorded
as data1=

{(
xm−p|i,ym−p|i

)
, i = 1,2, . . .,n

}
,

data2=
{(
xs−p|i,ys−p|i

)
, i = 1,2, . . .,n

}
, which

correspond to a group of coordinates of the predicted
positions. The longitudinal and lateral coordinates of
each group are extracted and recorded as xm,s and ym,s ,
and a new dataset

{
xm,s,ym,s

}
is taken as the input of

the second layer model. A multiple linear regression
(Zhang et al., 2017; Gu et al., 2021) algorithm is used
to fit the relationship between the predicted results and
the real data. The multiple linear regression model is
shown in Eqs. (20)–(22):

Y = β1X1+β2X2+β3X3+ . . .+ ε, (20)

where Y is the dependent variable, X is the indepen-
dent variable, β1,β2,β3. . .βn is the regression coeffi-
cient, and ε is the random error.

px = xm,sω1,2+ bx, (21)

py = ym,sω3,4+ by (22)
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with

px =


px1
px2
...

pxn

 ,xm,s =

xm−p,1 xs−p,1
xm−p,2 xs−p,2
...

...

xm−p,n xs−p,n

 ,

ω1,2 =

(
ω1
ω2

)
,bx =


bx1
bx2
...

bxn

 ,

py =


py1
py2
...

pyn

 ,ym,s =

ym−p,1 ys−p,1
ym−p,2 ys−p,2
...

...

ym−p,n ys−p,n

 ,

ω3,4 =

(
ω3
ω4

)
,by =


by1
by2
...

byn

 ,

where px and py represent the results of regression
calculation for the longitudinal and lateral positions,
xm−p and xs−p represent the longitudinal positions pre-
dicted by the Markov pedestrian model and improved
social force model, respectively, ym−p and ys−p express
the lateral positions predicted by the Markov pedes-
trian model and the improved social force model, re-
spectively, ω1 and ω2 are the weight coefficients of the
longitudinal position predicted by the Markov pedes-
trian model and the improved social force model, re-
spectively, ω3 and ω4 are the weight coefficients of the
lateral position, respectively, and bx and by represent
random error.

3. The optimization problem is established by defining the
following loss function, which can be solved by the least
squares method (Lenth, 2016) to obtain the weight co-
efficients ω1, ω2, ω3, and ω4.Lx

(
ω1,2,bx

)
=

1
n

∑n
i=1
(
pxi − p̃xi

)2(
ω∗

1,2,b
∗
x

)
= argminLx

(
ω1,2,bx

) , (23)

Ly
(
ω3,4,by

)
=

1
n

∑n
i=1
(
pyi − p̃yi

)2(
ω∗

3,4,b
∗
y

)
= argminLy

(
ω3,4,by

) , (24)

where Lx
(
ω1,2,bx

)
and Ly

(
ω3,4,by

)
represent the

loss functions of the longitudinal and lateral position,
respectively, pxi and pyi represent the real longitudinal
and lateral positions, respectively, p̃xi and p̃yi repre-
sent the predicted longitudinal and lateral positions, re-
spectively, ω∗

1,2, b∗
x , ω∗

3,4, and b∗
y represent the optimal

solution of ω1,2, bx , ω3,4, by .

Figure 2. Process of pedestrian trajectory prediction based on
model fusion.

4. Since the calculated weights are positively correlated
with the performance of each model, the weighted fu-
sion formula is obtained by multiplying the weights
with the predictions of each model.

p =

[
p̃x
p̃y

]
=

[
xm,sω

∗
1,2+ b

∗
x

ym,sω
∗
3,4+ b

∗
y

]
(25)

In Eq. (25), p is the pedestrian position at t time ob-
tained by a fusion of the Markov model and improved
social force model.

3 Calibration of pedestrian motion model

3.1 Pedestrian trajectory data collection

In order to calibrate parameters of the Markov model and im-
proved social force model, and to verify the performance of
the pedestrian motion fusion model established in this paper,
real pedestrian walking data are collected. The data collec-
tion scene is a mixed pedestrian–vehicle road without signal
lights or crosswalks. The test section is two-lane road with
a width of 11 m. The test time is 08:30–10:30 and 14:30–
16:30 LT (local time).

