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Abstract. Identifying dynamic objects in dynamic scenes remains a challenge for traditional simultaneous lo-
calization and mapping (SLAM) algorithms. Additionally, these algorithms are not able to adequately inpaint
the culling regions that result from excluding dynamic objects. In light of these challenges, this study proposes
a novel visual SLAM (vSLAM) algorithm based on improved Vision Transformer semantic segmentation in dy-
namic scenes (VTD-SLAM), which leverages an improved Vision Transformer semantic segmentation technique
to address these limitations. Specifically, VTD-SLAM utilizes a residual dual-pyramid backbone network to ex-
tract dynamic object region features and a multiclass feature transformer segmentation module to enhance the
pixel weight of potential dynamic objects and to improve global semantic information for precise identification
of potential dynamic objects. The method of multi-view geometry is applied to judge and remove the dynamic
objects. Meanwhile, according to static information in the adjacent frames, the optimal nearest-neighbor pixel-
matching method is applied to restore the static background, where the feature points are extracted for pose
estimation. With validation in the public dataset TUM (The Entrepreneurial University Dataset) and real sce-
narios, the experimental results show that the root-mean-square error of the algorithm is reduced by 17.1 %
compared with dynamic SLAM (DynaSLAM), which shows better map composition capability.

1 Introduction

Simultaneous localization and mapping (SLAM) is a mo-
bile robot equipped with specialized sensors that enable it
to model the environment while in motion, without any prior
information about the environment. At the same time, it es-
timates its own position (Chen et al., 2022; Gao et al., 2021;
Zhou et al., 2021). Depending on the sensors used by the
robot, SLAM can be divided into two main categories: visual
SLAM (vSLAM) and laser SLAM. However, the disadvan-
tages of laser sensors, such as the limited amount of acquired
information and the bulky size, have restricted widespread
application of laser SLAM. As a result, vSLAM, which is
smaller, less expensive, and capable of acquiring richer in-
formation, has become an increasingly popular research di-

rection in the field of SLAM (Cao et al., 2021; Huang et
al., 2020).

The more mature vSLAM systems are Oriented FAST
and Rotated BRIEF SLAM (ORB-SLAM) and Point and
Line SLAM (PL-SLAM) (Mur and Tardós, 2017; Pumarola
et al., 2017). Most of the current mainstream vSLAM sys-
tems achieve high-accuracy localization and composition in
static environments. When moving objects are in the en-
vironment, it is difficult for the system to perform accu-
rate positional estimation and composition (Xu et al., 2022).
To address the problem of dynamic objects in the environ-
ment, Sun et al. (2018) proposed an algorithm based on
depth cameras to remove dynamic objects, which uses a
hypothetical static depth map to detect planar regions and
further refines the motion regions by combining the detec-
tion results with the coarse-motion regions obtained from re-
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2 M. Chen et al.: vSLAM in dynamic scenes

projection errors. With the introduction of deep learning in
SLAM, Mask-SLAM proposed by Kaneko et al. (2018) seg-
mented the image using the DeepLabV2 algorithm, assigned
a corresponding semantic label to each like the Kaneko el-
ement, and removed the a priori dynamic objects from it
based on the acquired semantic information. However, the
method did not consider the moved objects (e.g., chairs,
books). Zhong et al. (2018) proposed a Detect-SLAM algo-
rithm to propagate the motion probability of target points,
detect semantic targets, update the probability value at the
bit pose estimation, and retain static points below the thresh-
old to improve the recognition of dynamic objects further.
Bescos et al. (2018) employed a convolutional neural net-
work that combines MASK-RCNN and multi-view geome-
try to segment potential dynamic objects (DynaSLAM). The
algorithm projects both RGB and depth maps from previous
key frames onto the current frame for background restora-
tion without dynamic objects. Although the approach can ef-
fectively identify and reject dynamic objects, it is suscep-
tible to noise. Yu et al. (2018) proposed a robust seman-
tic vSLAM for dynamic environments (DS-SLAM), which
combines the SegNet semantic segmentation network with
a motion-consistency-checking method to reduce the impact
of dynamic targets. Liu and Miura (2021) proposed a real-
time dynamic SLAM using semantic segmentation methods
(RDS-SLAM) based on ORB-SLAM3 (Campos et al., 2021),
which added semantic threads and semantic-based optimiza-
tion threads to achieve real-time robust tracking and mapping
in dynamic environments. However, this algorithm is limited
by the semantic segmentation capability, which is prone to
failure due to incomplete segmentation.

In summary, existing SLAM algorithms have problems
such as the existence of dynamic objects in the environment,
the inability of the semantic segmentation network to ac-
curately segment dynamic objects, and the inability to ef-
fectively repair the culling regions after the removal of dy-
namic objects. In this paper, we propose a VTD-SLAM algo-
rithm, and the semantic segmentation network in this paper
achieves the segmentation of potential dynamic objects by
fusing multiclass feature enhancement and multiclass feature
guidance (Vaswani et al., 2017; Dosovitskiy et al., 2020; Liu
et al., 2021; Carion et al., 2020; Strudel et al., 2021). Adap-
tive geometric thresholding is used to judge the motion of dy-
namic objects in it (An et al., 2021; Guan et al., 2010). Static
background restoration is performed on the removal region,
and feature points are extracted from this region (Zhao and
Lv, 2023). The algorithm of this paper is verified in the pub-
lic dataset TUM (The Entrepreneurial University Dataset)
and real scenes. The experimental results show that the al-
gorithm in this paper has a greater advantage in dynamic ob-
ject segmentation and static restoration compared with ORB-
SLAM2, DS-SLAM, and DynaSLAM algorithms and shows
good bit pose estimation and composition capability.

