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Abstract. As a non-tree multi-body system, the dynamics model of four-bar mechanism is a differential alge-
braic equation. The constraints breach problem leads to many problems for computation accuracy and efficiency.
With the traditional method, constructing an ODE-type dynamics equation for it is difficult or impossible. In
this exploration, the dynamics model is built with geometry mechanic theory. The kinematic constraint variation
relation of a closed-loop system is built in matrix and vector space with Lie group and Lie algebra theory respec-
tively. The results indicate that the attitude variation between the driven body and the follower body has a linear
recursion relation, which is the basis for dynamics modelling. With the Lie group variational integrator method,
the closed-loop system Lagrangian dynamics model is built in vector space, with Legendre transformation. The
dynamics model is reduced to be the Hamilton type. The kinematic model and dynamics model are solved using
Newton iteration and the Runge–Kutta method respectively. As a special case of a crank and rocker mechanism,
the dynamics character of a parallelogram mechanism is presented to verify the good structure conservation
character of the closed-loop geometry dynamics model.

1 Introduction

As a non-tree multi-body system, the dynamics modelling
and calculation of parallel mechanisms are widely employed,
which is important for their design and analysis. As the most
typical case of a parallel mechanism, the exploration of dy-
namics modelling and calculation of four-rod mechanisms
has a great significance for representation. Traditionally, the
Lagrange multiplier is used in the dynamics modelling of
parallel mechanisms, which can add a constraint to the dy-
namics equation. To avoid the divergence of calculations, the
algorithm needs to be carefully designed.

In recent years, the development of computation geometry
gives a new solution to the dynamics problem of a parallel
mechanism. The geometry method uses the Lie group and
Lie algebra as a basis for dynamics modelling; the variation
method is used for derivation, which can lead to a reduction
during calculation. The geometry method can effectively re-
duce the complexity of the dynamics equation, which offers
a new road to the enhancement of accuracy and efficiency.

In recent years, different kinds of methods have been used
for dynamics modelling and analysis, such as the spinor
method, the virtual principle, and the Newton–Euler method.
Problems include singularity, inverse dynamics and forward
kinematics. For example, with the spinor method, the sin-
gularity of a parallel mechanism is discussed, and the in-
verse dynamics model was built using the Lagrange equation
(Zou and Zhang, 2021). The forward-inverse kinematics re-
lation and dynamic relation are derived using geometry con-
straints, and the dynamics model is built using the virtual
work principle (Lin, 2016). With the virtual principle, the
dynamics model of a parallel mechanism can also be built
(Rong, 2019; Wang, 2017; Chen and Liang, 2015). The in-
verse dynamics problem of a parallel mechanism can also be
solved with the recursion-explicit algorithm (Staicu, 2015).
The Newton–Euler method was used in dynamics modelling
of a four-degrees-of-freedom parallel mechanism, and the
driving force, momentum and constraint momentum were
obtained (Wang et al., 2010).
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In addition to the classic methods, the multi-body dynam-
ics method was also used in compliant mechanism dynamics
modelling, which is convenient for the design and operation
of coupling problems (Van der Deijl and De Klerk, 2019).
The dynamics model of the Stewart parallel mechanism is
built using the linear transfer matrix of a multi-body system,
and the mechanism seems to be a soft multi-body system,
which is solved using the linear algebra method and modal
superposition (Chen and Rui, 2018). With the Lagrange mul-
tiplier method, i.e. the dynamics model of a parallel mech-
anism in space with a multi-ball joint, the kinematic model
is used to be the constraint in this method (Chen and Sun,
2019). A hierarchy method for the dynamics modelling of
a parallel mechanism was designed using the modular mod-
elling method (Hess-Coelho and Orsino, 2021). Using the
centroid and momentum conservation method to build the
displacement, velocity and acceleration of a parallel mech-
anism, the parameters of other parts are obtained using the
superposition principle (Qi and Song, 2018). The dynamics
model of a rigid–flexible coupling parallel mechanism can
also be built using the natural coordinate and absolute nodal
coordinate methods. The inverse multi-body dynamics model
is built using the Lagrange method and solved using the gen-
eralized α method (Shi et al., 2019). The floating coordinate
and Lagrange method is used to build a rigid–flexible cou-
pling dynamics model of a satellite antenna’s parallel mecha-
nism (Zhang and Song, 2021). The inverse Lagrange dynam-
ics model of a bionic underwater robot’s parallel mechanism
is built (Algarin-Pinto and Garza-Castanon, 2021). There are
two types of dynamics model of a parallel mechanism, which
has a reduced number of parameters. So the model is simpli-
fied, and the amount of calculation is also reduced (Abey-
wardena and Chen, 2017).