The main test device is an HD camera to collect the im-
age data of the pedestrian crossing the road. The process of
data collection and the results are shown in Figs. 3 and 4.
The HD camera takes a video of the pedestrian crossing the
road and then extract continuous frame images. The pedes-
trian in the frame image is detected by histogram of oriented
gradients (HOG) and support vector machines (SVM), and
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Figure 3. Flow chart of pedestrian trajectory data collection.

Figure 4. Results of pedestrian trajectory data collection.

the target position of each frame in the continuous image se-
quence is tracked by a Kalman filter. Finally, the coordinates
of the position in the image coordinate system are converted
into ground coordinates by a perspective transformation ma-
trix method (Barone et al., 2020), so as to filter and analyze
the real data.

3.2 Model parameters calibration

The parameter value in the model established in this paper
determines the accuracy of the model. The measurable pa-
rameters can be obtained directly from real data, while the
unmeasurable parameters need to be calculated by statistical
methods. In this paper, the unmeasurable parameters are cal-
ibrated by the maximum likelihood estimation method (Ko et
al., 2013; Mirabella et al., 2023). The measurable parameters
include the following: pedestrian mass is m ∈ [50,70] (kg),
the radius of pedestrian is r ∈ [0.4,0.6] (m), and the expected
speed of the pedestrian is v0

α ∈ [1.0,1.5] (m s−1).
Assuming that the parameter set to be calibrated in the

model is θ = {Aα,βα,Av,βv,κ,k}, 1dα (tk|θ ) is the dis-
tance vector from the pedestrian position Pα (tk) at the cur-
rent moment to the pedestrian position Pα (tk+1) at the next
moment, and it follows a normal distribution with a mean of
µ and standard deviation of σ in the X and Y directions. The

likelihood function L (θ ) with respect to θ is as follows:

L (θ ) =
n∏
k=1

1

σ ·
√

2π
exp

(
−

[1dα (θ )−µ]2

2σ 2

)

=
(2π )−

n
2

σ n
exp

−
n∑
k=1

[1dα (θ )−µ]2

2σ 2

 (26)

with

1dα (θ )= ‖1dax (tk|θ )‖+
∥∥1dαy (tk|θ )

∥∥ , (27)

µ= µx +µy, (28)

σ =

√
σ 2
x + σ

2
y + 2cov

(
‖1dαx (tk|θ )‖ ,

∥∥1dαy (tk|θ )
∥∥). (29)

Taking the logarithm on both sides of Eq. (26), Eq. (30) can
be obtained.

lnL (θ )=−
n

2
ln(2π )− n ln (σ )−

n∑
k=1

[1dα (θ )−µ]2

2σ 2 (30)

When maximum lnL (θ ) is obtained by solving the maxi-
mum likelihood function, parameter set θ in L (θ ) is taken
as the parameter value of the pedestrian motion model.

θ = argmaxlnL (θ ) (31)

After estimation and analysis, the specific calibration results
in pedestrian model are shown in Table 1.

4 Design of collision avoidance strategy based on
pedestrian trajectory prediction

4.1 Collision avoidance strategy

To ensure the comfort and safety of vehicle collision avoid-
ance, a longitudinal and lateral pedestrian collision avoid-
ance strategy is designed considering the predicted trajectory
of a pedestrian crossing the road. The collision avoidance
strategy is as shown in Fig. 5.

In Fig. 5, the road and traffic information is perceived by
sensors of the vehicle. If there are vehicles in the other lane,
the lateral collision avoidance will pose a threat to the traffic
participant on the road, so the longitudinal collision avoid-
ance is implemented to ensure enough safety of the pedes-
trian in this lane and vehicles in other lanes. It is known that
the position of the pedestrian crossing the road influences
vehicle collision avoidance decision-making. The pedestrian
crossing area is divided into a high-risk area in front of the
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Table 1. Parameters calibration results.

Parameter Value

Strength coefficient Aα between pedestrian α and pedestrian β (N) 0.94
Distance coefficient Bα between pedestrian α and pedestrian β (m) 1.95
Strength coefficient Av between pedestrian α and vehicle (N) 2.25
Distance coefficient Bv between pedestrian α and vehicle (m) 5.50
Elastic coefficient of the human body k (kg s−2) 40 000
Sliding friction coefficient of bodies κ (kg (m s)−1) 60 000
Desired speed v0

α (m s−1) 1.5
Relaxation time τ (s) 0.5
Radius of pedestrian r (m) 0.45

Figure 5. The strategy for longitudinal and lateral collision avoidance.

vehicle, a potential-risk area from the right edge of the ve-
hicle to the road edge, and a safe area, as shown in Fig. 6.
The way of collision avoidance is adopted according to the
predicted pedestrian location in high-risk or potential-risk ar-
eas.