2 System frame

This paper introduces a novel VTD-SLAM algorithm that
enhances the semantic segmentation of Vision Transformer
to overcome the limitations of traditional SLAM algo-
rithms in accurately identifying dynamic objects in dynamic
scenes and efficiently repairing the culling regions (Han et
al., 2022). The algorithm consists of two parts: potential
dynamic object segmentation and background restoration.
The potential dynamic object segmentation segment is per-
formed by the MSNET (Multivariate feature fusion and mul-
tivariate feature estimation Semantic Segmentation Network)
proposed in this paper to semantically segment the objects
present in the image information and to extract the image
feature points. In the dynamic object culling and background
restoration phase, dynamic points are identified, and dynamic
objects are excluded through adaptive geometry threshold-
ing (Feng et al., 2021). The algorithm then utilizes the opti-
mal nearest-neighbor pixel-matching (PatchMatch) approach
for conducting similar searches, pixel matching, and feature
point extraction for the region that contains the removed dy-
namic objects (Barnes et al., 2009). This process provides
rich information for the SLAM system to perform accurate
localization and map building. The frame of the VTD-SLAM
algorithm is shown in Fig. 1.

3 Potential dynamic object segmentation

In order to solve the problem of blurred segmentation or
segmentation errors caused by fast-moving objects in tradi-
tional semantic segmentation algorithms for dynamic object
segmentation, this paper proposes a multiclass feature en-
hancement and multiclass feature-guided semantic segmen-
tation network (MSNET), which contains a backbone net-
work module for multiple extractions of dynamic object re-
gion features and the multiclass feature Transformer segmen-
tation module (Waswani et al., 2017). The structure diagram
of MSNET proposed in this paper is shown in Fig. 2.

3.1 Backbone network module

The Transformer network architecture has gained significant
attention in the field of computer vision due to its exceptional
performance in global feature extraction and long-range pixel
relationship acquisition. As the Vision Transformer (VIT)
Base 16 network directly splits the original image into small
images, it will lead to the noise factors in the original im-
age being preserved intact, such as the darker part of the im-
age and the blurring problem caused by the moving objects,
which will cause the kind of information of the generated fea-
ture maps to be weak and have poor anti-interference proper-
ties, so the backbone network module designed in this paper
adds a sampling pyramid to the VIT to construct a residual
dual-pyramid network (Targ et al., 2016). The scale invari-
ance of different dimensions of the image is enhanced by
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Figure 1. The framework of the VTD-SLAM algorithm.

Figure 2. MSNET split network structure.

downsampling the original image C1 to P1, which helps us
to extract the most useful features and reduce the influence
of noise and, at the same time, in order to avoid the overfit-
ting of the model, P1 is subjected to PEncoder, and the fea-
ture map and downsampled feature maps after the PEncoder
module are concatenated and fused to obtain the initial map
of the next pyramid, C2. Although C2 reduces the influence
of noise, it lacks robustness because it has only one weight of
feature information and is affected by dynamic objects. Ad-
ditionally, to extract multiple features more effectively from

the image and to enhance robustness, the feature maps C2,
C3, and C4 with rich feature and boundary information are
sampled to the next level of the feature pyramid dimension,
producing the downsampled feature maps P2, P3, and P4.
The feature maps and downsampled feature maps after the
PEncoder module are concatenated and fused, resulting in
the multi-feature map C5 with rich information and a strong
anti-interference ability.

The proposed PEncoder module is shown in Fig. 3. The
role of the PEncoder module is to extract global image

https://doi.org/10.5194/ms-15-1-2024 Mech. Sci., 15, 1–16, 2024



4 M. Chen et al.: vSLAM in dynamic scenes

feature information. The algorithm inputs the feature maps
(C1, C2, C3, and C4) into the PEncoder module, performs
global patch embedding and position embedding on the fea-
ture maps, and inputs them into the MSA (multi-head self-
attention) and DML (dropout, multilayer perceptron and
layer normalization) layers in turn to obtain the global-
feature linkage information on the feature maps. The fea-
ture maps obtained by the PEncoder module are calculated
as shown in Eqs. (1), (2), and (3):

MSA(Q,K,V )= softmax
(
QKT

√
D

)
V, (1)

ai−1 =MSA(LN(bi−1))+ bi−1, (2)

bi =MLP(LN(ai−1))+ ai−1, (3)

where Q denotes the query vector, K denotes the key vector,
V denotes the value vector, and D denotes the dimension,
i ∈ {1, . . .,L}; bi−1 is the input tokens, ai−1 is the tokens ob-
tained after the MSA layer, and bi is the tokens obtained af-
ter the PEncoder module; LN is the layer normalization, and
MLP is the multilayer perceptron.