In the aspect of geometry kinematics and dynamics mod-
elling of a parallel mechanism, the Lie group and Lie al-
gebra methods are widely used, which can make the kine-
matics and dynamics model compact. With Lie group the-
ory and the Cayley map between the Lie group and Lie al-
gebra, the high-order relative kinematics model, the exact
closed-form solutions of the motion in a non-inertial refer-
ence frame, and the minimal parameterization of rigid-body
displacement and motion are explored, which offers a con-
venient tool for the kinematic analysis of a complex paral-
lel mechanism in space (Condurache and Sfartz, 2021; Con-
durache, 2022; Condurache and Popa, 2023). The motion
of each branch of a parallel mechanism was expressed with
Lie group theory (Ye and Fang, 2016), and the transforma-
tion and spinor differential calculation of a mechanism in
space was also solved with the Lie group and Lie algebra
theory. With Lie group theory, the kinematics analysis for a
parallel mechanism, which includes the Jacobian and Hes-
sian matrix of a closed-loop mechanism, are built (Sun et al.,
2021). With spinor theory and Lie group theory, the higher
derivative of closed-loop equation was researched (Muller
and Herder, 2019). The structure problem of a parallel mech-

anism was solved with Lie group theory (Rybak et al., 2017).
The systematic analysis method for the multi-freedom driv-
ing system was built with Lie group theory (Li et al., 2020).
A forward exact analysis method was used for the position
error of a parallel mechanism under redundant drive with Lie
group and spinor theory (Ding et al., 2019). Different types
of series-parallel mixture connection mechanisms were built
with the Lie group and an incidence matrix (Zeng and Fang,
2009). The kinematics model was built with Lie group the-
ory, which is used to analyse and synthesize the mechanism
(Wu et al., 2013). The screw system is closed under two con-
tinuous Lie bracket calculations. The definition of the whole
Lie group trebling screw system is built with the Lie group
and Lie algebra (Wu and Carricato, 2017). Sanchez-Garcia
presented a method to define the motion of a parallel mech-
anism based on the concept of screw theory, the Lie group
and a special Euclid group (Sanchez-Garcia et al., 2021).
With the geometry analysis method, the inertia parameters
are clustered and the number of parameters is reduced, which
is convenient for the enhancement of efficiency and accuracy
of the calculation (Danaei et al., 2017). With the absolute
nodal coordinate method, the dynamics model of a paral-
lel mechanism was built, and the relation of rigid and flex-
ible bodies was built using the tangent coordinate (Wang and
Liu, 2018).

According to the above analysis, in the domain of parallel-
mechanism dynamics modelling, the virtual work principle is
the main tool, and the dynamics model mainly uses the dy-
namic static solution. Based on the Lie group and Lie algebra
theory and the rotation in a plane, a new type of expression,
which is similar to the position vector, is presented in this pa-
per. The variation relation of a closed loop is derived from the
variation method, the dynamics model is built using the Lie
group and the Lagrange method, and the model is changed
to the Hamilton type with Legendre transformation. The dy-
namics model is finally changed to be a nonlinear equation
and solved using Newton iteration.

2 Geometry dynamics modelling method

The four-bar mechanism is a type of non-tree structure. The
topology of it is as shown in Fig. 1. Bi represents a rigid
body, and Oi is the connection between rigid bodies which
are assumed to be a revolute pair. In order to build the dynam-
ics model, it is necessary to build the pose and attitude con-
straint of a closed loop. Usually, any Oi is cut open, which
can transform the closed loop into two open loops. The po-
sitions of these two loops’ end points satisfy the equality
relation. Then the velocity and acceleration constraints can
be derived based on pose and attitude constraints. Tradition-
ally, the rotation relation between two rigid bodies can be
expressed using a triangle function which has a complex ex-
pression. The Lie group method is used instead of it. See
Fig. 1 for an example. Cutting the joint O3 open, the system
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Figure 1. Multi-body topology of a parallel mechanism.

is changed to trees of B0−B1−B2 and B0−B3 respectively.
They cross at point O3.

The expression of the Lie group is as follows. Firstly, the
rotation angle is used to express the rotation condition of two
bodies. Suppose the rotation angle of the single freedom joint
is θ . The rotation matrix R of the body can be obtained by
exponential mapping, as in Eq. (1).

R= eS(θ ) (1)

In Eq. (1), S (θ )=
[

0 −θ

θ 0

]
. R is the Lie group expres-

sion of rotation, and θ is Lie algebra corresponding to R.
Make the differential of Eq. (1), and the result is as in Eq. (2).

Ṙ= eS(θ )S
(
θ̇
)
= ωRS1 (2)

Equation (2) shows angular velocity. Besides derivation,
variation is the key tool of Lie group calculation. Applying
variation to R, the result is as in Eq. (3).

δR= eS(θ )S (δθ ) (3)

Supposing that η = δθ , Eq. (3) can transform to be Eq. (4).

δR= ηRS1 (4)

The structure in Fig. 1 is used as an example to indicate the
function of variation in dynamics modelling of a closed-loop
mechanism. This structure satisfies the pose and attitude con-
straint as in Eq. (5).

R1l1+R2l2 = R4l4 (5)

Apply variation to Eq. (5), as in Eq. (6).

δR1l1+ δR2l2 = δR4l4 (6)

Substitute Eq. (4) into Eq. (6), and the result is as in Eq. (7).

η1R1S1l1+ η2R2S1l2 = η4R4S1l4 (7)

Change Eq. (7) to be the matrix type as in Eq. (8).[
η2
η4

]
=−η1

[
R2S1l2 −R4S1l4

]−1R1S1l1 (8)

The constraint relation of a closed-loop system is obtained
by variation, which is important in dynamics derivation. In
the following, the dynamics modelling process is discussed
as follows. The Lagrange function is built first, which is
the function of angular velocity and the rotation matrix:
L= L (R,ω). Apply variation to it with respect to angular
velocity, as in Eq. (9).