When the pedestrian is in front of the vehicle, there is a
large collision risk. The risk level is determined by the lon-
gitudinal collision avoidance time of vehicle which is rela-
tive to the vehicle speed. The longitudinal collision avoid-

ance time is defined as

tv =
1S+ ε

vvehicle
, (32)

where vvehicle is the speed of vehicle, 1S is the longitudinal
relative distance between the vehicle and the pedestrian, and
ε is the longitudinal position fluctuation of the pedestrian.

According to the pedestrian motion fusion model de-
scribed in Sect. 2, the predicted pedestrian trajectory can be
obtained. Substituting Eq. (32) into Eq. (25), the predicted
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Figure 6. Division of pedestrian crossing area.

position of the pedestrian in the longitudinal collision avoid-
ance time is calculated as shown in Eq. (33).

p (tv)=

[
ω1 · xm−p (tv)+ω2 · xs−p (tv)

ω3 · ym−p (tv)+ω4 · ys−p (tv)

]
(33)

When the predicted pedestrian position is in the high-risk
area, longitudinal collision avoidance is selected. When it
is in the potential-risk area, longitudinal collision avoidance
or lateral collision avoidance is adopted according to cor-
responding TTC thresholds. In this paper, 2.6 and 1.5 s are
set as TTC thresholds for longitudinal collision avoidance
and lateral collision avoidance (Hajiloo et al., 2020; Fildes
et al., 2015). When TTC> 2.6 s, the driving environment is
safe and the vehicle drives normally. When 1.5 s<TTC≤
2.6 s, there is a collision risk between the vehicle and the
pedestrian, so longitudinal collision avoidance strategy is
adopted. When TTC≤ 1.5 s, the longitudinal collision avoid-
ance is unable to avoid risk and the lateral collision avoid-
ance method is applied. The expression of TTC is shown as
follows:

TTC=
1S− dvehicle− dped

1v
, (34)

where 1S is the distance from centroid of the vehicle to the
pedestrian, dvehicle is the distance from centroid to front edge
of the vehicle, dped is the pedestrian radius, and1v is the rel-
ative longitudinal speed between the vehicle and the pedes-
trian.

4.2 Lateral collision avoidance path planning

The artificial potential field algorithm proposed by Khatib
(1986) has been widely used in obstacle avoidance path plan-
ning. In this paper, considering that the longitudinal safety
distance for intelligent vehicle is much longer than the lateral
distance in the process of lateral obstacle avoidance as well
as the structural parameters of the road, an improved artifi-
cial potential field is constructed for lateral collision avoid-
ance path planning. The artificial potential field includes the

gravitational potential field of the road centerline, the re-
pulsive potential field of the road boundary, and the ellipti-
cal obstacle repulsion potential field. Combining the updated
pedestrian position predicted by the pedestrian motion fusion
model in the planning period, the position of the vehicle in
the process of lateral obstacle avoidance can be obtained by
solving the artificial potential field force balance equation to
realize the dynamic path planning of the vehicle.

4.2.1 Gravitational potential field of road centerline

With respect to the traditional artificial potential field
method, the point is usually taken as the gravitational tar-
get. The vehicle usually drives along the road centerline un-
der conditions of normal driving. Therefore, the gravitational
potential field of the road centerline is constructed with lane
centerline as the gravitational target.

Uatt(X)=
1
2
Kalt

(
y− yroad,i

)2
, (35)

where Uatt(X) is the gravitational potential field of road cen-
terline, Kalt is the gravitational potential field gain coeffi-
cient, y is the lateral coordinate of the vehicle, yroad,i is the
lateral coordinate of ith lane centerline.

4.2.2 Repulsive potential field of road boundary

The repulsive force potential field of the road boundary is
constructed to prevent the vehicle from leaving the road. The
repulsion force of the road boundary on the vehicle is de-
termined by the distance between the vehicle and the road
boundary:

Uroad =
1
2
Kroad

(
1

y− yboundary,i −
1
2W

)2

, (36)

where Uroad is the repulsive potential field of road boundary,
yboundary,i is the coordinate of ith road boundary,Kroad is the
road boundary gain coefficient, andW is width of the vehicle.