3.2 Multiclass feature Transformer segmentation
module

The visual SLAM system is vulnerable to the interference of
dynamic objects in operation, and failure to accurately iden-
tify dynamic objects among them will interfere with the ro-
bustness of the SLAM system. The multiclass feature Trans-
former segmentation module designed in this paper consists
of two subnetworks, multiclass feature enhancement, and
multiclass feature guidance. Firstly, multiclass feature en-
hancement is performed on feature map C5, and the multi-
feature map C5 with multi-feature information is input into
the Multi-Class Feature Enhancement Module, filtered by
m filters with single-class potential dynamic feature infor-
mation to get the m single-class potential dynamic feature
signatures, fused together, and finally fused into the multi-
class potential dynamic feature information, which in turn
enhances the potential dynamic object pixel weights and in-
puts the fused features into the Transformer decoder and then
the MLP head to get the Class head and the Mask head. At the
same time, multiclass feature guidance is performed on fea-
ture map C5, feature map C5 is input into the multiclass fea-
ture guidance module, the attention mechanism of the chan-
nel dimension and spatial dimension is operated on C5, and
average pooling and maximum pooling are performed on the
feature information of each dimension to form a feature map
with global semantic information, respectively, and feature
maps are fused to obtain feature maps with dense global se-
mantic information, which can in turn improve the global se-
mantic information. The dense global semantic information

feature map is input into the multilayer upsampling and is
multiplied by the Class head to output the category feature
map, and then the category feature map is multiplied by the
Mask head to get the segmentation map. The multiclass fea-
ture Transformer segmentation module leverages a combina-
tion of multiclass feature enhancement and guidance to gen-
erate pixel weights that incorporate strong class feature in-
formation and improve the extraction of feature information
in the region of interest. This approach enhances the pixel
weights of moving objects and improves global semantic in-
formation while mitigating the impact of noise interference
(Tian et al., 2023).

The multiclass feature enhancement module in this paper
is shown in Fig. 4. The multiclass feature enhancement mod-
ule serves to improve single-class feature information and
to remove redundant feature information. This algorithm de-
signs M filters {f1, . . .,fM} pre-trained with a single class
of feature information to filter feature map C5, thus remov-
ing irrelevant and overlapping feature information. Specif-
ically, M filters are feature maps with 60 common poten-
tial dynamic object feature information, and M filters are
used to convolve feature map C5 to obtain M feature maps
{t1, . . ., tM} with obvious potential dynamic feature informa-
tion and fuse them to further obtain a feature information
map Ff that retains a large number of potential dynamic fea-
tures, thus removing a large amount of other irrelevant fea-
ture information, removing the interference of a large amount
of other irrelevant feature information, and enhancing the po-
tential dynamic feature information in the image. The feature
map with strong single-class features is generated by the fil-
ter, and the fused feature map is obtained by concatenation
fusion, which has the advantages of rich single-class infor-
mation and strong anti-interference ability. The filter decision
method designed in this paper is shown in Eq. (4): y→ ωj ,

F (ωj )= max
k=1,...,c

P (ωk|y1, . . .,yM ) , (4)

where y denotes the feature information of feature map C5,
ωj denotes the j class of features, k is for class, P (ωk|y)
denotes the posterior probability of the k class, and F (ωj ) is
the j class of feature information.

The multiclass feature guidance module used in this paper
is shown in Fig. 5 (Woo et al., 2018). The multiclass fea-
ture guidance component is designed to increase the channel
weights of the region of interest, determine its spatial loca-
tion, and direct the neural network to focus on the feature in-
formation of the dynamic region. Firstly, attention operations
are performed on feature map C5 in the channel dimension
and the spatial dimension, respectively, and then the obtained
feature map Fc is concatenated with the feature map Fs to
obtain the output Fe. Benefit from the ability of the atten-
tion mechanism to perceive global semantic information so
that the generated Fe is a feature map with dense global se-
mantic information. On the one hand, the channel attention
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Figure 3. PEncoder module.

Figure 4. Multiclass feature enhancement module.

Figure 5. Multiclass feature bootstrap module.

mechanism assigns weights to different channel features in
the motivation part, and the focus of our work is the recog-
nition of potential dynamic objects, so we use the sigmoid
function as the activation function when assigning weights
to strengthen the weights of the potential dynamic feature
information; on the other hand, the spatial attention mecha-
nism can automatically capture the important areas in the im-
age, and the combination of the spatial and channel attention
mechanisms makes the multiclass feature guidance module
pay more attention to the important areas in the image when
it works, so that the multiclass feature guidance module pays
more attention to the potential dynamic feature information
in the important areas of the image and then guides the model
to pay attention to the area where the potential dynamic ob-
ject features are located.