δωL= DωL (R,ω) · δω (9)

According to Hamilton theory, the variation in the Lagrange
function with respect to angular velocity is equal to momen-
tum, as in Eq. (10).

5= DωL (R,ω) (10)

Applying derivation to Eq. (10), the inertia moment with re-
spect to the momentum in Eq. (10) can be obtained. Except
for the inertia moment, the moment of motion also includes
coupling of angular velocity and momentum, as in Eq. (11).

ad∗ω ·DωL (R,ω)= S (ω) ·DωL (R,ω) (11)

For the single freedom joint, the coupling part is 0, as in
Eq. (12).

ad∗ω ·DωL (R,ω)= 0 (12)

The inertia moment, which is deduced by potential, is as fol-
lows. Applying variation to Lagrange function with respect
to attitude matrix R, the result is as in Eq. (13).

δRL= DRL (R,ω) · η (13)

In Eq. (13), DRL (R,ω) is a row vector; apply transposition
to it, and the tangent of Eq. (13) is as in Eq. (14).

T∗eLR ·DRL (R,ω)= (DRL (R,ω))T (14)

The dynamics equation is as in Eq. (15).

d
dt

DωL (R,ω)− ad∗ω ·DωL (R,ω)−T∗eLR

·DRL (R,ω)= 0 (15)

If the system is in a plane, the simplified dynamics equation
is as in Eq. (16).

d
dt

DωL (R,ω)−T∗eLR ·DRL (R,ω)= 0 (16)

According to Eq. (10), Eq. (16) can be transformed to the
Hamilton dynamics equation using Legendre transformation
as in Eq. (17).

5̇− ad∗ω5−T∗eLg ·DRL (R,ω)= 0 (17)

In addition to the rotation matrix, the attitude vector can ex-
press the rotation between rigid bodies too. The relation be-
tween the attitude matrix and vector is as in Eq. (18).

q =Re1 (18)
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Figure 2. The four-bar mechanism.

Apply derivation to Eq. 18), as in Eq. (19).

q̇= Ṙe1 = ωRS1e1 = ωRe2 = ωS1q (19)

The variation calculation also satisfies a similar process to
the one in Eq. (20).

δq = ηS1q (20)

3 Kinematic analysis of four-bar mechanism

Figure 2 is the sketch map of a four-bar mechanism. Suppose
that the lengths of bar AB, BC, CD and AD are l1, l2, l3 and l4
respectively. The rotation angles of bar AB, BC and CD are
θA, θB and θD respectively. Define the initial position of each
rod coinciding with the horizontal axis, and the direction of
rotation is anti-clockwise. The closed-loop mechanism has
three constraints on pose and attitude, velocity, and acceler-
ation respectively. They are built using differential calcula-
tions, which means that the velocity constraint is obtained by
applying derivation to the pose–attitude constraint, and the
acceleration constraint is obtained by derivation from veloc-
ity. Suppose the rotation matrixes of AB, BC and CD are RA,
RB and RD respectively. The pose–attitude constraint is as
in Eq. (21).

l2RBe1− l3RDe1 =−l1RAe1+ l4e1 (21)

In Eq. (21), e1 is unit vector: e1 = [1;0]. Applying deriva-
tion to Eq. (21), the velocity constraint is as in Eq. (22).

ωB l2RBe2−ωDl3RDe2 =−ωAl1RAe2 (22)

In Eq. (22), ωA, ωB and ωD are angular velocities of AB,
BC and CD respectively. Apply derivation to Eq. (22), and
the acceleration constraint is as in Eq. (23).

αB l2RBe2−αDl3RDe2 =−αAl1RAe2−ω
2
Al1RAe1

+ω2
B l2RBe1−ω

2
Dl3RDe1 (23)

In Eq. (23), αA, αB and αD are angular velocities of AB,
BC and CD respectively. In Eq. (21) to Eq. (23), the attitudes
are expressed by rotation matrixes, and the rotation matrixes
can be simplified to be the vectors accord to Eq. (18). Define
the relation of the rotation matrix and vector as in Eq. (24). qA = RAe1
qB = RBe1
qD = RDe1

(24)

Substitute Eq. (24) into Eq. (21). The pose–attitude con-
straint based on the direction vector is obtained as in Eq. (25).

l2qB − l3qD + l1qA− l4e1 = 02×1 (25)

Applying derivation to Eq. (25), the velocity constraint is
as in Eq. (26).

ωB l2S1qB −ωDl3S1qD =−ωAl1S1qA (26)

Transform the velocity constraint to the matrix type as in
Eq. (27).[
ω2
ωD

]
=−ωA

[
l2S1qB ,−l3S1qD

]−1
l1S1qA (27)

As in Eq. (26), the left and right parts are multiplied by
the skew matrix, S1. Reduce S1, and the velocity constraint
changes to be as in Eq. (28).

ωB l2qB −ωDl3qD =−ωAl1qA (28)

The constraint of acceleration is as in Eq. (29) by applying
derivation to Eq. (28).