4.2.3 Repulsive potential field of obstacle

Regarding the traditional artificial potential field method, the
obstacle repulsive force field is usually a circular virtual field
with the obstacle and the influence distance as the center and
the radius, respectively. During lateral collision avoidance,
the longitudinal speed of the vehicle is much greater than
the lateral speed, and the planned collision avoidance path
should satisfy the condition that the longitudinal distance is
greater than the lateral distance (Ji et al., 2017). Therefore
an elliptical repulsive potential field is established as follows
rather than circular repulsive potential field.

Uobs =Kobs

(
−

(x− xobs)2

σ 2
x

−
(y− yobs)2

σ 2
y

)
, (37)
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where Uobs is the elliptical obstacle repulsion potential field,
Kobs is the weight coefficient of obstacle repulsion potential
field, (x,y) are the coordinates of the vehicle, (xobs,yobs) are
the coordinates of the obstacle, σx and σy are the distance
factors of the obstacle acting on the vehicle, σy is the sum of
σx and the minimum longitudinal safe distance, and σx is the
sum of the pedestrian radius, the half width of the vehicle,
and the safety distance threshold.

4.3 Longitudinal collision avoidance deceleration
planning

In this paper, a fuzzy controller is built based on fuzzy control
theory (Wang et al., 2023) to realize longitudinal collision
avoidance. The relative distance and relative speed between
vehicle and pedestrian are taken as the inputs of the fuzzy
controller, and the controller outputs the desired decelera-
tion to ensure the safety of longitudinal collision avoidance.
The universe of relative speed is defined as [−80,0], which
is described by 12 linguistic variables: N11, N10, N9, N8,
N7, N6, N5, N4, N3, N2, N1, and Z0. The universe of rela-
tive distance is [0,80], which is described by eight linguistic
variables: Z0, P1, P2, P3, P4, P5, P6, and P7. The universe of
desired deceleration is [−8,0], which is described by eight
linguistic variables: N7, N6, N5, N4, N3, N2, N1, and Z0.
The triangular membership function is selected to represent
input and output of a fuzzy controller, as shown in Fig. 7.
The developed fuzzy relationship between input and output
is shown in Fig. 8.

5 Simulation verification and results analysis

In order to verify the feasibility of the pedestrian motion fu-
sion model and the longitudinal and lateral pedestrian col-
lision avoidance control strategy proposed in this paper, a
simulation platform is built based on Prescan and MAT-
LAB/Simulink. Prescan is used to build a virtual traffic scene
and provide road and pedestrian information. The pedestrian
trajectory prediction module and collision avoidance control
module are built in MATLAB/Simulink. The simulations are
carried out under different conditions.

5.1 Analysis of simulation results of trajectory prediction

In this study, a total of 258 groups of pedestrian trajectories
are collected as the observation dataset, of which 116 groups
are used for parameter calibration and 96 groups are used
for model validation. The collected trajectory data can truly
reflect pedestrian crossing behavior. The pedestrian crossing
scene is set in two cases: slowing down for collision avoid-
ance and keep crossing, as shown in Fig. 9. In the simulation,
the pedestrian motion fusion model established on the MAT-
LAB platform is used to generate the predicted trajectories,
which are respectively compared with the real trajectories.
The performance of the model is evaluated by the average

displacement error (ADE) and the final displacement error
(FDE), shown as follows:

ADE=
1
N

N∑
k=1

√(
x

pre
k − x

obs
k

)2
+
(
y

pre
k − y

obs
k

)2
, (38)

FDE=
√(
x

pre
N − x

obs
N

)2
+
(
y

pre
N − y

obs
N

)2
, (39)

where xpre
k and ypre

k are the predicted pedestrian positions in x
and y directions at k time, xobs

k and yobs
k are the real positions

in x and y directions, and N represents the total simulation
steps.

Case 1: the pedestrian crosses the road from the starting
point at the edge of the road and slows down for collision
avoidance with the approaching vehicle. The initial position
of the vehicle is (0,2), and the pedestrian starting position
is (30,0.4). The pedestrian motion fusion model proposed in
this paper is compared with the Markov model and improved
social force model, and the simulation results are shown in
Fig. 10.