The attention mechanism is shown in Fig. 6. The chan-
nel attention mechanism acts to assign the corresponding
weights to each layer of channels on the feature map, the

average pooling and maximum pooling operations are per-
formed on the feature map to obtain information about each
channel of the feature map, the features Favg and Fmax are
obtained by the average pooling and maximum pooling, and
then the features are concatenated and fused to obtain the fea-
ture information with enhanced channel correlation fv (Hu et
al., 2018). The spatial attention mechanism serves to cap-
ture important areas of the image. The feature map is input
into the spatial attention mechanism, and the concatenation
fusion is performed to form the feature map fc through av-
erage pooling and maximum pooling, and then the 3× 3× 1
convolutional layer and the sigmoid function are used to ob-
tain the weight assignment feature map fu, which leads the
network to focus on the regions where dynamic objects are
located. The outputs fv and fu obtained by the channel at-
tention mechanism and the spatial attention mechanism are
calculated as shown in Eqs. (5) and (6).

fv = σ
(
η
(
Favg+Fmax

))
(5)

fu = σ (c(fc)) (6)

σ denotes the sigmoid function, η is the tanh function, and c
is the 3× 3× 1 convolutional layer.

4 Dynamic object culling and background
restoration

4.1 Dynamic object culling

In the potential dynamic object segmentation environment,
using a semantic segmentation network can only obtain the
potential dynamic objects in the image but cannot specifi-
cally determine the dynamic objects (Liu et al., 2023). To
address this problem, this paper proposes the use of adap-
tive geometric thresholding for dynamic object detection.
Firstly, the image frames are extracted with ORB features
and matched with neighboring feature points to obtain n

matching pairs, and then the basis matrix F is obtained by
the eight-point method. Then the fundamental matrix is used
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Figure 6. Attention mechanism.

to calculate the polar lines of the current frame. In a con-
crete approach, the pixel position of the feature point in the
previous framework is known as L1 =

[
x1,y1,1

]
, and the

corresponding position of this point in the current frame is
L2 =

[
x2,y2,1

]
. Then the polar line I1 projected by the

point L1 into the current frame can be found, and its cal-
culation formula is shown in Eq. (7).

I1 =

X

Y

Z

= FL1 = F

x1
y1
1

 (7)

X, Y , and Z represent the line vector in the foundation ma-
trix. Ultimately, the distance d of the matched feature point
to its corresponding polar line is calculated, and if this dis-
tance exceeds a threshold, it is considered a moving point
and vice versa a static point. Its calculation formula is shown
in Eq. (8).

d =
(
‖X‖2+‖Y‖2

)− 1
2 ∣∣LT

2L1
∣∣ (8)

Due to the influence of noise in the feature-tracking process,
the dynamic points cannot be judged effectively by the basis
matrix only, so this paper proposes an adaptive method in the
nonlinear pose optimization stage. Using the Gauss–Newton
iteration method can get the uncertainty error of object mo-
tion estimation as

∑
x =6

(
J TJ

)
sets the uncertainty error

to satisfy the ω-dimensional Gaussian distribution, and then
its differential motion entropy F (xo) is calculated as shown
in Eq. (9).

F (xo)=
1
2

log
∣∣∣∑xo

∣∣∣+ ω
2

log(ωπe) (9)

Differential motion entropy can be considered the level of
pose uncertainty obtained by minimizing photometric resid-
uals. Specifically, a three-dimensional motion observation
with high entropy will result in a larger shift of an object
in the image, while an observation with low entropy will
produce a smaller image discrepancy. Based on this, the ob-
ject’s dynamic deviation is compared to a dynamic threshold
1d = f (F (xo)) guided by the differential motion entropy
and slowly increases with entropy, and, if d > 1d , the ob-
ject is judged to be dynamic and removes the feature points
on this object.

4.2 Background restoration

Conventional dynamic SLAM algorithms often suffer from
reduced feature information for background restoration and
pose estimation after the removal of dynamic objects. This
limitation results in a low number of extracted feature points
and inaccurate pose estimation, which can negatively impact
loop-back detection and static map construction (Wang et
al., 2023). As the quality of image restoration heavily relies
on the richness of image information, it can be challenging to
efficiently obtain adequate image information by solely pro-
jecting previous frames onto the target frame. Therefore, this
paper proposes a background restoration algorithm based on
PatchMatch to complete the restoration of static backgrounds
of RGB images and depth images in the current frame af-
ter dynamic region rejection with the help of static infor-
mation in adjacent frames. The background restoration al-
gorithm of optimal nearest-neighbor pixel matching includes
similarity search and pixel matching. Among them, a simi-
lar search contains two-step information estimation and ref-
erence framework selection. Firstly, we find the key frames
to be selected through information estimation, get the judg-
ment threshold displacement and rotation change amount
through the motion connection between adjacent frames,
get the reference frames through the judgment thresholds,
and finally use the reference frames combined with the ap-
proximate nearest-neighbor matching algorithm for the back-
ground restoration. Its specific steps are as follows.