αB l2S1qB −αDl3S1qD +αAl1S1qA = ω
2
B l2qB

−ω2
Al1qA−ω

2
Dl3qD (29)

4 The variation and dynamics modelling

Based on kinematics model, the dynamics equation of a sys-
tem can be obtained by variation of the Lagrange function.
According to the pose–attitude constraint in Eq. (21), the
variation of it is as in Eq. (30).

l2S1qBηB − l3S1qDηD =−l1S1qAηA (30)

Transform Eq. (30) to be a matrix type as in Eq. (31).

[
l2S1qB −l3S1qD

][ ηB
ηD

]
=−l1S1qAηA (31)

Apply inversion to the matrix in Eq. (31). The relation be-
tween ηB , ηD and ηA is as in Eq. (32).[
ηB
ηD

]
=−l1

[
l2S1qB −l3S1qD

]−1
S1qAηA (32)
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If the inverse matrix in Eq. (32) is a 2× 2 matrix, it can
be solved directly. The inverse calculation is expressed by a
triangle functions, as in Eq. (33).

[
l2S1qB ,−l3S1qD

]−1
=

[
−l2 sinθB l3 sinθD
l2 cosθB −l3 cosθD

]
=

1
l2l3 sin(θD − θB )

[
l3 cosθD l3 sinθD
l2 cosθB l2 sinθB

]
=

1
l2l3q

T
DS1qB

[
l3q

T
D; l2q

T
B

]
(33)

Substitute Eq. (33) into Eq. (32), the result is as in Eq. (34).[
ηB
ηD

]
=

−l1

l2l3q
T
DS1qB

[
l3q

T
DS1qA

l2q
T
BS1qA

]
ηA (34)

According to the above analysis, the variation relation of
the attitude matrix of the rocker and the link can be expressed
by the variation in crank under the constraint of pose and at-
titude. Comparing Eqs. (27) and (32), they have the uniform
expressions. We define the same part of Eqs. (27) and (32) as
Eq. (35).

K =
−l1

l2l3q
T
DS1qB

[
l3q

T
DS1qA

l2q
T
BS1qA

]
(35)

The velocity constraint satisfies the relation as in Eq. (36).[
ω2
ωD

]
=KωA (36)

The dynamics model of a system is derived as follows.
Supposing the masses of rod AB, BC and CD arem1,m2 and
m3 respectively. Their position vectors are ρ1, ρ2, ρ3 respec-
tively. Their rotational inertia is J1, J2 and J3 respectively.

The kinetics of each part in the mechanism consist of the
rotation kinetics along the mass centre and the translational
kinetics of centre of mass. The displacement of the mass cen-
tre of AB is as in Eq. (37).

l1 = qAρ1x +S1qAρ1y =
(
ρ1xI +S1ρ1y

)
qA = 01qA (37)

The velocity of it is as in Eq. (38) according to the deriva-
tion to Eq. (37).

v1 = ω101S1qA (38)

In order to conserve the form of qA, the position of the
mass centre can change to be the matrix type, as in Eq. (39).

01 = ρ1xI +S1ρ1y =

[
ρ1x −ρ1y
ρ1y ρ1x

]
(39)

Similarly, ρ2, ρ3 can also be expressed as in Eq. (40).

02 =

[
ρ2x −ρ2y
ρ2y ρ2x

]
,03 =

[
ρ3x −ρ3y
ρ3y ρ3x

]
(40)

The displacement of the mass centre of BC is as in
Eq. (41).

l2 = l1qA+02qB (41)

The velocity of the mass centre is as in Eq. (42).

v2 = ω1l1S1qA+ω202S1qB (42)

The angular velocity of CD is ω3, so the position vector of
the mass centre is as in Eq. (43).

l3 = l4e1+03qD (43)

The velocity of the mass centre is as in Eq. (44).

v3 = ω303S1qD (44)

In order to make the expressions simple, the above equa-
tions are synthesized to be the matrix types. Suppose the an-
gular velocity of a system is ω = [ω1;ω2;ω3], the expression
of it is as in Eq. (45).

ω =
[

1 K
]T
ω1 (45)

Supposing l = [l1; l2; l3], q =
[
qA;qB;qD

]
, the displace-

ments of the mass centre of the system can be written as the
matrix type, as in Eq. (46).

l = Z1q + z1 (46)

The parameters in Eq. (46) are as follows:

Z1 =

 01 I 2 I 2
l1I 2 02 I 2
I 2 I 2 03

 ,z1 =

 02×1
02×1
l4e1

 .
Suppose v = [v1;v2;v3]. The velocity of the mass centre of
the system is as in Eq. (47).

v = l̇ = Z1q̇ (47)

The expression of q̇ is as equation Eq. (48).

q̇ =

 q̇A
q̇B
q̇D

=
 ωAS1qA
ωBS1qB
ωDS1qD

= ZASq (48)

The parameters in Eq. (48) are as follows:

ZA =

 ωAI 2×2 02×2 02×2
02×2 ωBI 2×2 02×2
02×2 02×2 ωDI 2×2

 ,
S=

 S1 02×2 02×2
02×2 S1 02×2
02×2 02×2 S1

 .
According to Eq. (36), ZAcan be written as the following
type, as in Eq. (49).