It can be seen from Fig. 10 that the position and speed
of the pedestrian predicted by the fusion model is the clos-
est to the real pedestrian trajectory. In the crossing process,
the pedestrian maintains a certain speed at the beginning and
then gradually slows down when the vehicle approaches. The
results predicted by the pedestrian motion fusion model de-
signed in this paper not only consider random behavior fluc-
tuations but also reflect the pedestrian’s movement behavior
affected by the surrounding environment. By calculation, the
ADE and FDE of the Markov pedestrian model are 0.1697
and 0.174, respectively, the ADE and FDE of the improved
social force model are 0.2373 and 0.1864, respectively, and
the ADE and FDE of fusion model are 0.1103 and 0.1294,
respectively. The results indicate that the pedestrian motion
fusion model can truly reflect the behavior and predict pedes-
trian trajectory more accurately.

Case 2: the pedestrian walks from the starting point at
the edge of road and towards the target point. The vehicle
is far away from the pedestrian and the driving speed is slow.
The initial position of the vehicle is (0,2), and the pedestrian
starting position is (50,1). The simulation results are shown
in Fig. 11.

Figure 11 shows the pedestrian trajectories predicted by
different models and the relationship between the lateral/lon-
gitudinal displacement and time. In Fig. 11b and c, the lon-
gitudinal and lateral displacement under the proposed pedes-
trian motion fusion model is roughly consistent with the real
displacement. Figure 11a shows that the predicted trajectory
of the Markov model is quite different from the actual tra-
jectory, and the predicted trajectory of the improved social
force model is similar to the actual trajectory at the begin-
ning; however, the longitudinal displacement error between
the predicted position and the actual position increases grad-
ually. The predicted trajectory of the pedestrian motion fu-
sion model is basically consistent with the real trajectory. In
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Figure 7. (a) Membership function of relative distance; (b) membership function of relative speed; (c) membership function of desired
deceleration.

Figure 8. Surface of fuzzy relationship.

order to compare performance of three models intuitively, the
ADE and FDE of the predicted trajectory are calculated. The
results show that the ADE and FDE of the Markov model are
0.1628 and 0.1872, respectively, the ADE and FDE of the
improved social force model are 0.1685 and 0.1457, while
the ADE and FDE of the pedestrian motion fusion model are
0.1158 and 0.1081, respectively. The comparison results in-
dicate that the pedestrian motion fusion model is more ac-
curate in pedestrian trajectory prediction than the Markov
model and improved social force model, and the predicted
pedestrian trajectory is closer to the actual trajectory.

5.2 Verification of lateral collision avoidance

To verify the effectiveness of the proposed path planning
method for lateral collision avoidance, the simulation condi-
tions are set as follows: the road includes two lanes, the width
of every lane is 3.5 m, the coordinate of the vehicle’s center
of gravity is (0,2), and the pedestrian starting position coor-
dinate is (30,0.4). The pedestrian collision avoidance paths
are generated by the artificial potential field method at the

speeds of 30, 45, and 60 km h−1, respectively. The results are
shown in Fig. 12.

In Fig. 12, the red solid line is the improved path con-
sidering pedestrian trajectory prediction based on improved
artificial potential field algorithm and the blue dotted line is
the unimproved path without taking the information of pre-
dicted pedestrian trajectory into account during the path plan-
ning process. It can be seen from Fig. 12 that the unimproved
planned path has shorter lateral collision avoidance distance
and is closer to the pedestrian, which results in potential col-
lision risk. Based on the improved artificial potential field
method, the safety distance from the vehicle to the pedestrian
is adjusted in real time during the planning process. The lat-
eral deviation of the planned path is longer than that of the
unimproved artificial potential field method, and the steer-
ing collision avoidance operation can be taken earlier to en-
sure the safety of collision avoidance. As can be seen from
Fig. 12, the vehicle can plan a smooth and continuous obsta-
cle avoidance path at different speeds and always within the
road boundary, which meets the requirement of lateral colli-
sion avoidance safety.

5.3 Verification of longitudinal collision avoidance

The simulation conditions for longitudinal collision avoid-
ance are set as follows: the pedestrian crosses the road at a
certain distance from the vehicle. The results of longitudinal
collision avoidance of the vehicle at the speeds of 30, 45, and
60 km h−1 are as follows.