4.2.1 Similarity search step 1: information estimation

Specifically, a 15-frame image frame is moved in the direc-
tion of an arrow, starting from the target frame, to serve as
the starting point for the restoration window. The ORB fea-
tures are extracted from each frame in the window, and the
number of feature points is

∑
Mi . Each reference frame to

be selected is matched with the target frame, and the number
of feature points matched is recorded as

∑
Ni . If

∑
Mi and∑

Ni satisfy the condition of Eq. (10), the reference frame
to be selected is considered to have rich image information.∣∣∣∑Mi −

∑
Ni

∣∣∣< 60 (10)

Mech. Sci., 15, 1–16, 2024 https://doi.org/10.5194/ms-15-1-2024



M. Chen et al.: vSLAM in dynamic scenes 7

Also, by estimating motion links between neighboring
frames, P = [X,Y,Z]T is a point in space with projections
p1 and p2 in the reference and target frames, respectively,
and the pixel positions of pixel points p1 and p2 are obtained
from the pinhole camera model as

s1p1 =KP ,

s2p2 =K (R21P + t21) . (11)

s1 and s2 are the scale factors, K is the camera internal ref-
erence matrix, and R21 and t21 are the rotation and trans-
lation matrices of the target map with respect to the refer-
ence map, which can be obtained by solving the base ma-
trix or the essential matrix to recover the camera motion and
then projecting the three-dimensional vector onto the two-
dimensional plane to derive the displacement change1p and
rotation change 1θ between any two frames.

4.2.2 Similarity search step 2: reference frame selection

The use of a suitable reference frame is crucial for perform-
ing approximate nearest-neighbor matching. Hence, the pro-
cess of combining image information and the bit pose is ex-
ecuted as follows: in step (1), a group of forward and reverse
15 frames is selected for feature extraction and matching.
The reference frame that meets the criteria is then identified
and added to the reference frame library for future selection.
When 1p exceeds the threshold τ and 1θ is greater than
the threshold γ , this frame will be added to the reference
frame library to be selected when the conditions of step 1 are
met. When the condition of Eq. (12) is satisfied, the reference
frame is added to the reference frame library. The mathemat-
ical expression of the reference frame selection method is
shown in Eq. (12).

rf=
{
fi |
([
1p > τ

]
∪
[
1θ > γ

]
∪ [|Mi −Ni |< 100]

)}
(12)

4.2.3 Pixel matching

The reference frame library is obtained by a similar search,
and pixel matching is performed by improving the traditional
approximate nearest-neighbor matching algorithm for back-
ground restoration, which consists of three processes: initial-
ization, propagation, and search. Firstly, the target image to
be restored is the A image and the reference frame is the
B image, a pixel block in the A image is randomly selected
as a matching block and randomly assigned an offset, and
a matching block is found in the B image to correspond to
it. Secondly, the propagation step calculates the offset dif-
ference between the matching block in the A image and the
matching block in the B image and finds the value with the
smallest offset. Thirdly, the search step finds a better match
for each pixel point in the B image within a concentric circle
centered on the present, and the radius of the search starts at
the size of the image and is iteratively reduced by a factor of
0.5 until the end. Propagation and search are repeated until

Figure 7. Preferred approximate nearest match.

the most suitable and accurate offset is found for each pixel
block, and the pixel value corresponding to this offset is as-
signed to the corresponding pixel block in the A image. The
offset calculation formula is shown in Eq. (13).

R =

∑
(A−B)2

+
∑(

A−B
)2

n2 (13)

A, B, A, B, and n2 are the size of the original matrix block
in the A image, the original matrix block in the B image,
the offset matrix block in the A image, and the offset matrix
block in the B image, respectively. Experimental results in-
dicate that the reference frame library typically contains two
to four image frames, with the typical number of iterations
being three. Taking two frames of images as an example, the
schematic diagram of optimal nearest-neighbor pixel match-
ing is shown in Fig. 7.

5 Experimental results and analysis

This is the hardware and software configuration of the plat-
form used for the experiments in this paper: the CPU is an
Inter i9-12900K processor at 3.2 GHZ, the memory is 16 GB,
the GPU is an RTX3090 graphics card with 24 GB video
memory, and the system is Ubuntu 18.04.

5.1 Potential dynamic object segmentation experiments

This paper uses the COCO2017 (Lin et al., 2014) dataset
as training, the experimental software environment is
Python 3.8.6, pytorch 1.11.1, and cuda 11.3, the com-
piler is pycharm 2020.1, the model training parameters are
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8 M. Chen et al.: vSLAM in dynamic scenes

learn rate= 0.001, epochs= 64, and batch size= 4, and the
dropout probability is 0.56. In order to verify the semantic
segmentation performance of the proposed MSNET algo-
rithm, the desired scenarios are selected in the TUM dataset.
The results of the semantic segmentation of W_xyz, W_rpy,
W_halfsphere, and W_static sequences by a fully convolu-
tional network (FCN), DeepLabV3Plus, and MSNET in the
TUM dataset are compared (Schubert et al., 2018; Dai et
al., 2016; Chen et al., 2018). For example, Fig. 8 shows that
the green boxes are the auxiliary marks made in this paper.
Figure 8a–l illustrate the segmentation results of the FCN,
DeepLabV3Plus, and the proposed algorithm, respectively,
for four different sequences from the TUM dataset. A com-
parison of the semantic segmentation performance across the
four figures reveals that the FCN and DeepLabV3Plus, which
utilize convolutional network structures, are prone to being
influenced by the size of the convolutional kernel and the per-
ceptual field. This limitation renders the convolutional net-
work effective only for local features and less accurate in seg-
menting human torsos. The traditional FCN algorithm uses a
fully convolutional network structure, which is very prone
to segmentation errors for category-rich images, as shown in
Fig. 8b and c. The proposed MSNET algorithm leverages the
improved Vision Transformer backbone structure to directly
extract feature textures from images. Instead of relying solely
on convolutional networks, MSNET adopts a combination of
the Transformer decoder, the multiclass feature enhancement
module, and multiclass feature guidance for pixel-level seg-
mentation. As Transformer networks can obtain global inter-
pixel feature texture dependencies and improve the accuracy
of object recognition and segmentation, MSNET is capable
of performing effective and accurate segmentation.