ZA = ωAZ2 (49)
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The parameter in Eq. (49) is as follows:

Z2 =

 I 2×2 02×2 02×2
02×2 eT1 KI 2×2 02×2
02×2 02×2 eT2 KI 2×2

 .
Substitute Eq. (49) into Eq. (48), and the equation is changed
to be the following type, as in Eq. (50).

q̇= ωAZ2Sq (50)

So the velocity of the mass centre is as in Eq. (51).

v = l̇= ωAZ1Z2Sq (51)

Then the kinetic and potential energy of the system are as
in Eqs. (52) and (53) respectively.

T =
1
2
ωT Jω+

1
2
vTMv

=
1
2

 ω1
ω2
ω3

T  J1 0 0
0 J2 0
0 0 J3

 ω1
ω2
ω3


+

1
2

 v1
v2
v3

T  m1I 02×2 02×2
02×2 m2I 02×2
02×2 02×2 m3I

 v1
v2
v3

 (52)

V =−geT2 (m1l1+m2l2+m3l3)

=−g

 e2
e2
e2

T  m1I 02×2 02×2
02×2 m2I 02×2
02×2 02×2 m3I

 l1
l2
l3


=−gE6×1Ml (53)

According to Eqs. (52) and (53), the Lagrange function of
four-bar system is as in Eq. (54).

L=
1
2
ωT Jω+

1
2
vTMv+gE6×1Ml (54)

Applying variation to Eq. (72) aboutω1, the result is as in
Eq. (55).

δω1L= ω
T J

(
δω1ω

)
+ vTM

(
δω1v

)
(55)

Applying derivation to Eq. (55), the result is as in Eq. (56).

d
dt
δω1L= ω̇

T J
(
δω1ω

)
+ωT J

d
dt
(
δω1ω

)
+ v̇TM

(
δω1v

)
+ vTM

d
dt
(
δω1v

)
(56)

Applying variation to Eq. (54) to the attitude vector, the result
is as in Eq. (57).

δη1L= ω
T J

(
δη1ω

)
+ vTM

(
δη1v

)
+ gE6×1M

(
δη1 l

)
(57)

Substitute it into the geometry dynamics equation, and the
Lagrange dynamics equation is as in Eq. (58).

ω̇T J
(
δω1ω

)
+ωT J

(
d
dt

(
δω1ω

)
−
(
δη1ω

))
+ v̇TM

(
δω1v

)
+ vTM

(
d

dt

(
δω1v

)
−
(
δη1v

))
− gE6×1M

(
δη1 l

)
= 0 (58)

Let51 = δω1L= ω
T J

(
δω1ω

)
+vTM

(
δω1v

)
; then the geom-

etry dynamics equation of Hamilton types is as in Eq. (59).

5̇1−ω
T J

(
δη1ω

)
−vTM

(
δη1v

)
−gE6×1M

(
δη1 l

)
= 0 (59)

The variation of ω,v about ω1 is as in Eqs. (60) and (61).

δω1ω =

[
1
K

]
δω1 (60)

δω1v = Z1Z2Sqδω1 (61)

The variation in attitude vectors is as follows. Expressions of
kinetic and potential energies, angular velocity, velocity and
mass centre positions all include the attitude vector. Apply-
ing variation to ω for attitude, the result is as in Eq. (62).

δη1ω =

[
0
δηK

]
ω1 (62)

Then applying variation to velocity, the result is as in
Eq. (63).

δη1v = ω1
(
Z1
(
δη1Z2

)
Sq +Z1Z2S

(
δη1q

))
(63)

Applying variation to l, the result is as in Eq. (64).

δη1 l = Z1δη1q (64)

The concrete calculations of δη1q and δη1Z2 are as follows.
Applying variation to q, the expression changes to a new
type, for which the variation parameters are in the same vec-
tor, as in Eq. (65).

δq =

 δqA
δqB
δqD

=
 ηAS1qA
ηBS1qB
ηDS1qD


=

 S1qA 02×1 02×1
02×1 S1qB 02×1
02×1 02×1 S1qD

 ηA
ηB
ηD

 (65)

According to Eq. (35), the variation vector is as in Eq. (66). ηA
ηB
ηD

= [ 1
K

]
ηA (66)
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Substitute Eq. (66) into Eq. (65), and the result is as in
Eq. (67).

δq =

 δqA
δqB
δqD

=
 ηAS1qA
ηBS1qB
ηDS1qD


=

 S1qA 02×1 02×1
02×1 S1qB 02×1
02×1 02×1 S1qD

[ 1
K

]
ηA = SqKNηA (67)

The expression of δη1Z2is as in Eq. (68).

δη1Z2 =

 02×2 02×2 02×2
02×2 eT1

(
δη1K

)
I 2×2 02×2

02×2 02×2 eT2
(
δη1K

)
I 2×2

 (68)

According to the above analysis, the core of geometry dy-
namics modelling of four-rod mechanisms is a solution for
the constraint K . The constraint analysis is given in the fol-
lowing section.

5 Solution and reduction for constraint

The constraint condition Kcan be written as two parts: K =
KAKB . They are expressed as in Eq. (69).
KA =

−l1
l2l3q

T
DS1qB

KB =

[
l3q

T
DS1qA

l2q
T
BS1qA

] (69)

Apply variation to K , as in Eq. (70).