From Figs. 13a, 14a and 15a, it can be seen that the vehi-
cle starts to brake when it receives the signal of longitudinal
collision avoidance, and completes braking at the time of 5.2,
6, and 8.1 s, respectively, with small deceleration fluctuation,
which demonstrates the designed fuzzy controller can meet
the control demand of smooth deceleration. In Figs. 13c, 14c,
and 15c, the vehicle starts braking at a distance of 25, 35,
and 65 m from the pedestrian, and keeps a safe distance of
about 5 m, which verifies that the designed longitudinal colli-
sion avoidance system can ensure collision avoidance safety.
From the results in Figs. 13, 14 and 15, it can be found that
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Figure 9. Pedestrian crossing scene. (a) Case 1: slow down for collision avoidance; (b) case 2: keep crossing.

Figure 10. Comparisons of trajectory prediction applying different models in case 1. (a) Predicted pedestrian trajectory and real trajectory;
(b) relationship between longitudinal displacement and time; (c) relationship between lateral displacement and time.

Figure 11. Comparisons of trajectory prediction applying different models in case 2. (a) Predicted pedestrian trajectory and real trajectory;
(b) relationship between longitudinal displacement and time; (c) relationship between lateral displacement and time.
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Figure 12. Comparisons of lateral collision avoidance path at different speeds. (a) Lateral collision avoidance path at 30 km h−1; (b) lateral
collision avoidance path at 45 km h−1; (c) lateral collision avoidance path at 60 km h−1.

Figure 13. Results of longitudinal collision avoidance at
30 km h−1. (a) Desired deceleration; (b) longitudinal speed; (c) lon-
gitudinal relative distance.

Figure 14. Results of longitudinal collision avoidance at
45 km h−1. (a) Desired deceleration; (b) longitudinal speed; (c) lon-
gitudinal relative distance.

the pedestrian collision avoidance system functions well at
different speeds, and the minimum distance between the ve-
hicle and the pedestrian when completing braking is in the
range of 2–5 m, which can better meet the requirements of
pedestrian protection.

6 Conclusions

Aiming to solve the problems of insufficient prediction accu-
racy of pedestrian trajectory and the shortcomings of pedes-
trian collision avoidance control methods under conditions
without signal lights or crosswalks, in this paper, a pedestrian
motion fusion model is constructed to predict the pedestrian
trajectory by the fusion of a Markov pedestrian model and
improved social force model with regression algorithm. Ac-
cording to the predicted pedestrian trajectory, the longitudi-

Figure 15. Results of longitudinal collision avoidance at
60 km h−1. (a) Desired deceleration; (b) longitudinal speed; (c) lon-
gitudinal relative distance.

nal and lateral pedestrian collision avoidance control strategy
is established. The main conclusions are as follows.

1. Based on the analysis of the dynamic behavior of a
pedestrian crossing the road, the behavior of the pedes-
trian is considered as the combination of free movement
without external influences and interference movement
influenced by the surrounding environment. The pedes-
trian motion fusion model combines the advantages of
two models, which better reflects the overall distribution
of pedestrian trajectory.

2. Compared with the Markov model, the ADE and FDE
of the pedestrian motion fusion model proposed in this
paper are reduced by 35.00 % and 25.63 % in the col-
lision avoidance scene, and the ADE and FDE are re-
duced by 28.86 % and 42.25 % in the keep crossing
scene. Compared with the improved social force model,
the ADE and FDE in the collision avoidance scene are
reduced by 55.87 % and 30.58 %, and ADE and FDE
in the keep crossing scene are reduced by 31.28 % and
25.81 %. The comparisons indicate the pedestrian mo-
tion fusion model is more accurate in pedestrian trajec-
tory prediction.

3. According to the analysis of vehicle-to-pedestrian col-
lision risk, a longitudinal and lateral collision avoid-
ance control strategy is developed. The simulation re-
sults show that intelligent vehicles can conduct collision
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avoidance in time based on the driving environment, ve-
hicle states, and risk level under various conditions to
avoid collision accidents and improve safety.

In order to further improve the applicability and perfor-
mance of the algorithm, future studies can be conducted con-
sidering the following aspects.

1. This study aims to explore the interaction between vehi-
cles and pedestrians crossing the street. However, in real
urban road traffic, there are often multiple motor vehi-
cles, pedestrians, and non-motor vehicles. Therefore, it
is necessary to further study the pedestrian model suit-
able for complex scenes.

2. The research on lateral collision avoidance planning al-
gorithms in this paper is relatively idealized, and the
collision avoidance does not consider the speed plan-
ning of vehicle. Therefore, it is necessary to compre-
hensively plan the path and speed of intelligent vehicles
to realize stable and safe driving in a complex environ-
ment.
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