Figure 9 shows the comparison of the evaluation metrics
of the three semantic segmentation algorithms, Fig. 9a shows
the mean intersection ratio (MIoU) of the three algorithms,
and Fig. 9b shows the mean pixel accuracy (MPA) of the
categories of the three algorithms. It is one of the most com-
monly used criteria to evaluate the effectiveness of semantic
segmentation, and the larger the value, the better the segmen-
tation effect. The MSNET algorithm proposed in this paper
achieves an average intersection ratio of more than 80 % for
all four sequences and an average pixel accuracy of more
than 70 % for all the categories, which is higher than the other
two algorithms.

5.2 Dynamic object culling and background restoration

The dynamic objects are judged by multi-view geometry, and
the dynamic objects in the image are rejected. In order to get
the complete static scene for pose estimation and composi-
tion, the optimal nearest-neighbor pixel matching is used to
complement the rejected area in this paper. The effect of the
background restoration process is shown in Fig. 10, where
Fig. 10a–c show the system input containing the original
RGB map and the original depth map of the dynamic figure.

Figure 10d–f show the RGB map and depth map of dynamic
object rejection. The proposed algorithm in this paper utilizes
adaptive geometric thresholding to reject dynamic objects
and perform restoration of missing image areas through op-
timal nearest-neighbor pixel matching. This approach results
in the creation of a complete, static image. Figure 10g–i show
the RGB maps and depth maps after background restoration,
and the restored images contain only the static background
in the original scene.

In order to further verify the performance of the back-
ground restoration algorithm, four dynamic sequences in the
TUM dataset are selected to evaluate the localization and
mapping capabilities of the algorithm. Compared with ORB-
SLAM2, DynaSLAM, NR-Ours (no background repair our
algorithm), and our algorithm, the absolute pose error (APE)
is used in the experiment. The APE is the statistical infor-
mation that compares the estimated trajectory with the ref-
erence trajectory and calculates the entire trajectory suitable
for global consistency of test trajectories. At the same time,
in order to eliminate accidental errors, this paper conducted
five experiments on each sequence and took the root mean
square error (RMSE), mean value (Mean), and standard de-
viation (SD) as its measurement units. The experimental re-
sults of the absolute pose errors of the four algorithms are
compared in Table 1, where boldface represents the optimal
value. It can be seen from the table that our algorithm per-
forms better than the other three algorithms in the four se-
quence scenes, which can effectively reduce the influence of
dynamic objects on pose. As can be seen from the figure,
some experimental data of NR-Ours are the same as those of
DynaSLAM, but most of them are better than those of Dy-
naSLAM. This shows that the performance of our algorithm
is already higher than that of DynaSLAM without back-
ground restoration. However, the addition of the background
restoration algorithm further improves the performance of
our algorithm. This shows that the background repair algo-
rithm can effectively supplement the missing feature infor-
mation due to the removal of dynamic objects and then pro-
vide a good basis for the localization and mapping of the
SLAM system.

5.3 Feature extraction

In this paper, the TUM dataset is selected to verify the feature
extraction effect of this paper’s algorithm VTD-SLAM in dy-
namic scenes. As shown in Fig. 11, the feature extraction
results of three algorithms, i.e., ORB-SLAM2, DynaSLAM,
and VTD-SLAM, are compared to the TUM dataset. Fig-
ure 11a–d show the feature extraction results for ORB-
SLAM2. This algorithm cannot reject the feature points on
dynamic objects, which will cause the SLAM system to pro-
duce serious interference in the front-end alignment and poor
bit pose estimation and composition. Figure 11e–h show the
feature extraction effect of DynaSLAM, which only rejects
feature points on dynamic objects but does not perform back-
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Figure 8. Comparison of semantic segmentation of three algorithms in the TUM dataset.

Figure 9. Evaluation index comparison.

ground restoration, and can use fewer static features. Fig-
ure 11i–l show the feature extraction effect of this algorithm.
By eliminating dynamic regions and repairing static back-
grounds in the eliminated regions, this algorithm extracts
richer static feature points and builds a more accurate tra-
jectory map.