δηK = δηKAKB +KAδηKB (70)

The parameters in Eq. (70) are as follows:

δηKA =−
l2l3
l1
qTDqBK

2
A

[
1 −1

]
KηA,

δηKB =

([
l3q

T
DqA

l2q
T
BqA

]
−

[
0 l3q

T
DqA

l2q
T
BqA 0

]
K

)
ηA

. (71)

The deductions of the above two parameters are as in
Eqs. (72) and (73).

δηKA = δ
−l1

l2l3q
T
DS1qB

=
l1l2l3

(
δqTDS1qB+q

T
DS1δqB

)(
l2l3q

T
DS1qB

)2
=

l1l2l3
(
qTDS1S1qBηB−q

T
DS1S1qBηD

)(
l2l3q

T
DS1qB

)2
=
−l1l2l3q

T
DqB (ηB−ηD)(

l2l3q
T
DS1qB

)2 =
−l1l2l3q

T
DqB(

l2l3q
T
DS1qB

)2 [ 1 −1
][

ηB
ηD

]
=−

l2l3
l1
qTDqBK

2
A

[
1 −1

]
KηA

(72)

δηKB =

[
δ
(
l3q

T
DS1qA

)
δ
(
l2q

T
BS1qA

) ]
=

[
l3δq

T
DS1qA+ δl3q

T
DS1δqA

l2δq
T
BS1qA+ δl2q

T
BS1δqA

]
=

[
−l3q

T
DS1S1qAηD + l3q

T
DS1S1qAηA

−l2q
T
BS1S1qAηB + l2q

T
BS1S1qAηA

]
=−

[
0 l3q

T
DqA

l2q
T
BqA 0

][
ηB
ηD

]
+

[
l3q

T
DqA

l2q
T
BqA

]
ηA =

([
l3q

T
DqA

l2q
T
BqA

]
−

[
0 l3q

T
DqA

l2q
T
BqA 0

]
K

)
ηA

(73)

According to the above two equations, the composition parts,
which include direction vectors, are qTDqA, qTBqA, qTDqB q

T
D

S1 qB ,qTDS1 qA and qTB S1qA. In order to make the calcula-
tion simpler, the reduction is as follows: multiplying qTA, qTB
and qTD with the constraint relation respectively, the result is
as in Eq. (74).
−l3q

T
BqD + l1q

T
BqA = l4q

T
Be1− l2

l1q
T
DqA+ l2q

T
DqB = l4q

T
De1− l3

l2q
T
AqB − l3q

T
AqD = l4q

T
Ae1− l1

(74)

Change Eq. (74) to a linear equation type, as in Eq. (75). l1 0 −l3
0 l1 l2
l2 −l3 0

 qTBqA
qTDqA
qTDqB

=
 l4q

T
Be1− l2

l4q
T
De1− l3

l4q
T
Ae1− l1

 (75)

Change Eq. (75) to a simpler type, as in Eq. (76).

Q1 = B
−1
1a (l4B1bq −b1a) (76)

The parameters are as follows: l1 0 −l3
0 l1 l2
l2 −l3 0

= B1a, 01×2 eT1 01×2
01×2 01×2 eT1
eT1 01×2 01×2

= B1b,[
qTBqA;q

T
DqA;q

T
DqB

]
=Q1,b1a = [l2; l3; l1] .

According to the above equation, the composition parts are
decoupled to be expressions with single attitude vectors.
Similarly, multiply S1 q

T
A, S1 q

T
B and S1 q

T
D with the con-

straint condition, and the result is as in Eq. (77).
l1q

T
AS1qA+ l2q

T
AS1qB = l4q

T
AS1e1+ l3q

T
AS1qD

l1q
T
BS1qA+ l2q

T
BS1qB = l4q

T
BS1e1+ l3q

T
BS1qD

l1q
T
DS1qA+ l2q

T
DS1qB = l4q

T
DS1e1+ l3q

T
DS1qD

(77)

https://doi.org/10.5194/ms-15-169-2024 Mech. Sci., 15, 169–181, 2024



176 L. Bai et al.: Lie group variational integrator

Figure 3. Attitude variation in the link.

According to qTi S1 qi = 0 and qTi S1 qi = 0, Eq. (77) can
be simplified to be a linear type, as in Eq. (78). l2 −l3 0
−l1 0 −l3
0 −l1 −l2

 qTAS1qB
qTAS1qD
qTBS1qD

= l4
 qTAe2
qTBe2
qTDe2

 (78)

Write Eq. (78) to be a symbol type as in Eq. (79).