5.4 SLAM system evaluation

In this paper, the W_halfsphere, W_rpy, W_xyz, and
W_static sequences containing dynamic scenes in the TUM

dataset are selected to verify the effectiveness of the algo-
rithms. Figure 12 shows the trajectory plots constructed by
ORB-SLAM2, DS-SLAM, DynaSLAM, and the four algo-
rithms of VTD-SLAM proposed in this paper under differ-
ent scenarios. The black curve in the figure indicates the
real trajectory of camera motion, the blue curve is the es-
timated camera motion trajectory by the SLAM algorithm,
and the red curve is the trajectory error. From Fig. 12, we
can see that, since ORB-SLAM2 is only for static environ-
ments and cannot recognize dynamic objects, large trajec-
tory errors when operating in a dynamic environment will
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Figure 10. Effect picture of background restoration.

Table 1. Comparison of absolute pose errors of three algorithms in the TUM dataset (m). Bold numbers indicate optimal values, with smaller
values representing better algorithm performance.

TUM sequence ORB-SLAM2 Dyna-SLAM NR-Ours Ours

RMSE Mean SD RMSE Mean SD RMSE Mean SD RMSE Mean SD

fr3_walking_xyz 0.75 0.58 0.46 0.07 0.05 0.06 0.07 0.05 0.04 0.05 0.04 0.03
fr3_walking_static 0.41 0.31 0.26 0.06 0.05 0.04 0.05 0.04 0.03 0.03 0.03 0.01
fr3_ walking_ rpy 0.98 0.83 0.52 0.34 0.44 0.21 0.24 0.33 0.11 0.23 0.20 0.11
fr3_walking_halfsphere 0.28 0.27 0.17 0.26 0.20 0.19 0.13 0.11 0.10 0.13 0.09 0.09
Mean 0.60 0.50 0.35 0.18 0.19 0.13 0.12 0.13 0.07 0.11 0.09 0.06

have a greater impact on the back-end composition. The DS-
SLAM algorithm recognizes and rejects dynamic objects in
the environment through the SegNet instance segmentation
network and motion feature point detection, but the SegNet
instance segmentation network can only recognize 20 kinds
of objects, and it is easy to omit segmenting dynamic ob-
jects beyond these 20 kinds when running in indoor envi-
ronments with rich kinds of information, which causes its
trajectory error to be larger than our algorithm’s trajectory
error. DynaSLAM also uses an instance segmentation net-
work to segment the region where the dynamic objects are
located and eliminates them to reduce the influence of dy-
namic objects on the composition. However, the DynaSLAM
algorithm uses a MASK-RCNN network, which is limited by
the sensory field of the convolutional network and the size of
the convolutional kernel, making the MASK-RCNN network
unable to obtain global semantic information, and it is prone
to segmentation errors and incomplete segmentation when
segmenting large objects, so the trajectory error generated
by it for the SLAM task is still larger than that of our algo-

rithm. However, these two algorithms suffer from limitations
in accurately and clearly segmenting dynamic objects. Ad-
ditionally, neither approach performs background restoration
after dynamic object rejection, and both fail to extract fea-
ture points from the rejected areas. As a result, the number of
static feature points for pose estimation and map building is
reduced, which can significantly impact the positioning accu-
racy of the algorithm. The VTD-SLAM algorithm proposed
in this paper incorporates the MSNET semantic segmenta-
tion algorithm, and thanks to the attention mechanism, it is
able to perceive the global semantic information so as to ac-
curately and clearly recognize the dynamic objects in the en-
vironment and eliminate them. The optimal nearest-neighbor
pixel-matching method proposed by us effectively comple-
ments the static background of the eliminated region, and the
high-quality feature points are filtered out to be used for the
bit position estimation and composition. In addition, we fil-
ter out the high-quality feature points for position estimation
and composition, which reduces the influence of dynamic ob-
jects on the composition. Therefore, the algorithm in this pa-
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Figure 11. Three different algorithm feature extraction results.

per has high accuracy, the trajectory error is smaller than the
other three algorithms, and the constructed trajectory map is
closer to the real trajectory (Shi et al., 2023a, b).

Table 2 shows the RMSE of the comparison of absolute
trajectory errors of four algorithms in the TUM dataset, and
the lower value of the RMSE represents the higher robustness
of the system. From Table 1, we can see that the algorithms
in this paper achieve lower error values in all four sequences,
of which the RMSEs of the W_halfsphere and W_static se-
quences are smaller than ORB-SLAM2 and DS-SLAM and
are equal to that of the DynaSLAM algorithm. The W_rpy
sequence is 95.6 %, 93.5 %, and 95.5 % less than ORB-
SLAM2, DS-SLAM, and DynaSLAM by 95.6 %, 93.5 %,
and 17.1 %, respectively, and the W_xyz sequence is less by
97.2 %, 48.0 %, and 13.3 % compared to ORB-SLAM2, DS-
SLAM, and DynaSLAM, respectively. Our mean absolute
trajectory error is still lower than the other three algorithms,
which shows that our algorithm can effectively reduce the
influence of dynamic objects on the SLAM system.