Q2 = l4B
−1
2a B2bq (79)

The parameters are as follows:

B2a =

 l2 −l3 0
−l1 0 −l3
0 −l1 −l2

 ,Q2 =

 qTAS1qB
qTAS1qD
qTBS1qD

 ,
b2a = B2bq =

 eT2 01×2 01×2
01×2 eT2 01×2
01×2 01×2 eT2

 qA
qB
qD

 .
The expression of constraint and its variations are changed to
be a simplified type as in Eqs. (80) and (81).
KA =

l1
l2l3e

T
3 Q2

KB =−

[
l3e

T
2

l2e
T
1

]
Q2

(80)

δηKA =−
l2l3
l1
eT3 Q1K

2
A

[
1 −1

]
KηA

δηKB =

([
l3e

T
2

l2e
T
1

]
Q1−

[
0 l3e

T
2 Q1

l2e
T
1 Q1 0

]
K

)
ηA

(81)

According to above reduction process, nonlinear parts in con-
straints are changed to linear types, which reduces the diffi-
culty in the numerical solution.

Figure 4. Attitude variation in the rocker.

6 Numerical solution

The dynamics solution of the system needs a combination of
dynamics and kinematics equations. The Hamilton equation
as in Eq. (59) is much simpler than the Lagrange type and is
easier to solve. In Eq. (59), the unknown quantities include
51 and q. 51 is the momentum about the crank, which is a
scalar. qis the attitudes of three rods. In order to diminish the
middle parameter ω1, the dynamics equation Eq. (59) needs
a new transformation.

Define KN = [1;K], with Eqs. (45), (51), (60) and
(61); ω =KNω1,v = ωAZ1Z2Sq,δω1ω =KN and δω1v =

Z1Z2Sq. Substitute these into Eq. (55). The relation between
the angular velocityω1and the angular momentum51 is as in
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Eq. (82).

51 =6ω1 (82)

In Eq. (82), 6 is a parameter about the attitude vector q as
in Eq. (83).

6 =KT
NJKN − q

T SZT2 Z
T
1 MZ1Z2Sq (83)

According to Eqs. (62), (63) and (64), δη1ω = δηKnω1,
δη1v = ω1

(
Z1
(
δη1Z2

)
Sq +Z1Z2SSqKN

)
and

δη1 l = Z1SqKN . Substitute these into dynamics Eq. (59),
and the dynamics equation is as follows:

625̇1− g6
2E6×1MZ1SqKN −5

2
1K

T
NJ

(
δηKN

)
+52

1q
T SZT2 Z

T
1 MZ1

((
δη1Z2

)
Sq +Z2SSqKN

)
= 0. (84)

With Eq. (50), the kinematic equation is the following type,
as in Eq. (85), which uses momentum as a parameter.

q̇=
51

6
Z2Sq (85)

Aiming at solving the problem of the Hamilton dynamics
equation, the generalized velocity is changed to be momen-
tum. The number of generalized displacements is equal to the
Lagrange dynamics equation, so the Hamilton and Lagrange
equations have the same unknown parameters. The constraint
is included in the geometry kinematics equation, which con-
serve the geometry structure of the closed-loop system.

Equations (84) and (85) form nonlinear ordinary differen-
tial equations with the dimension of seven. These equations
can be directly solved using the Runge–Kutta method.

The four-rod mechanism has a series motion characters
which are decided by the length of four bars. They are the
crank–rocker mechanism, the double-crank mechanism and
the double-rocker mechanism. If two couples of the four bars
have the same length, the mechanism changes to a parallel-
ogram, which is convenient, as it testifies to the geometry
conservation character of the model.

Before simulation, the initial values of the angular veloc-
ity and attitudes of bars should be given. The attitudes of the
other two rods except for the active rod are calculated by the
pose–attitude constraint. Basing on Eq. (25) and the geome-
try character of qB ,qD , the pose–attitude constraint equation
is as in Eq. (86).

l2qB − l3qD − l4e1+ l1qA = 02×1
qTBqB − 1= 0
qTDqD − 1= 0

(86)

It is a nonlinear equation which can be solved using the New-
ton iterative method.

7 Simulation

In this part, the kinematics and dynamics simulations are
made for the four-bar mechanism to testify to the correctness

Figure 5. The momentum and attitude variation in the whole sys-
tem.

Figure 6. The track of the crank–rocker mechanism.

of the derived model. As a special type of four-bar mecha-
nism, the parallelogram mechanism is also simulated to ver-
ify the computational stability of the geometric model.

Suppose that the length of the bars is l1 = 0.12 m,
l2 = 0.25 m, l3 = 0.26 m and l4 = 0.3 m, which satisfies the
condition of a crank and rocker mechanism. The iner-
tial parameters are J1 = 0.001 kg m2, J2 = 0.016 kg m2 and
J3 = 0.006 kg m2 respectively. The masses of each rod are as
m1 = 0.1 kg, m2 = 0.25 kg and m3 = 0.18 kg respectively.

7.1 Kinematic solution

In the kinematics relation, the closed-loop pose–attitude re-
lation is a nonlinear equation. Supposing that the initial ro-
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Figure 7. Variation in angular momentum and attitudes of the par-
allelogram mechanism.

tation angle of the crank is 0 rad, give the initial attitudes of
linkage and rocker arbitrarily, and the nonlinear equation is
solved using Newton iteration. Supposing that the time steps
are h= 0.01 s, h= 0.03 s and h= 0.05 s, the simulation re-
sults are expressed by blue, red and green points in Fig. 3
respectively. The rotation speed of the crank is 2π rad s−1.
For qB and qD , which are direction vectors, their modulus
is 1, so the error can be defined as error= ‖q‖− 1, and the
simulation results of the link and rocker’s attitudes and the
computation errors are as in Fig. 3; the track of the whole
system is as in Fig. 4.