5.5 Real scenario testing

The effectiveness of the algorithm in this paper is verified in
a real scenario where the semantic segmentation algorithm
as the input of VTD-SLAM is generated offline from the PC.
The experimental platform is a Husky wheeled robot with the
following hardware configuration: the CPU is an i7-10875H

processor, the memory is 8 GB, the GPU is GTX1080, and
the OS is Ubuntu 18.04. The robot hardware appearance is
shown in Fig. 13a, and the main parameter settings are shown
in Table 3. The real environment is shown in Fig. 13b, with
a size of 12 m× 5 m. Figure 13c shows the layout of the real
scene, where the yellow part is the lab bench, sections A–B
form the robot motion route, and sections C–D are the pedes-
trian round-trip motion route. Table 2 shows the main param-
eter settings for the Husky wheeled mobile robot.

A frame of image information acquired during the oper-
ation of the selected mobile robot is shown in Fig. 14. Fig-
ure 14a is the original image frame in the dynamic scene,
and Fig. 14b is the semantic segmentation result in the dy-
namic scene, demonstrating the effectiveness of the MSNET
algorithm in accurately segmenting potential dynamic ob-
jects. The background restoration result of the VTD-SLAM
algorithm is shown in Fig. 14c, where the red box serves as
an auxiliary marker and the box represents the restored dy-
namic object area. As the number of static feature points that
can be extracted after the dynamic objects are removed is
limited, this may lead to poor bit pose estimation and map
construction abilities of the SLAM system. By performing
background restoration on the rejected regions of dynamic
objects and screening the restored regions for high-quality
feature points, this algorithm improves the accuracy of robot
pose estimation and composition, as shown in Fig. 14d of
the algorithm with the ORB-SLAM2 and DynaSLAM algo-
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Figure 12. Trajectories of the four different algorithms.

Table 2. Comparison of absolute trajectory errors of four algorithms in the TUM dataset (m). Bold numbers indicate optimal values, with
smaller values representing better algorithm performance.

Test sequence ORB-SLAM2 DS-SLAM DynaSLAM Ours

W_halfsphere 0.351 0.025 0.025 0.025
W_rpy 0.662 0.444 0.035 0.029
W_static 0.090 0.008 0.006 0.006
W_xyz 0.459 0.025 0.015 0.013
Mean 0.391 0.126 0.034 0.018

rithms and real trajectories of contrast. Because the ORB-
SLAM2 algorithm cannot identify the dynamic target, its
trajectory is quite different from the actual trajectory. The
DynaSLAM algorithm adds the MASK-RCNN algorithm to
identify dynamic objects, so its trajectory error is reduced
compared with the ORB-SLAM2 algorithm, but the trajec-
tory error is still larger than ours. However, the algorithm in
this paper increases the influence of semantic segmentation,

eliminates the dynamic target, and carries out background re-
pair, so that the trajectory error of the VTD-SLAM algorithm
is minimized and is very close to the real trajectory, which
shows the reliability of our algorithm in the real scene.

Figure 15 shows the comparison of the running time of
the three algorithms ORB-SLAM2, DynaSLAM, and VTD-
SLAM2 in four TUM dataset sequences and in real scenes.
It can be seen from the figure that the running time of the
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Figure 13. Experimental platform and real experimental environment.

Figure 14. Real scene experiment.

Table 3. Main parameter setting.

Variable name Parameter Numerical value

Operating speed Vs 1 m s−1

Rotational speed Vθ 0.48 rad s−1

Range of direction change 2 [0,2π ]
Camera sampling frequency H 30 fps

algorithm in this paper is reduced by about 20 % compared
with that of the DynaSLAM algorithm. Due to the addition
of the semantic segmentation network and the elimination of

dynamic objects, the running time of this algorithm is greatly
increased compared with ORB-SLAM2, but it can still effec-
tively complete the recognition of dynamic objects and the
repair of the elimination area.

6 Conclusion

To improve the robustness of mobile robots in dynamic
scenes, a VTD-SLAM algorithm is proposed in this paper,
which has the following advantages. (1) To address the is-
sues of segmentation blurring or errors that may arise from
object movement during the semantic segmentation of dy-

https://doi.org/10.5194/ms-15-1-2024 Mech. Sci., 15, 1–16, 2024



14 M. Chen et al.: vSLAM in dynamic scenes

Figure 15. Comparison of the running times of the three algo-
rithms.

namic objects using existing networks, this paper introduces
the MSNET algorithm. The proposed approach leverages a
multiclass feature enhancement and multiclass feature guid-
ance technique to improve the semantic segmentation of
dynamic objects. The problems of segmentation ambiguity
and segmentation errors are reduced effectively, and the se-
mantic segmentation ability of dynamic objects is improved.
(2) Adopt optimal nearest-neighbor pixel matching to repair
the images in the complementary rejection region and extract
the high-quality feature points in the region to provide more
feature information for the system bit pose estimation and the
construction of dense point cloud maps. To demonstrate the
effectiveness of the algorithm proposed in this paper, it was
validated using the publicly available TUM dataset. The re-
sults show that the VTD-SLAM algorithm outperforms three
other algorithms, i.e., ORB-SLAM2, DS-SLAM, and Dy-
naSLAM, in terms of localization accuracy and composition
capability. Our approach introduces the use of Transformer’s
large models in the SLAM domain, which will allow work-
ers within the SLAM field to focus more on more accu-
rate large model networks, and can introduce deep-learning
frameworks into SLAM with more confidence, contributing
to the field application of SLAM engineering.
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