From Fig. 3, the simulation results indicate that the atti-
tudes vary in the link and rocker continuously and periodi-
cally, and the range of variation is from −1 to 1, which veri-
fies the correctness of the model. Under three different time
steps, the simulation results of q coincide, although the er-
rors of qD and qB under different time steps have obvious
distinctions. From the error variation in Fig. 3, the errors ob-
viously jump under the time step of 0.05s. It means that the
bigger time step will lead to a bigger error, although it has a
small influence on the attitude results. The biggest errors are
generated at 0 rad of the crank, which means that the kine-

Figure 8. The track of the parallelogram mechanism.

matic equation is difficult to converge at this attitude. As in
Fig. 4, the track of the whole system accords with the regu-
lar one for a crank and rocker mechanism; the crank makes
the whole circle rotation and the rocker swings with a fixed
angle.

7.2 Dynamics solution

Supposing that the initial angular momentum of the crank
is 0 and the initial attitudes of the crank, link and rocker
are q0 = [1;0;0.3044;0.9534;-0.3996;0.9167], the simulation
time is 5 s, and the dynamics model is solved using ode45 in
MATLAB, which is a commonly used Runge–Kutta method.
The variation in parameters is as in Fig. 5. According to
Fig. 5, the parameters appear to have periodic variation un-
der the action of gravity; the attitudes of the crank, link and
rocker also appear to have a periodic character. The maxi-
mum value of the attitudes is 1, which verifies the correctness
of the results. Figure 6 is the track of the crank–rocker mech-
anism under free conditions. The simulation results indicate
that the closed-loop constraints of the system are conserved
in the dynamics simulation.

7.3 Dynamics simulation of parallelogram mechanism

The parallelogram mechanism is a special four-bar mecha-
nism for which the length of the rods on opposite sides is
equal. The motion character of the mechanism is that the
rods, which are connected to the rack have the same mo-
tion, and the link always stays parallel to the rack. For the
two sides links can make the whole cycle motion; it also can
be seen as a special double-crank mechanism. In the actual
computation, the calculation error may lead to tiny variation
in the structure of the system, like the length of the rod. The
parallelogram mechanism may change to be the crank and
rocker mechanism. So the simulation result of the parallel-
ogram mechanism will incur some errors that will create an
obvious distinction between the motion of the two side links,
and the motion of the link will not be parallel to the rack.

In order to testify the geometry conservation charac-
ter of the dynamics model, the simulation for the par-
allelogram mechanism is performed as follows. Suppos-
ing that the length of rods is l1 = l3 =0.1 m and l2 =
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l4 =0.25 m, the mass and moment inertia are the same with
the former simulation. The initial attitude of the system is
q0 = [0.6;0.8;1;0;0.6;0.8], the initial momentum is 0, and
simulation results are as in Fig. 7.

According to Fig. 7, the momentum varies the cyclical
movement, which is similar to the single pendulum. It means
that the parallelogram mechanism has a similar dynamics
character to the single pendulum. The attitudes of the two
side links have the same regular motion, which satisfies the
motion character of a parallelogram mechanism. The atti-
tude of the link stays parallel to the rack in the whole motion
process, which also satisfies the character of a parallelogram
mechanism. According to Fig. 8, the track of the system fol-
lows the regular parallelogram mechanism; the opposite pair
of bars stays parallel during the whole simulation process.

From the above analysis, the derived dynamics model of
the four-bar mechanism in this paper can conserve the geom-
etry structure of the system during computation. The lengths
of the rods are maintained, which avoids erroneous results.

8 Conclusions

In this research, the dynamics model of the four-bar mech-
anism is built using the symbol derivation of the differential
geometry method. The Lagrange and Hamilton geometry dy-
namics models are all built, and the numerical computation
method is explored. The conclusions are as follows.

1. In the many geometry expression methods, the attitude
vector expression for the rod can decrease the difficulty
of derivation and expression of the dynamics model.

2. Under the attitude vector expression, the dynamics
model can be derived by variation theory, which can
package the closed-loop pose–attitude constraint in the
dynamics model, so the constraint does not need to be
considered.

3. Using the geometry modelling method to build the dy-
namics model of a four-bar mechanism can avoid the
repetitive operation of the closed-loop constraint. All
the calculations, which include the variation and deriva-
tion, are all aimed at the closed-loop constraint. Also,
the results of variation and derivation have a similar
structures.

4. With the Legendre transformation, the dynamics model
is changed to be the Hamilton type, which uses momen-
tum as a parameter. The model is simplified. The model
is reduced by the closed-loop constraint before compu-
tation, which makes the programming process simpler.

In this research, a geometry dynamics model for a four-bar
mechanism in the plane is built. Based on Lie group theory,
the variation in the closed-loop vector space is continuous,
which means that this method has a good adaption to the

mechanism in space. This work offers a concrete reference
for the geometry dynamics modelling of a parallel mech-
anism in space. The high modularization of the dynamics
model without a special numerical algorithm is convenient
for software programming, which has a spread prospect in
online dynamics simulations and multi-body dynamics for a
digital twin in the future.
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